skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STAR-CCM+ Verification and Validation Plan

Technical Report ·
DOI:https://doi.org/10.2172/1335352· OSTI ID:1335352
 [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

The commercial Computational Fluid Dynamics (CFD) code STAR-CCM+ provides general purpose finite volume method solutions for fluid dynamics and energy transport. This document defines plans for verification and validation (V&V) of the base code and models implemented within the code by the Consortium for Advanced Simulation of Light water reactors (CASL). The software quality assurance activities described herein are port of the overall software life cycle defined in the CASL Software Quality Assurance (SQA) Plan [Sieger, 2015]. STAR-CCM+ serves as the principal foundation for development of an advanced predictive multi-phase boiling simulation capability within CASL. The CASL Thermal Hydraulics Methods (THM) team develops advanced closure models required to describe the subgrid-resolution behavior of secondary fluids or fluid phases in multiphase boiling flows within the Eulerian-Eulerian framework of the code. These include wall heat partitioning models that describe the formation of vapor on the surface and the forces the define bubble/droplet dynamic motion. The CASL models are implemented as user coding or field functions within the general framework of the code. This report defines procedures and requirements for V&V of the multi-phase CFD capability developed by CASL THM. Results of V&V evaluations will be documented in a separate STAR-CCM+ V&V assessment report. This report is expected to be a living document and will be updated as additional validation cases are identified and adopted as part of the CASL THM V&V suite.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Consortium for Advanced Simulation of LWRs (CASL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1335352
Report Number(s):
ORNL/TM-2016/573; NT0304000; NEAF343; CASL-U-2016-1198-000
Country of Publication:
United States
Language:
English