skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Epitaxial Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3}/SrRuO{sub 3} (x = 0, 0.35, 0.65) multilayer thin films on SrTiO{sub 3}(100) and MgO(100) prepared by MOCVD and RF sputtering

Technical Report ·
DOI:https://doi.org/10.2172/52818· OSTI ID:52818
; ; ; ; ;  [1]; ;  [2]
  1. Argonne National Lab., IL (United States). Materials Science Div.
  2. Hewlett-Packard Co., Palo Alto, CA (United States). Hewlett Packard Labs.

Epitaxial SrRuO{sub 3} thin films were deposited on SrTiO{sub 3}(100) and MgO(100) substrates by RF sputtering for use as bottom electrodes and epitaxial buffer layers. On these conductive substrates, epitaxial Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3} (PZT; x = 0.35,0.65) and PbTiO{sub 3} (PT; x = 0) thin films were deposited by metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD), RBS channeling (RBS), transmission electron microscopy (TEM) and optical waveguiding were used to characterize the phase, microstructure, defect structure, refractive index, and film thickness of the deposited films. The PZT and PT films were epitaxial and c-axis oriented. 90{degree} domains, interfacial misfit dislocations and threading dislocations were the primary structural defects, and the films showed as high as a 70% RBS channeling reduction. Ferroelectric hysteresis and dielectric measurements of epitaxial PZT ferroelectric capacitor structures formed using evaporated Ag top electrode showed: a remanent polarization of 46.2 {mu}C/cm{sup 2}, a coercive field of 54.9 kV/cm, a dielectric constant of 410, a bipolar resistivity of {approximately}5.8 {times} 10{sup 9} {Omega}-cm at a field of 275 kV/cm, and a breakdown strength of >400 kV/cm. Cyclic fatigue measurements showed that the remanent polarization was maintained for >10{sup 9} cycles.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
52818
Report Number(s):
ANL/MSD/CP-83776; CONF-950228-6; ON: DE95008288; CRN: C/ANL--9301701; TRN: AHC29515%%89
Resource Relation:
Conference: North American conference on smart structures and materials, San Diego, CA (United States), 26 Feb - 3 Mar 1995; Other Information: PBD: Feb 1995
Country of Publication:
United States
Language:
English