skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Geological and petrophysical characterization of the Ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. [Quarterly progress report], October 1--December 31, 1995

Technical Report ·
DOI:https://doi.org/10.2172/211625· OSTI ID:211625

The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into regional stratigraphy, case studies, and technology transfer activities. The Kf-2 contains more and cleaner sand, indicating a more wave-modified environment of deposition. The regional stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek was described and interpreted. Photomosaics and a database of existing surface and subsurface data are being used to determine the extent and depositional environment of each parasequence, and the nature of the contacts with adjacent rocks or flow units. Detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas. Interpretations of lithofacies, bounding surfaces, and other geologic information are being combined with permeability measurements from closely spaced traverses and from drill-hole cores (described this quarter).

Research Organization:
Utah Geological and Mineral Survey, Salt Lake City, UT (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC22-93BC14896
OSTI ID:
211625
Report Number(s):
DOE/BC/14896-12; ON: DE96006364
Resource Relation:
Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English