DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides

Abstract

Transformation of metastable Fe(III) oxyhydroxides is a prominent process in natural environments and can be significantly accelerated by the coexisting aqueous Fe(II) (Fe(II)aq). Recent evidence points to the solution mass transfer of labile Fe(III) (Fe(III)labile) as the primary intermediate species of general importance. However, a mechanistic aspect that remains unclear is the dependence of phase outcomes on the identity of the metastable Fe(III) oxyhydroxide precursor. Here, we compared the coupled evolution of Fe(II) species, solid phases, and Fe(III)labile throughout the Fe(II)-catalyzed transformation of lepidocrocite (Lp) versus ferrihydrite (Fh) at equal Fe(III) mass loadings with 0.2–1.0 mM Fe(II)aq at pH = 7.0. Similar to Fh, the conversion of Lp to product phases occurs by a dissolution–reprecipitation mechanism mediated by Fe(III)labile that seeds the nucleation of products. Though for Fh we observed a transformation to goethite (Gt), accompanied by the transient emergence and decline of Lp, for initial Lp we observed magnetite (Mt) as the main product. Further, a linear correlation between the formation rate of Mt and the effective supersaturation in terms of Fe(III)labile concentration shows that Fe(II)-induced transformation of Lp into Mt is governed by the classical nucleation theory. When Lp is replaced by equimolar Gt, Mt formation is suppressedmore » by opening a lower barrier pathway to Gt by heterogeneous nucleation and growth on the added Gt seeds. The collective findings add to the mechanistic understanding of factors governing phase selections that impact iron bioavailability, system redox potential, and the fate and transport of coupled elements.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2];  [1];  [1]; ORCiD logo [1]; ORCiD logo [3]
  1. Peking Univ., Beijing (China)
  2. Univ. of Illinois at Urbana-Champaign, IL (United States)
  3. Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
2217529
Report Number(s):
PNNL-SA-178846
Journal ID: ISSN 0013-936X
Grant/Contract Number:  
AC05-76RL01830; AC02-06CH11357; 41820104003; 41972318
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 56; Journal Issue: 6; Journal ID: ISSN 0013-936X
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; iron; minerals; nanoparticles; nucleation; phase transitions; lepidocrocite; ferrihydrite; goethite; magnetite; labile Fe(III); dissolution−reprecipitation; classical nucleation theory; heterogeneous nucleation

Citation Formats

Liu, Juan, Sheng, Anxu, Li, Xiaoxu, Arai, Yuji, Ding, Yuefei, Nie, Mingjun, Yan, Mingquan, and Rosso, Kevin M. Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides. United States: N. p., 2022. Web. doi:10.1021/acs.est.1c08044.
Liu, Juan, Sheng, Anxu, Li, Xiaoxu, Arai, Yuji, Ding, Yuefei, Nie, Mingjun, Yan, Mingquan, & Rosso, Kevin M. Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides. United States. https://doi.org/10.1021/acs.est.1c08044
Liu, Juan, Sheng, Anxu, Li, Xiaoxu, Arai, Yuji, Ding, Yuefei, Nie, Mingjun, Yan, Mingquan, and Rosso, Kevin M. Mon . "Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides". United States. https://doi.org/10.1021/acs.est.1c08044. https://www.osti.gov/servlets/purl/2217529.
@article{osti_2217529,
title = {Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides},
author = {Liu, Juan and Sheng, Anxu and Li, Xiaoxu and Arai, Yuji and Ding, Yuefei and Nie, Mingjun and Yan, Mingquan and Rosso, Kevin M.},
abstractNote = {Transformation of metastable Fe(III) oxyhydroxides is a prominent process in natural environments and can be significantly accelerated by the coexisting aqueous Fe(II) (Fe(II)aq). Recent evidence points to the solution mass transfer of labile Fe(III) (Fe(III)labile) as the primary intermediate species of general importance. However, a mechanistic aspect that remains unclear is the dependence of phase outcomes on the identity of the metastable Fe(III) oxyhydroxide precursor. Here, we compared the coupled evolution of Fe(II) species, solid phases, and Fe(III)labile throughout the Fe(II)-catalyzed transformation of lepidocrocite (Lp) versus ferrihydrite (Fh) at equal Fe(III) mass loadings with 0.2–1.0 mM Fe(II)aq at pH = 7.0. Similar to Fh, the conversion of Lp to product phases occurs by a dissolution–reprecipitation mechanism mediated by Fe(III)labile that seeds the nucleation of products. Though for Fh we observed a transformation to goethite (Gt), accompanied by the transient emergence and decline of Lp, for initial Lp we observed magnetite (Mt) as the main product. Further, a linear correlation between the formation rate of Mt and the effective supersaturation in terms of Fe(III)labile concentration shows that Fe(II)-induced transformation of Lp into Mt is governed by the classical nucleation theory. When Lp is replaced by equimolar Gt, Mt formation is suppressed by opening a lower barrier pathway to Gt by heterogeneous nucleation and growth on the added Gt seeds. The collective findings add to the mechanistic understanding of factors governing phase selections that impact iron bioavailability, system redox potential, and the fate and transport of coupled elements.},
doi = {10.1021/acs.est.1c08044},
journal = {Environmental Science and Technology},
number = 6,
volume = 56,
place = {United States},
year = {Mon Feb 21 00:00:00 EST 2022},
month = {Mon Feb 21 00:00:00 EST 2022}
}

