DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Colocalized Raman spectroscopy – scanning electrochemical microscopy investigation of redox flow battery dialkoxybenzene redoxmer degradation pathways

Abstract

Non-aqueous redox flow batteries offer high voltages for grid-level energy storage technologies. However, decomposition of the redoxmers - redox-active molecules that make up the anolyte and catholyte in the negative and positive cell compartments - is an important challenge to overcome for long-term storage. Here, we present a spectroelectrochemical study of the catholyte candidate 2,3-dimethyl-1,4-dialkoxybenzene (C7) and its decomposition mechanisms in the presence of a model nucleophilic base, pyridine. We utilize colocalized Raman microscopy and scanning electrochemical microscopy (Raman-SECM) to quantify the chemical rates of decom-position and qualitatively identify the reaction intermediates and products. A detailed study on how the Raman-SECM parameters (electrode distance, substrate electrode, and laser focal height) influence the Raman signal of the charged catholyte C7∙+ is presented. Using optimized conditions, we monitored the deprotonation of C7∙+ via Raman spectroscopy and the subsequent hydrogen abstraction from solvent molecules to regenerate C7 via electrochemistry. Finite element modeling was used to fit electrochemical and spectroscopic data, quantifying the deprotonation rates as kdep = 2000 and 700 L mol-1 s-1 and abstraction rates as kabs = 0.5 and 0.2 s- 1 in propylene carbonate and acetonitrile solvents, respectively. Our results show the value of spatiotemporal reso-lution in evaluating themore » chemical and electrochemical behavior of materials for redox flow batteries.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [3];  [4]; ORCiD logo [1]
  1. Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); University of Illinois at Urbana-Champaign, IL (United States)
  2. University of Illinois at Urbana-Champaign, IL (United States)
  3. Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  4. Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Argonne National Laboratory (ANL), Argonne, IL (United States). Materials Science Division
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1970501
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Electrochimica Acta
Additional Journal Information:
Journal Volume: 447; Journal ID: ISSN 0013-4686
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; SECM; Raman; Redox flow battery; posolyte; catholyte; degradation; EC mechanism

Citation Formats

Danis, Andrew S., Counihan, Michael J., Hatfield, Kendrich O., Zhang, Jingjing, Agarwal, Garvit, Zhang, Lu, Assary, Rajeev S., and Rodríguez-López, Joaquín. Colocalized Raman spectroscopy – scanning electrochemical microscopy investigation of redox flow battery dialkoxybenzene redoxmer degradation pathways. United States: N. p., 2023. Web. doi:10.1016/j.electacta.2023.142123.
Danis, Andrew S., Counihan, Michael J., Hatfield, Kendrich O., Zhang, Jingjing, Agarwal, Garvit, Zhang, Lu, Assary, Rajeev S., & Rodríguez-López, Joaquín. Colocalized Raman spectroscopy – scanning electrochemical microscopy investigation of redox flow battery dialkoxybenzene redoxmer degradation pathways. United States. https://doi.org/10.1016/j.electacta.2023.142123
Danis, Andrew S., Counihan, Michael J., Hatfield, Kendrich O., Zhang, Jingjing, Agarwal, Garvit, Zhang, Lu, Assary, Rajeev S., and Rodríguez-López, Joaquín. Mon . "Colocalized Raman spectroscopy – scanning electrochemical microscopy investigation of redox flow battery dialkoxybenzene redoxmer degradation pathways". United States. https://doi.org/10.1016/j.electacta.2023.142123. https://www.osti.gov/servlets/purl/1970501.
@article{osti_1970501,
title = {Colocalized Raman spectroscopy – scanning electrochemical microscopy investigation of redox flow battery dialkoxybenzene redoxmer degradation pathways},
author = {Danis, Andrew S. and Counihan, Michael J. and Hatfield, Kendrich O. and Zhang, Jingjing and Agarwal, Garvit and Zhang, Lu and Assary, Rajeev S. and Rodríguez-López, Joaquín},
abstractNote = {Non-aqueous redox flow batteries offer high voltages for grid-level energy storage technologies. However, decomposition of the redoxmers - redox-active molecules that make up the anolyte and catholyte in the negative and positive cell compartments - is an important challenge to overcome for long-term storage. Here, we present a spectroelectrochemical study of the catholyte candidate 2,3-dimethyl-1,4-dialkoxybenzene (C7) and its decomposition mechanisms in the presence of a model nucleophilic base, pyridine. We utilize colocalized Raman microscopy and scanning electrochemical microscopy (Raman-SECM) to quantify the chemical rates of decom-position and qualitatively identify the reaction intermediates and products. A detailed study on how the Raman-SECM parameters (electrode distance, substrate electrode, and laser focal height) influence the Raman signal of the charged catholyte C7∙+ is presented. Using optimized conditions, we monitored the deprotonation of C7∙+ via Raman spectroscopy and the subsequent hydrogen abstraction from solvent molecules to regenerate C7 via electrochemistry. Finite element modeling was used to fit electrochemical and spectroscopic data, quantifying the deprotonation rates as kdep = 2000 and 700 L mol-1 s-1 and abstraction rates as kabs = 0.5 and 0.2 s- 1 in propylene carbonate and acetonitrile solvents, respectively. Our results show the value of spatiotemporal reso-lution in evaluating the chemical and electrochemical behavior of materials for redox flow batteries.},
doi = {10.1016/j.electacta.2023.142123},
journal = {Electrochimica Acta},
number = ,
volume = 447,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2023},
month = {Mon Feb 27 00:00:00 EST 2023}
}

