skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Calibration System of the E989 Experiment at Fermilab

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1350506· OSTI ID:1350506

The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm, improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10-4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10-4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level of stability a particular environment, due to the presence of a 14 m diameter storage ring, a highly uniform magnetic field and the detector distribution around the storage ring, set specific guidelines and constraints. This thesis will focus on the final design of the Laser Calibration System developed for the E989 experiment. Chapter 1 introduces the subject of the anomalous magnetic moment of the muon; chapter 2 presents previous measurement of g-2, while chapter 3 discusses the Standard Model prediction and possible new physics scenario. Chapter 4 describes the E989 experiment. In this chapter will be described the experimental technique and also will be presented the experimental apparatus focusing on the improvements necessary to reduce the statistical and systematic errors. The main item of the thesis is discussed in the last two chapters: chapter 5 is focused on the Laser Calibration system while chapter 6 describes the Test Beam performed at the Beam Test Facility of Laboratori Nazionali di Frascati from the 29th February to the 7th March as a final test for the full calibrations system. An introduction explain the physics motivation of the system and the diff t devices implemented. In the final chapter the setup used will be described and some of the results obtained will be presented.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1350506
Report Number(s):
FERMILAB-THESIS-2017-07; 1590211
Country of Publication:
United States
Language:
English

Similar Records

Measurement of vertical betatron oscillations using the straw tracking detectors for the E989 muon g-2 experiment at Fermilab.
Thesis/Dissertation · Mon Sep 30 00:00:00 EDT 2019 · OSTI ID:1350506

High Precision Magnetic Field Measurement for the Muon g-2 Experiment
Journal Article · Fri Aug 02 00:00:00 EDT 2019 · PoS - Proceedings of Science · OSTI ID:1350506

Measurement of the muon anomalous precession frequency at the Muon g − 2 Experiment at Fermilab
Thesis/Dissertation · Sat Apr 01 00:00:00 EDT 2023 · OSTI ID:1350506