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Ferrihydrite Formation: The Role of Fe 13 Keggin Clusters
journal, August 2016

  • Weatherill, Joshua S.; Morris, Katherine; Bots, Pieter
  • Environmental Science & Technology, Vol. 50, Issue 17
  • DOI: 10.1021/acs.est.6b02481

Arsenic(III) and Arsenic(V) Speciation during Transformation of Lepidocrocite to Magnetite
journal, November 2014

  • Wang, Yuheng; Morin, Guillaume; Ona-Nguema, Georges
  • Environmental Science & Technology, Vol. 48, Issue 24
  • DOI: 10.1021/es5033629

Transformation of synthetic ?-FeOOH (lepidocrocite) in aqueous solutions of ferrous sulphate
journal, June 1982

  • Bechin�, K.; ?ubrt, J.; Hansl�k, T.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 489, Issue 1
  • DOI: 10.1002/zaac.19824890122

Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation
journal, March 2020


Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow
journal, August 2003


The rate of ferrihydrite transformation to goethite via the Fe(II) pathway
journal, January 2006

  • Yee, Nathan; Shaw, Samuel; Benning, Liane G.
  • American Mineralogist, Vol. 91, Issue 1
  • DOI: 10.2138/am.2006.1860

Oriented Aggregation: Formation and Transformation of Mesocrystal Intermediates Revealed
journal, February 2010

  • Yuwono, Virany M.; Burrows, Nathan D.; Soltis, Jennifer A.
  • Journal of the American Chemical Society, Vol. 132, Issue 7
  • DOI: 10.1021/ja909769a

Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite
journal, February 2019

  • Aeppli, Meret; Kaegi, Ralf; Kretzschmar, Ruben
  • Environmental Science & Technology, Vol. 53, Issue 7
  • DOI: 10.1021/acs.est.8b07190

Citrate Controls Fe(II)-Catalyzed Transformation of Ferrihydrite by Complexation of the Labile Fe(III) Intermediate
journal, May 2020

  • Sheng, Anxu; Li, Xiaoxu; Arai, Yuji
  • Environmental Science & Technology, Vol. 54, Issue 12
  • DOI: 10.1021/acs.est.0c00996

Effect of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction
journal, July 2020

  • Zhou, Zhe; Muehe, E. Marie; Tomaszewski, Elizabeth J.
  • Environmental Science & Technology, Vol. 54, Issue 15
  • DOI: 10.1021/acs.est.0c03062

Linking Thermodynamics to Pollutant Reduction Kinetics by Fe 2+ Bound to Iron Oxides
journal, March 2018

  • Stewart, Sydney M.; Hofstetter, Thomas B.; Joshi, Prachi
  • Environmental Science & Technology, Vol. 52, Issue 10
  • DOI: 10.1021/acs.est.8b00481

Contribution of Anionic vs. Neutral Polymers to the Formation of Green Rust 1 from γ-FeOOH Bioreduction
journal, August 2013


Effects of Al substitution on local structure and morphology of lepidocrocite and its phosphate adsorption kinetics
journal, May 2020


Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures: Influences of surface coating
journal, July 2019


Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction
journal, March 2008


The Iron Oxides
book, July 2003


Fe(II)-induced phase transformation of ferrihydrite: The inhibition effects and stabilization of divalent metal cations
journal, December 2016


Absolute electronegativity and hardness: application to inorganic chemistry
journal, February 1988


Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite–Organic Matter Coprecipitates
journal, October 2018

  • ThomasArrigo, Laurel K.; Byrne, James M.; Kappler, Andreas
  • Environmental Science & Technology, Vol. 52, Issue 21
  • DOI: 10.1021/acs.est.8b03206

Use of fourier transform infrared spectroscopy to examine the Fe(II)-Catalyzed transformation of ferrihydrite
journal, December 2017


Two-Step Growth of Goethite from Ferrihydrite
journal, January 2006


Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria
journal, March 2015


The transformation γ-FeO(OH) to α-FeO(OH)
journal, May 1967


Understanding crystallization pathways leading to manganese oxide polymorph formation
journal, June 2018


Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation
journal, November 2010