Works referenced in this record:

Local Surface Modifications Investigated by Combining Scanning Electrochemical Microscopy and Surface-Enhanced Raman Scattering
journal, April 2018

  • Clausmeyer, Jan; Nebel, Michaela; Grützke, Stefanie
  • ChemPlusChem, Vol. 83, Issue 5
  • DOI: 10.1002/cplu.201800031

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

A combined SECM and electrochemical AFM approach to probe interfacial processes affecting molecular reactivity at redox flow battery electrodes
journal, January 2020

  • Watkins, Tylan S.; Sarbapalli, Dipobrato; Counihan, Michael J.
  • Journal of Materials Chemistry A, Vol. 8, Issue 31
  • DOI: 10.1039/D0TA00836B

Analytical Expressions for Quantitative Scanning Electrochemical Microscopy (SECM)
journal, January 2010


The lightest organic radical cation for charge storage in redox flow batteries
journal, August 2016

  • Huang, Jinhua; Pan, Baofei; Duan, Wentao
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32102

Interrogating the Surface Intermediates and Water Oxidation Products of Boron‐Doped Diamond Electrodes with Scanning Electrochemical Microscopy
journal, July 2019

  • Counihan, Michael J.; Setwipatanachai, Worapol; Rodríguez‐López, Joaquín
  • ChemElectroChem, Vol. 6, Issue 13
  • DOI: 10.1002/celc.201900659

Soluble and stable symmetric tetrazines as anolytes in redox flow batteries
journal, January 2022

  • De La Garza, Gloria D.; Kaur, Aman Preet; Shkrob, Ilya A.
  • Journal of Materials Chemistry A, Vol. 10, Issue 36
  • DOI: 10.1039/D2TA04515J

Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries
journal, September 2021


Probing Graphene Interfacial Reactivity via Simultaneous and Colocalized Raman–Scanning Electrochemical Microscopy Imaging and Interrogation
journal, April 2018


A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries
journal, January 2015

  • Huang, Jinhua; Su, Liang; Kowalski, Jeffrey A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 29
  • DOI: 10.1039/C5TA02380G

Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model
journal, March 1998

  • Barone, Vincenzo; Cossi, Maurizio
  • The Journal of Physical Chemistry A, Vol. 102, Issue 11
  • DOI: 10.1021/jp9716997

Simulation in electrochemistry using the finite element methodPart 1: The algorithm
journal, July 1999


Insights into the Interaction of Redox Active Organic Molecules and Solvents with the Pristine and Defective Graphene Surfaces from Density Functional Theory
journal, January 2020

  • Howard, Jason D.; Assary, Rajeev S.; Curtiss, Larry A.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 5
  • DOI: 10.1021/acs.jpcc.9b10403

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
journal, February 2017

  • Sevov, Christo S.; Hickey, David P.; Cook, Monique E.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00147

A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
journal, November 1988

  • Matsuda, Y.; Tanaka, K.; Okada, M.
  • Journal of Applied Electrochemistry, Vol. 18, Issue 6, p. 909-914
  • DOI: 10.1007/BF01016050

Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries
journal, October 2017

  • Sevov, Christo S.; Hendriks, Koen H.; Sanford, Melanie S.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06247

Scanning electrochemical microscopy (SECM) studies of catalytic EC′ processes: theory and experiment for feedback, generation/collection and imaging measurements
journal, January 2011

