skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

Technical Report ·
DOI:https://doi.org/10.2172/1253131· OSTI ID:1253131
 [1];  [1]
  1. Center for Photonics Technology, Blacksburgh, VA (United States)

This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

Research Organization:
Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
FE0005703
OSTI ID:
1253131
Country of Publication:
United States
Language:
English