skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.2356095· OSTI ID:20884751
; ;  [1]
  1. Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs.

OSTI ID:
20884751
Journal Information:
Journal of Applied Physics, Vol. 100, Issue 7; Other Information: DOI: 10.1063/1.2356095; (c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English