skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WA80 BGO calorimetry electronics

Conference ·
OSTI ID:6109927

This paper describes instrumentation designed for BGO scintillator-based calorimetry of particles covering a very wide range of energies (from less than 50 MeV to 50 GeV). The instrumentation was designed to have a measurement accuracy of 0.1% over as much of the energy range as possible so the energy resolution of BGO would be the limiting factor. Two 1.5-cm{sup 2} photodiodes were used per 2.5 cm {times} 2.5 cm {times} 25 cm BGO crystal. Both a charge-sensitive preamplifier and a pulse processor were developed specifically for the needs of the WA80 experiment. The preamplifier was designed for high detector capacitance (100 to 700 pF), low integral and differential non-linearity and low power consumption (200 mW). The pulse processor is a time-invariant shaping amplifier with integral peak-detect-and-hold and automatic gain selection circuits. The amplifier use quasi-triangular shaping with 4 {mu}s peaking time, and the hold circuit is gated with a fast first level trigger. The system has more than 20 bits of effective resolution when used with an external 12-bit ADC. Results from beam tests at CERN are presented. 6 refs., 5 figs., 1 tab.

Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
6109927
Report Number(s):
CONF-911106-13; ON: DE92002881
Resource Relation:
Conference: IEEE nuclear science symposium, Santa Fe, NM (United States), 5-9 Nov 1991
Country of Publication:
United States
Language:
English