skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fuel Cell Research at the University of South Carolina

Technical Report ·
DOI:https://doi.org/10.2172/1107773· OSTI ID:1107773

Five projects are proposed, in an effort to supplement the efforts of fuel cell research at the University of South Carolina and to contribute to the Technical Plan for Fuel Cells of the Department of Energy. These efforts include significant interaction with the industrial community through DOE funded projects and through the National Science Foundation’s Industry/University Cooperative Research Center for Fuel Cells. The allocation of projects described below leverage all of these sources of funding without overlap and redundancy. The first project “Novel Non-Precious Metal Catalyst For PEMFCs,” (Dr. Branko Popov) continues DOE award DE-FC36-03GO13108 for which funding was delayed by DOE due to budget constraints. The purpose of this project is to develop an understanding of the feasibility and limitations of metal-free catalysts. The second project, “Non Carbon Supported Catalysts” (Dr. John Weidner), is focused on improved catalysts and seeks to develop novel materials, which are more corrosion resistant. This corrosion behavior is critical during transient operation and during start-up and shutdown. This second project will be leveraged with recent, peer-reviewed, supplemental funding from NSF for use in the National Science Foundation Industry/University Cooperative Research Center for Fuel Cells (CFC) at USC. The third project, “Hydrogen Quality,” (Dr. Jean St-Pierre) will support the cross-program effort on H2 quality and focus on supporting subteam 1. We assume this task because of we have performed experiments and developed models that describe performance losses associated with CO, NH3, H2S contaminants in the hydrogen fuel feed to laboratory-scale single cells. That work has been focused on reformate fed to a stationary PEMFC and relatively high concentrations of these contaminants, this project will seek to apply that knowledge to the issue of hydrogen fuel quality as it relates to transportation needs. As part of this project USC and Oak Ridge National Laboratory (ORNL) will explore, in a collaborative effort, the usefulness of a techniques developed at ORNL to measure differences in the extent of contaminates adsorption with a spatially resolved mass spectrometer. A subcontract will be issued to ORNL for this part of this task. The fourth project, “Gaskets” (Dr. Y.J. (Bill) Chao), will complement industrial sponsorship of Project 25C in the National Science Foundation Industry/University Cooperative Research Center for Fuel Cells (CFC) at USC. We have found some materials that give relatively good initial performance and minimal long-term stress relaxation but their raw material cost is higher than that desired by stack and component suppliers. In this fourth project our goals is to obtain a fundamental understanding of the degradation mechanisms of existing gasket and seal materials in a PEMFC environment. We seek to explain the interactions of chemical and mechanical stresses that decrease the long-term durability of both existing and new sealing materials. The fifth project, “Modeling the Acid Loss in PBI-type High Temperature Membranes,” (Dr. Sirivatch (Vatch) Shimpalee) will support the development of stationary, but the fundamental studies of acid transport should have applications as new high-temperature membranes are developed for transportation and other early market fuel cells. We will work with Plug Power, Inc. (PLUG) to develop a model that will allow for long-term prediction of acid loss from PBI-type High Temperature Membranes (HTM) fuel cells. This project seeks to complete tasks which were under funded in FY2006 due to DOE budget constraints.

Research Organization:
Univ. of South Carolina, Columbia, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
FG36-06GO86041
OSTI ID:
1107773
Report Number(s):
SCRF-DOE-06GO86041
Country of Publication:
United States
Language:
English

Similar Records

Fuel Cell Research at the University of South Carolina
Technical Report · Mon Sep 25 00:00:00 EDT 2006 · OSTI ID:1107773

Roll-to-Roll Advanced Materials Manufacturing DOE Laboratory Collaboration - FY2018 Final Report
Technical Report · Tue Jan 01 00:00:00 EST 2019 · OSTI ID:1107773

Basic Research Needs for Carbon Capture: Beyond 2020
Program Document · Thu Mar 04 00:00:00 EST 2010 · OSTI ID:1107773

Related Subjects