skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Threshold partitioning of sparse matrices and applications to Markov chains

Conference ·
;  [1]
  1. Temple Univ., Philadelphia, PA (United States)

It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.

Research Organization:
Front Range Scientific Computations, Inc., Lakewood, CO (United States)
OSTI ID:
440707
Report Number(s):
CONF-9604167-Vol.2; ON: DE96015307; TRN: 97:000721-0029
Resource Relation:
Conference: Copper Mountain conference on iterative methods, Copper Mountain, CO (United States), 9-13 Apr 1996; Other Information: PBD: [1996]; Related Information: Is Part Of Copper Mountain conference on iterative methods: Proceedings: Volume 2; PB: 242 p.
Country of Publication:
United States
Language:
English