  • Cannan, Susan; Cervera, Javier; Steliaros (née Haskins), Rebecca J.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 12
  • DOI: 10.1039/c0cp02530e

Crossover mitigation strategies for redox-flow batteries
journal, June 2020


Interrogating Charge Storage on Redox Active Colloids via Combined Raman Spectroscopy and Scanning Electrochemical Microscopy
journal, June 2017


Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011

  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents
journal, October 2014

  • Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J.
  • Journal of the American Chemical Society, Vol. 136, Issue 46, p. 16309-16316
  • DOI: 10.1021/ja508482e

“Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability
journal, April 2017


Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application
journal, December 2012


Scanning electrochemical microscopy. 16. Study of second-order homogeneous chemical reactions via the feedback and generation/collection modes
journal, June 1992

  • Zhou, Feimeng; Unwin, Patrick R.; Bard, Allen J.
  • The Journal of Physical Chemistry, Vol. 96, Issue 12
  • DOI: 10.1021/j100191a036

Electrochemical Attachment of Organic Groups to Carbon Felt Surfaces
journal, October 2001

  • Coulon, Estelle; Pinson, Jean; Bourzat, Jean-Dominique
  • Langmuir, Vol. 17, Issue 22
  • DOI: 10.1021/la010486c

Scanning electrochemical microscopy (SECM) study of superoxide generation and its reactivity with 1,4-dihydropyridines
journal, April 2005


Redox non-innocent bis(2,6-diimine-pyridine) ligand–iron complexes as anolytes for flow battery applications
journal, January 2017

  • Duarte, Gabriel M.; Braun, Jason D.; Giesbrecht, Patrick K.
  • Dalton Transactions, Vol. 46, Issue 47
  • DOI: 10.1039/C7DT03915H

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

Soft Surfaces for Fast Characterization and Positioning of Scanning Electrochemical Microscopy Nanoelectrode Tips
journal, September 2016


Combined SECM-fluorescence microscopy using a water-soluble electrofluorochromic dye as the redox mediator
journal, May 2019


Pt/Polypyrrole Quasi-References Revisited: Robustness and Application in Electrochemical Energy Storage Research
journal, October 2021

  • Sarbapalli, Dipobrato; Mishra, Abhiroop; Rodríguez-López, Joaquín
  • Analytical Chemistry, Vol. 93, Issue 42
  • DOI: 10.1021/acs.analchem.1c03552

TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
journal, October 2014

  • Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403746

Simultaneous Raman and reflection UV/Vis absorption spectroelectrochemistry
journal, March 2022


Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries
journal, January 2019

  • Small, Leo J.; Pratt, Harry D.; Anderson, Travis M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0681912jes

Some Recent Advances in Density Matrix Theory
journal, April 1960


Redox Active Polymers as Soluble Nanomaterials for Energy Storage
journal, September 2016

  • Burgess, Mark; Moore, Jeffrey S.; Rodríguez-López, Joaquín
  • Accounts of Chemical Research, Vol. 49, Issue 11
  • DOI: 10.1021/acs.accounts.6b00341

Study of the EC' Mechanism by Scanning Electrochemical Microscopy (SECM)
journal, October 2011

  • Calhoun, Rob; Bard, Allen
  • ECS Transactions, Vol. 35, Issue 29
  • DOI: 10.1149/1.3645611

Combined Raman Microspectrometer and Shearforce Regulated SECM for Corrosion and Self-Healing Analysis
journal, November 2014

  • Etienne, Mathieu; Dossot, Manuel; Grausem, Jérôme
  • Analytical Chemistry, Vol. 86, Issue 22
  • DOI: 10.1021/ac502670t

Surface-Enhanced Raman Spectroscopy-Scanning Electrochemical Microscopy: Observation of Real-Time Surface pH Perturbations
journal, May 2021


An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

Systematic approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries
journal, November 2020


Spectroelectrochemistry: the best of two worlds
journal, January 2009

  • Kaim, Wolfgang; Fiedler, Jan
  • Chemical Society Reviews, Vol. 38, Issue 12
  • DOI: 10.1039/b504286k

Scanning Electrochemical Microscopy Study of Ion Annihilation Electrogenerated Chemiluminescence of Rubrene and [Ru(bpy)3]2+
journal, May 2012

  • Rodríguez-López, Joaquín; Shen, Mei; Nepomnyashchii, Alexander B.
  • Journal of the American Chemical Society, Vol. 134, Issue 22
  • DOI: 10.1021/ja301016n