skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coarse-grained simulations of vortex dynamics and transition in complex high-Re flows

Conference ·
OSTI ID:1048812

Turbulent flow complexity in applications in engineering, geophysics and astrophysics typically requires achieving accurate and dependable large scale predictions of highly nonlinear processes with under-resolved computer simulation models. Laboratory observations typically demonstrate the end outcome of complex non-linear three-dimensional physical processes with many unexplained details and mechanisms. Carefully controlled computational experiments based on the numerical solution of the conservation equations for mass, momentum, and energy, provide insights into the underlying flow dynamics. Relevant computational fluid dynamics issues to be addressed relate to the modeling of the unresolved tlow conditions at the subgrid scale (SGS) level - within a computational cell, and at the supergrid (SPG) scale - at initialization and beyond computational boundaries. SGS and SPG information must be prescribed for closure of the equations solved numerically. SGS models appear explicitly or implicitly as additional source tenns in the modified flow equations solved by the numerical solutions being calculated, while SPG models provide the necessary set of initial and boundary conditions that must be prescribed to ensure unique well-posed solutions. From this perspective, it is clear that the simulation process is inherently determined by the SGS and SPG information prescription process. On the other hand, observables in laboratory experiments are always characterized by the finite scales of the instrumental resolution of measuring/visualizing devices, and subject as well to SPG issues. It is thus important to recognize the inherently intrusive nature of observations based on numerical or laboratory experiments. Ultimately, verification and validation (V & V) frameworks and appropriate metrics for the specific problems at hand are needed to establish predictability of the simulation model. Direct numerical simulation (DNS) - resolving all relevant space/time scales, is prohibitively expensive in the foreseeable future for most practical flows of interest at moderate-to-high Reynolds number (Re). On the other end of the simulation spectrum are the Reynolds-Averaged Navier-Stokes (RANS) approaches - which model the turbulent effects. In the coarsegrained large eddy simulation (LES) strategies, the large energy containing structures are resolved, the smaller structures are filtered out, and unresolved SGS effects are modeled. By necessity - rather than choice, LES effectively becomes the intermediate approach between DNS and RANS. Extensive work has demonstrated that predictive simulations of turbulent velocity fields are possible using a particular LES denoted implicit LES (ILES), using the class of nonoscillatory finite-volume (NFV) numerical algorithms. Use of the modified equation as framework for theoretical analysis, demonstrates that leading truncation tenns associated with NFV methods provide implicit SGS models of mixed anisotropic type and regularized motion of discrete observables. Tests in fundamental applications ranging from canonical to very complex flows indicate that ILES is competitive with conventional LES in the LES realm proper - flows driven by large scale features. High-Re flows are vortex dominated and governed by short convective timescales compared to those of diffusion, and kinematically characterized at the smallest scales by slender worm vortices with insignificant internal structure. This motivates nominally inviscid ILES methods capable of capturing the high-Re dissipation dynamics and of handling vortices as shocks in shock capturing schemes. Depending on flow regimes, initial conditions, and resolution, additional modeling may be needed to emulate SGS driven physics, such as backscatter, chemical reaction, material mixing, and near-wall flow-dynamics - where typically-intertwined SGS/SPG issues need to be addressed. A major research focus is recognizing when additional explicit models and/or numerical treatments are needed and ensuring that mixed explicit and implicit SGS models can effectively act in collaborative rather than interfering fashion. We survey our present understanding of the theoretical basis of lLES, including connections with the classical LES and finite-scale dynamics perspectives. Examples from recent lLES studies are presented, including canonical turbulence test cases and shock driven turbulence; relevant V & V issues are demonstrated in this context.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1048812
Report Number(s):
LA-UR-11-00468; LA-UR-11-468; TRN: US201217%%163
Resource Relation:
Conference: Work shop on ""Models vs Physical Laws ; February 5, 2011 ; Vienna, Austria
Country of Publication:
United States
Language:
English