  • Chan, Clara S.; Fakra, Sirine C.; Emerson, David
  • The ISME Journal, Vol. 5, Issue 4
  • DOI: 10.1038/ismej.2010.173

Fe(II)-Catalyzed Transformation of Organic Matter–Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes
journal, September 2018

  • Zhou, Zhe; Latta, Drew E.; Noor, Nadia
  • Environmental Science & Technology, Vol. 52, Issue 19
  • DOI: 10.1021/acs.est.8b03407

The absolute energy positions of conduction and valence bands of selected semiconducting minerals
journal, March 2000

  • Xu, Yong; Schoonen, Martin A. A.
  • American Mineralogist, Vol. 85, Issue 3-4
  • DOI: 10.2138/am-2000-0416

Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions
journal, September 2005

  • Ishikawa, T.; Takeuchi, K.; Kandori, K.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 266, Issue 1-3
  • DOI: 10.1016/j.colsurfa.2005.06.024

Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide
journal, March 2011

  • Wu, Lingling; Beard, Brian L.; Roden, Eric E.
  • Environmental Science & Technology, Vol. 45, Issue 5
  • DOI: 10.1021/es103171x

The Transformation of γ-FeO(OH) to Fe 3 O 4 and Green Rust II in an Aqueous Solution
journal, September 1984

  • Tamaura, Yutaka; Saturno, Mervelina; Yamada, Kaoru
  • Bulletin of the Chemical Society of Japan, Vol. 57, Issue 9
  • DOI: 10.1246/bcsj.57.2417

Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids
journal, July 2010

  • Larese-Casanova, Philip; Haderlein, Stefan B.; Kappler, Andreas
  • Geochimica et Cosmochimica Acta, Vol. 74, Issue 13
  • DOI: 10.1016/j.gca.2010.03.037

Size-Dependent Bandgap of Nanogoethite
journal, August 2011

  • Zhang, Hengzhong; Bayne, Meredith; Fernando, Sandra
  • The Journal of Physical Chemistry C, Vol. 115, Issue 36
  • DOI: 10.1021/jp205192a

Thermodynamic Characterization of Iron Oxide–Aqueous Fe 2+ Redox Couples
journal, July 2016

  • Gorski, Christopher A.; Edwards, Rebecca; Sander, Michael
  • Environmental Science & Technology, Vol. 50, Issue 16
  • DOI: 10.1021/acs.est.6b02661

In situ Investigations of Carbonate Nucleation on Mineral and Organic Surfaces
journal, January 2013

  • De Yoreo, J. J.; Waychunas, G. A.; Jun, Y. -S.
  • Reviews in Mineralogy and Geochemistry, Vol. 77, Issue 1
  • DOI: 10.2138/rmg.2013.77.7

Possible gadolinium ions leaching and MR sensitivity over-estimation in mesoporous silica-coated upconversion nanocrystals
journal, January 2013

  • Zhang, Shengjian; Jiang, Zhaoxia; Liu, XiaoHang
  • Nanoscale, Vol. 5, Issue 17
  • DOI: 10.1039/c3nr01902k

Non-equilibrium crystallization pathways of manganese oxides in aqueous solution
journal, February 2019


Tc(VII) reduction kinetics by titanomagnetite (Fe3−xTixO4) nanoparticles
journal, September 2012


Fe 3– x Ti x O 4 Nanoparticles as Tunable Probes of Microbial Metal Oxidation
journal, June 2013

  • Liu, Juan; Pearce, Carolyn I.; Liu, Chongxuan
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja4015343

The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals
journal, August 2009

  • Jones, Adele M.; Collins, Richard N.; Rose, Jerome
  • Geochimica et Cosmochimica Acta, Vol. 73, Issue 15
  • DOI: 10.1016/j.gca.2009.04.025

Size-Driven Structural and Thermodynamic Complexity in Iron Oxides
journal, March 2008


Competing Fe(II)-Induced Mineralization Pathways of Ferrihydrite
journal, September 2005

  • Hansel, Colleen M.; Benner, Shawn G.; Fendorf, Scott
  • Environmental Science & Technology, Vol. 39, Issue 18
  • DOI: 10.1021/es050666z

Kinetic and Thermodynamic Analysis During Dissimilatory γ-FeOOH Reduction: Formation of Green Rust 1 and Magnetite
journal, January 2007

  • Zegeye, Asfaw; Ruby, Christian; Jorand, Frédéric
  • Geomicrobiology Journal, Vol. 24, Issue 1
  • DOI: 10.1080/01490450601134325

Effects of Bound Phosphate on the Bioreduction of Lepidocrocite (γ-FeOOH) and Maghemite (γ-Fe 2 O 3 ) and Formation of Secondary Minerals
journal, August 2013

