DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots

Abstract

We report a detailed study on APbX3 (A=Formamidinium (FA+), Cs+; X=I-, Br-) perovskite quantum dots (PQDs) with combined A- and X-site alloying that exhibit, both, a wide bandgap and high open circuit voltage (Voc) for the application of a potential top cell in tandem junction photovoltaic (PV) devices. The nanocrystal alloying affords control over the optical bandgap and is readily achieved by solution-phase cation and anion exchange between previously synthesized FAPbI3 and CsPbBr3 PQDs. Increasing only the Br- content of the PQDs widens the bandgap but results in shorter carrier lifetimes and associated Voc losses in devices. These deleterious effects can be mitigated by replacing Cs+ with FA+, resulting in wide bandgap PQD absorbers with improved charge-carrier mobility and PVs with higher Voc. Although further device optimization is required, these results demonstrate the potential of FA1–xCsx)Pb(I1–xBrx)3 PQDs for wide bandgap perovskite PVs with high Voc.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2]; ORCiD logo [1];  [2]; ORCiD logo [1]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
  2. University of Texas, Austin
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS)
OSTI Identifier:
1544533
Report Number(s):
NREL/JA-5900-73572
Journal ID: ISSN 2380-8195
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 4; Journal Issue: 8; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; perovskite quantum dots; alloys; photovoltaic devices

Citation Formats

Suri, Mokshin, Hazarika, Abhijit, Larson, Bryon W, Zhao, Qian, Valles Pelarda, Marta, Siegler, Timothy D., Abney, Michael K., Ferguson, Andrew J, Korgel, Brian A., and Luther, Joseph M. Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots. United States: N. p., 2019. Web. doi:10.1021/acsenergylett.9b01030.
Suri, Mokshin, Hazarika, Abhijit, Larson, Bryon W, Zhao, Qian, Valles Pelarda, Marta, Siegler, Timothy D., Abney, Michael K., Ferguson, Andrew J, Korgel, Brian A., & Luther, Joseph M. Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots. United States. https://doi.org/10.1021/acsenergylett.9b01030
Suri, Mokshin, Hazarika, Abhijit, Larson, Bryon W, Zhao, Qian, Valles Pelarda, Marta, Siegler, Timothy D., Abney, Michael K., Ferguson, Andrew J, Korgel, Brian A., and Luther, Joseph M. Tue . "Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots". United States. https://doi.org/10.1021/acsenergylett.9b01030. https://www.osti.gov/servlets/purl/1544533.
@article{osti_1544533,
title = {Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots},
author = {Suri, Mokshin and Hazarika, Abhijit and Larson, Bryon W and Zhao, Qian and Valles Pelarda, Marta and Siegler, Timothy D. and Abney, Michael K. and Ferguson, Andrew J and Korgel, Brian A. and Luther, Joseph M},
abstractNote = {We report a detailed study on APbX3 (A=Formamidinium (FA+), Cs+; X=I-, Br-) perovskite quantum dots (PQDs) with combined A- and X-site alloying that exhibit, both, a wide bandgap and high open circuit voltage (Voc) for the application of a potential top cell in tandem junction photovoltaic (PV) devices. The nanocrystal alloying affords control over the optical bandgap and is readily achieved by solution-phase cation and anion exchange between previously synthesized FAPbI3 and CsPbBr3 PQDs. Increasing only the Br- content of the PQDs widens the bandgap but results in shorter carrier lifetimes and associated Voc losses in devices. These deleterious effects can be mitigated by replacing Cs+ with FA+, resulting in wide bandgap PQD absorbers with improved charge-carrier mobility and PVs with higher Voc. Although further device optimization is required, these results demonstrate the potential of FA1–xCsx)Pb(I1–xBrx)3 PQDs for wide bandgap perovskite PVs with high Voc.},
doi = {10.1021/acsenergylett.9b01030},
journal = {ACS Energy Letters},
number = 8,
volume = 4,
place = {United States},
year = {Tue Jul 02 00:00:00 EDT 2019},
month = {Tue Jul 02 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: A) Crystal models showing the ion exchange process used to generate alloyed PQDs. FA1xCsxPb(I1-xBrx)3 PQDs are generated when dispersions of CsPbBr3 and FAPbI3 PQDs are mixed at 70°C. Room temperature (B) absorbance and (C) PL emission spectra of PQDs with varying FA1-xCsxPb(I1xBrx)3 composition dispersed in octane (excitation wavelengthmore » of 400 nm).« less

