skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Screening Compounds for Fast Pyrolysis and Catalytic Biofuel Upgrading Using Artificial Neural Networks

Conference · · ASME 2019 Internal Combustion Engine Division Fall Technical Conference

Abstract There is significant interest among researchers in finding economically sustainable alternatives to fossil-derived drop-in fuels and fuel additives. Fast pyrolysis, a method for converting biomass into liquid hydrocarbons with the potential for use as fuels or fuel additives, is a promising technology that can be two to three times less expensive at scale when compared to alternative approaches such as gasification and fermentation. However, many bio-oils directly derived from fast pyrolysis have a high oxygen content and high acidity, indicating poor performance in diesel engines when used as fuels or fuel additives. Thus, a combination of selective fast pyrolysis and chemical catalysis could produce tuned bioblendstocks that perform optimally in diesel engines. The variance in performance for derived compounds introduces a feedback loop in researching acceptable fuels and fuel additives, as various combustion properties for these compounds must be determined after pyrolysis and catalytic upgrading occurs. The present work aims to reduce this feedback loop by utilizing artificial neural networks trained with quantitative structure-property relationship values to preemptively screen pure component compounds that will be produced from fast pyrolysis and catalytic upgrading. The quantitative structure-property relationship values selected as inputs for models are discussed, the cetane number and sooting propensity of compounds derived from the catalytic upgrading of phenol are predicted, and the viability of these compounds as fuels and fuel additives is analyzed. The model constructed to predict cetane number has a test set prediction root-mean-squared error of 9.874 cetane units, and the model constructed to predict yield sooting index has a test set prediction root-mean-squared error of 13.478 yield sooting index units (on the unified scale).

Research Organization:
University of Massachusetts Lowell
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Bioenergy Technologies Office (BETO)
DOE Contract Number:
EE0008479
OSTI ID:
2283731
Report Number(s):
DOE-UML-0008479-06
Journal Information:
ASME 2019 Internal Combustion Engine Division Fall Technical Conference, Conference: ASME 2019 Internal Combustion Engine Division Fall Technical Conference
Country of Publication:
United States
Language:
English

Similar Records

Predicting the Cetane Number, Yield Sooting Index, Kinematic Viscosity, and Cloud Point for Catalytically Upgraded Pyrolysis Oil Using Artificial Neural Networks
Conference · Mon Dec 14 00:00:00 EST 2020 · ASME 2020 Internal Combustion Engine Division Fall Technical Conference · OSTI ID:2283731

Evaluating Diesel/Biofuel Blends Using Artificial Neural Networks and Linear/Nonlinear Equations
Conference · Fri Nov 19 00:00:00 EST 2021 · ASME 2021 Internal Combustion Engine Division Fall Technical Conference · OSTI ID:2283731

Predicting the Cetane Number, Sooting Tendency, and Energy Density of Terpene Fuel Additives
Conference · Wed Nov 23 00:00:00 EST 2022 · ASME 2022 ICE Forward Conference · OSTI ID:2283731