  • O’Loughlin, Edward J.; Boyanov, Maxim I.; Flynn, Theodore M.
  • Environmental Science & Technology, Vol. 47, Issue 16
  • DOI: 10.1021/es400627j

Nanoscale observations of Fe( ii )-induced ferrihydrite transformation
journal, January 2020

  • Qafoku, Odeta; Kovarik, Libor; Bowden, Mark E.
  • Environmental Science: Nano, Vol. 7, Issue 10
  • DOI: 10.1039/d0en00730g

Determination of Iron in Solutions with the Ferric–Xylenol Orange Complex
journal, September 1999

  • Gay, Craig; Collins, James; Gebicki, Janusz M.
  • Analytical Biochemistry, Vol. 273, Issue 2
  • DOI: 10.1006/abio.1999.4207

Labile Fe(III) supersaturation controls nucleation and properties of product phases from Fe(II)-catalyzed ferrihydrite transformation
journal, September 2021


Ferrous Iron Oxidation under Varying pO 2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter
journal, December 2017


Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows
journal, July 2018

  • Sun, Jing; Prommer, Henning; Siade, Adam J.
  • Environmental Science & Technology, Vol. 52, Issue 16
  • DOI: 10.1021/acs.est.8b01762

Green rust as a precursor for magnetite: an in situ synchrotron based study
journal, February 2008


Effects of Oxyanions, Natural Organic Matter, and Bacterial Cell Numbers on the Bioreduction of Lepidocrocite (γ-FeOOH) and the Formation of Secondary Mineralization Products
journal, June 2010

  • O’Loughlin, Edward J.; Gorski, Christopher A.; Scherer, Michelle M.
  • Environmental Science & Technology, Vol. 44, Issue 12
  • DOI: 10.1021/es100294w

Quantifying Microbially Mediated Kinetics of Ferrihydrite Transformation and Arsenic Reduction: Role of the Arsenate-Reducing Gene Expression Pattern
journal, April 2020

  • Shi, Zhenqing; Hu, Shiwen; Lin, Jingyi
  • Environmental Science & Technology, Vol. 54, Issue 11
  • DOI: 10.1021/acs.est.9b07137

The Structure of Ferrihydrite, a Nanocrystalline Material
journal, June 2007


Properties of Iron Oxides in Two Finnish Lakes in Relation to the Environment of Their Formation
journal, January 1987


The influence of native soil organic matter and minerals on ferrous iron oxidation
journal, January 2021


Effect of Solution and Solid-Phase Conditions on the Fe(II)-Accelerated Transformation of Ferrihydrite to Lepidocrocite and Goethite
journal, April 2014

  • Boland, Daniel D.; Collins, Richard N.; Miller, Christopher J.
  • Environmental Science & Technology, Vol. 48, Issue 10
  • DOI: 10.1021/es4043275

Kinetics of Fe(II)-Catalyzed Transformation of 6-line Ferrihydrite under Anaerobic Flow Conditions
journal, July 2010

  • Yang, Li; Steefel, Carl I.; Marcus, Matthew A.
  • Environmental Science & Technology, Vol. 44, Issue 14
  • DOI: 10.1021/es1007565

Influence of Coprecipitated Organic Matter on Fe 2+ (aq) -Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics
journal, July 2015

  • Chen, Chunmei; Kukkadapu, Ravi; Sparks, Donald L.
  • Environmental Science & Technology, Vol. 49, Issue 18
  • DOI: 10.1021/acs.est.5b02448

Electron Donor Utilization and Secondary Mineral Formation during the Bioreduction of Lepidocrocite by Shewanella putrefaciens CN32
journal, July 2019

  • O’Loughlin, Edward J.; Gorski, Christopher A.; Flynn, Theodore M.
  • Minerals, Vol. 9, Issue 7
  • DOI: 10.3390/min9070434

Stable mineral recrystallization in low temperature aqueous systems: A critical review
journal, February 2017


Spectroscopic Evidence for Fe(II)−Fe(III) Electron Transfer at the Iron Oxide−Water Interface
journal, September 2004

  • Williams, Aaron G. B.; Scherer, Michelle M.
  • Environmental Science & Technology, Vol. 38, Issue 18
  • DOI: 10.1021/es049373g

Heterogeneous Reduction of PuO 2 with Fe(II): Importance of the Fe(III) Reaction Product
journal, May 2011

  • Felmy, Andrew R.; Moore, Dean A.; Rosso, Kevin M.
  • Environmental Science & Technology, Vol. 45, Issue 9
  • DOI: 10.1021/es104212g

Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides
journal, December 2017

  • Xiao, Wei; Jones, Adele M.; Li, Xiaomin
  • Environmental Science & Technology, Vol. 52, Issue 1
  • DOI: 10.1021/acs.est.7b05098