skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An optimal constrained linear inverse method for magnetic source imaging

Technical Report ·
DOI:https://doi.org/10.2172/10192344· OSTI ID:10192344

Magnetic source imaging is the reconstruction of the current distribution inside an inaccessible volume from magnetic field measurements made outside the volume. If the unknown current distribution is expressed as a linear combination of elementary current distributions in fixed positions, then the magnetic field measurements are linear in the unknown source amplitudes and both the least square and minimum mean square reconstructions are linear problems. This offers several advantages: The problem is well understood theoretically and there is only a single, global minimum. Efficient and reliable software for numerical linear algebra is readily available. If the sources are localized and statistically uncorrelated, then a map of expected power dissipation is equivalent to the source covariance matrix. Prior geological or physiological knowledge can be used to determine such an expected power map and thus the source covariance matrix. The optimal constrained linear inverse method (OCLIM) derived in this paper uses this prior knowledge to obtain a minimum mean square error estimate of the current distribution. OCLIM can be efficiently computed using the Cholesky decomposition, taking about a second on a workstation-class computer for a problem with 64 sources and 144 detectors. Any source and detector configuration is allowed as long as their positions are fixed a priori. Correlations among source and noise amplitudes are permitted. OCLIM reduces to the optimally weighted pseudoinverse method of Shim and Cho if the source amplitudes are independent and identically distributed and to the minimum-norm least squares estimate in the limit of no measurement noise or no prior knowledge of the source amplitudes. In the general case, OCLIM has better mean square error than either previous method. OCLIM appears well suited to magnetic imaging, since it exploits prior information, provides the minimum reconstruction error, and is inexpensive to compute.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
10192344
Report Number(s):
LBL-34512; ON: DE94002264
Resource Relation:
Other Information: PBD: Sep 1993
Country of Publication:
United States
Language:
English