Save / Share:

Works referenced in this record:

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Detailed balance limit of the efficiency of tandem solar cells
journal, May 1980


Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure
journal, March 2018


Promises and challenges of perovskite solar cells
journal, November 2017

  • Correa-Baena, Juan-Pablo; Saliba, Michael; Buonassisi, Tonio
  • Science, Vol. 358, Issue 6364
  • DOI: 10.1126/science.aam6323

Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


High-performance perovskite/Cu(In,Ga)Se 2 monolithic tandem solar cells
journal, August 2018


23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells
journal, February 2016

  • Beal, Rachel E.; Slotcavage, Daniel J.; Leijtens, Tomas
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 5
  • DOI: 10.1021/acs.jpclett.6b00002

Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells
journal, May 2019

  • Siegler, Timothy D.; Shimpi, Tushar M.; Sampath, Walajabad S.
  • Chemical Engineering Science, Vol. 199
  • DOI: 10.1016/j.ces.2019.01.003

Bright triplet excitons in caesium lead halide perovskites
journal, January 2018

  • Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian
  • Nature, Vol. 553, Issue 7687
  • DOI: 10.1038/nature25147

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
journal, February 2015

  • Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.
  • Nano Letters, Vol. 15, Issue 6
  • DOI: 10.1021/nl5048779

Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions
journal, August 2015

  • Akkerman, Quinten A.; D’Innocenzo, Valerio; Accornero, Sara
  • Journal of the American Chemical Society, Vol. 137, Issue 32
  • DOI: 10.1021/jacs.5b05602

Bidentate Ligand-Passivated CsPbI 3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes
journal, December 2017

  • Pan, Jun; Shang, Yuequn; Yin, Jun
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b10647

Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, I)
journal, July 2015


Quantum dot-induced phase stabilization of  -CsPbI3 perovskite for high-efficiency photovoltaics
journal, October 2016


All-inorganic perovskite nanocrystal scintillators
journal, August 2018


Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

High-Open-Circuit-Voltage Solar Cells Based on Bright Mixed-Halide CsPbBrI 2 Perovskite Nanocrystals Synthesized under Ambient Air Conditions
journal, March 2018

  • Christodoulou, Sotirios; Di Stasio, Francesco; Pradhan, Santanu
  • The Journal of Physical Chemistry C, Vol. 122, Issue 14
  • DOI: 10.1021/acs.jpcc.8b01264

Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size
journal, November 2018


Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices
journal, February 2019


Light-Induced Phase Segregation in Halide-Perovskite Absorbers
journal, November 2016


Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V
journal, January 2018

  • Zeng, Qingsen; Zhang, Xiaoyu; Feng, Xiaolei
  • Advanced Materials, Vol. 30, Issue 9
  • DOI: 10.1002/adma.201705393

CsPbBr 3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition
journal, November 2017


Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals and Thin Films Using Trimethylsilyl Halide Reagents
journal, July 2018


Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition
journal, September 2018


Monolithic Two-Terminal III–V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM1.5g
journal, January 2017


Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells
journal, October 2018

  • Ghosh, Dibyendu; Ali, Md. Yusuf; Chaudhary, Dhirendra K.
  • Solar Energy Materials and Solar Cells, Vol. 185
  • DOI: 10.1016/j.solmat.2018.05.002

Strongly emissive perovskite nanocrystal inks for high-voltage solar cells
journal, December 2016

  • Akkerman, Quinten A.; Gandini, Marina; Di Stasio, Francesco
  • Nature Energy, Vol. 2, Issue 2
  • DOI: 10.1038/nenergy.2016.194

Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
journal, October 2017

  • Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao4204

Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics
journal, July 2018

  • Wheeler, Lance M.; Sanehira, Erin M.; Marshall, Ashley R.
  • Journal of the American Chemical Society, Vol. 140, Issue 33
  • DOI: 10.1021/jacs.8b04984

Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells
journal, September 2018


Vegard’s law
journal, March 1991


Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells
journal, June 2018


Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity
journal, October 2013

  • Savenije, Tom J.; Ferguson, Andrew J.; Kopidakis, Nikos
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp406706u

Quantitative analysis of time-resolved microwave conductivity data
journal, November 2017

  • Reid, Obadiah G.; Moore, David T.; Li, Zhen
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 49
  • DOI: 10.1088/1361-6463/aa9559

Works referencing / citing this record:

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.