skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling Solute Diffusion in the Presence of Pore-Scale Heterogeneity

Journal Article · · Journal of Contaminant Hydrology
OSTI ID:13998

A range of pore diffusivities, D{sub p}, is implied by the high degree of pore-scale heterogeneity observed in core samples of the Culebra (dolomite) Member of the Rustler formation, NM. Earlier tracer tests in the culebra at the field-scale have confirmed significant heterogeneity in diffusion rate coefficients (the combination of D{sub p} and matrix block size). In this study, expressions for solute diffusion in the presence of multiple simultaneous matrix diffusivities are presented and used to model data from eight laboratory-scale diffusion experiments performed on five Culebra samples. A lognormal distribution of D{sub p} is assumed within each of the lab samples. The estimated standard deviation ({sigma}{sub d}) of In(D{sub p}) within each sample ranges from 0 to 1, with most values lying between 0.5 and 1. The variability over all samples leads to a combined {sigma}{sub d} in the range of 1.0 to 1.2, which appears to be consistent with a best-fit statistical distribution of formation factor measurements for similar Culebra samples. A comparison of the estimation results to other rock properties suggests that, at the lab-scale, the geometric mean of D{sub p} increases with bulk porosity and the quantity of macroscopic features such as vugs and fractures. However, {sigma}{sub d} appears to be determined by variability within such macroscopic features and/or by micropore-scale heterogeneity. In addition, comparison of these experiments to those at larger spatial scales suggests that increasing sample volume results in an increase in {sigma}{sub d}.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
13998
Report Number(s):
SAND99-1947J; TRN: AH200135%%534
Journal Information:
Journal of Contaminant Hydrology, Other Information: Submitted to Journal of Contaminant Hydrology; PBD: 21 Oct 1999
Country of Publication:
United States
Language:
English