skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Federal technology alert: Ultrasonic humidifiers

Technical Report ·
DOI:https://doi.org/10.2172/304094· OSTI ID:304094

Humidifiers are used in buildings to maintain humidity levels to ensure quality and handling capabilities in manufacturing processes, to lower the transmission rate of disease-causing bacteria in hospitals, to reduce static electricity in manufacturing clean rooms and in computer rooms, and to provide higher levels of employee comfort in offices. Ultrasonic humidifiers generate a water mist without raising its temperature. An electronic oscillation is converted to a mechanical oscillation using a piezo disk immersed in a reservoir of mineral-free water. The mechanical oscillation is directed at the surface of the water, where at very high frequencies it creates a very fine mist of water droplets. This adiabatic process, which does not heat the supply water, reduces humidifier energy use by 90 to 93% compared with systems that do boil the water. Ultrasonic humidifiers have been demonstrated to be more efficient and to require less maintenance than competing humidifier technologies such as electrode canisters, quartz lamps, and indirect steam-to-steam. They do not require anticorrosive additives that affect the indoor air quality of buildings using direct steam humidifiers. There are two potential disadvantages of ultrasonic humidifiers. They must use mineral-free, deionized water or water treated with reverse osmosis. Treated water reduces maintenance costs because it eliminates calcium deposits, but increases other operating costs. Also, the cool mist from ultrasonic humidifiers absorbs energy from the supply air as it evaporates and provides a secondary cooling effect.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States)
OSTI ID:
304094
Report Number(s):
DOE/EE-0180; ON: DE99001502; NC: NONE; TRN: AHC29904%%170
Resource Relation:
Other Information: PBD: Nov 1998
Country of Publication:
United States
Language:
English