skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling and data analysis of a palladium membrane reactor for tritiated impurities cleanup

Technical Report ·
DOI:https://doi.org/10.2172/102192· OSTI ID:102192

A Palladium Membrane Reactor (PMR) is under consideration for the tritium plant for the International Thermonuclear Experimental Reactor (ITER). The ITER reactor exhaust will contain tritiated impurities such as water and methane. Tritium will need to be recovered from these impurities for environmental and economic reasons. For this purpose a promising device, PMR, has been proposed. The PMR is a combined permeator and catalytic reactor. Shift catalysts are used to foster reactions such as water-gas shift, H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}, and methane steam reforming, CH{sub 4} + H{sub 2}O {yields} 3H{sub 2} + CO. Due to thermodynamic limitations these reactions only proceed to partial completion. Thus, a Pd/Ag membrane, which is exclusively permeable to hydrogen isotopes, is incorporated into the reactor. By maintaining a vacuum on the permeate, product hydrogen isotopes are removed, enabling the reactions to proceed to completion. A model has been developed to study the complex interactions in a PMR so that the optimal design can be determined. The model accounts for the coupled effects of transport-limited permeation of hydrogen isotopes and chemical reactions. The permeation model is an extension of previous models that include the effects of temperature, wall thickness, reaction-side pressure, and permeate-side pressure. Reaction rates for methane steam reforming and the water-gas shift reaction are incorporated into the model along with the respective reverse reactions. The model is compared to PMR data and used to investigate the concentration and pressure profiles in the reactor. Due to the interactions of permeation and reaction complex profiles can be produced in a PMR. For example, the water concentration often increases after the inlet to the PMR to a maximum value, and then decreases to the low values expected with a PMR. Detailed information like this is required for the design and optimization of PMRs for the ITER tritium plant.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
102192
Report Number(s):
LA-UR-95-1786; CONF-950506-17; ON: DE95015309; TRN: 95:020320
Resource Relation:
Conference: 5. topical meeting on tritium technology in fission, fusion and isotopic applications, Ispra (Italy), 28 May - 3 Jun 1995; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English