DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte

Abstract

A NaSICON–type Li+–ion conductive membrane with a formula of Li1+ x Y x Zr2– x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid–electrolyte/separator to suppress polysulfide–crossover in lithium–sulfur (Li–S) batteries. Here, the LYZP membrane with a reasonable Li+–ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li–S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li–S batteries show greatly enhanced cyclability in contrast to the conventional Li–S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li–metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g–1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade–rate of <0.07% per cycle.

Authors:
 [1];  [2];  [2];  [1]
  1. University of Texas, Austin, TX (United States)
  2. Ceramatec, Inc., West Valley City, UT (United States)
Publication Date:
Research Org.:
Ceramatec, Inc., West Valley City, UT (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1533066
Alternate Identifier(s):
OSTI ID: 1401474
Grant/Contract Number:  
AR0000377
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 24; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Chemistry; Energy & Fuels; Materials Science; Physics; Chemical compatibility; Electrochemical compatibility; Lithium‐sulfur batteries; Polysulfide‐shuttle control; Solid electrolyte

Citation Formats

Yu, Xingwen, Bi, Zhonghe, Zhao, Feng, and Manthiram, Arumugam. Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte. United States: N. p., 2016. Web. doi:10.1002/aenm.201601392.
Yu, Xingwen, Bi, Zhonghe, Zhao, Feng, & Manthiram, Arumugam. Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte. United States. https://doi.org/10.1002/aenm.201601392
Yu, Xingwen, Bi, Zhonghe, Zhao, Feng, and Manthiram, Arumugam. Tue . "Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte". United States. https://doi.org/10.1002/aenm.201601392. https://www.osti.gov/servlets/purl/1533066.
@article{osti_1533066,
title = {Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte},
author = {Yu, Xingwen and Bi, Zhonghe and Zhao, Feng and Manthiram, Arumugam},
abstractNote = {A NaSICON–type Li+–ion conductive membrane with a formula of Li1+ x Y x Zr2– x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid–electrolyte/separator to suppress polysulfide–crossover in lithium–sulfur (Li–S) batteries. Here, the LYZP membrane with a reasonable Li+–ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li–S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li–S batteries show greatly enhanced cyclability in contrast to the conventional Li–S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li–metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g–1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade–rate of <0.07% per cycle.},
doi = {10.1002/aenm.201601392},
journal = {Advanced Energy Materials},
number = 24,
volume = 6,
place = {United States},
year = {Tue Aug 30 00:00:00 EDT 2016},
month = {Tue Aug 30 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels
journal, January 2015

  • Chen, Renjie; Zhao, Teng; Wu, Feng
  • Chemical Communications, Vol. 51, Issue 1
  • DOI: 10.1039/C4CC05109B

Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss
journal, January 2015

  • Hart, Connor J.; Cuisinier, Marine; Liang, Xiao
  • Chemical Communications, Vol. 51, Issue 12
  • DOI: 10.1039/C4CC08980D

A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte
journal, January 2015

  • Wang, Lina; Wang, Yonggang; Xia, Yongyao
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00058K

Current Status, Problems and Challenges in Lithium-sulfur Batteries: Current Status, Problems and Challenges in Lithium-sulfur Batteries
journal, November 2013


Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Preparation of N-doped activated carbons for electric double-layer capacitors from waste fiberboard by K2CO3 activation
journal, April 2014


Lithium-Sulfur Batteries: Progress and Prospects
journal, February 2015

  • Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi
  • Advanced Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adma.201405115

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

A Revolution in Electrodes: Recent Progress in Rechargeable Lithium-Sulfur Batteries
journal, December 2014


Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review
journal, January 2013

  • Bresser, Dominic; Passerini, Stefano; Scrosati, Bruno
  • Chemical Communications, Vol. 49, Issue 90
  • DOI: 10.1039/c3cc46131a

Lithium/sulfur batteries with high specific energy: old challenges and new opportunities
journal, January 2013

  • Song, Min-Kyu; Cairns, Elton J.; Zhang, Yuegang
  • Nanoscale, Vol. 5, Issue 6
  • DOI: 10.1039/c2nr33044j

Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries
journal, April 2014

  • Zheng, Jianming; Tian, Jian; Wu, Dangxin
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404721h

Hybrid Lithium–Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte
journal, July 2015

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b04209

Lithium-air and lithium-sulfur batteries
journal, July 2011

  • Bruce, Peter G.; Hardwick, Laurence J.; Abraham, K. M.
  • MRS Bulletin, Vol. 36, Issue 7
  • DOI: 10.1557/mrs.2011.157

Recent Advances in Electrolytes for Lithium-Sulfur Batteries
journal, April 2015

  • Zhang, Shiguo; Ueno, Kazuhide; Dokko, Kaoru
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500117

All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material
journal, August 2008


Reaction mechanism of all-solid-state lithium–sulfur battery with two-dimensional mesoporous carbon electrodes
journal, December 2013


Nanomaterials: Science and applications in the lithium–sulfur battery
journal, June 2015


A highly efficient polysulfide mediator for lithium–sulfur batteries
journal, January 2015

  • Liang, Xiao; Hart, Connor; Pang, Quan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6682

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Polysulfide rejection layer from alpha-lipoic acid for high performance lithium–sulfur battery
journal, January 2015

  • Song, Jongchan; Noh, Hyungjun; Lee, Hongkyung
  • Journal of Materials Chemistry A, Vol. 3, Issue 1
  • DOI: 10.1039/C4TA03625E

Recent advances in lithium–sulfur batteries
journal, December 2014


Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
journal, July 2015

  • Zhou, Guangmin; Paek, Eunsu; Hwang, Gyeong S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8760

All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes
journal, August 2003

  • Hayashi, Akitoshi; Ohtomo, Takamasa; Mizuno, Fuminori
  • Electrochemistry Communications, Vol. 5, Issue 8, p. 701-705
  • DOI: 10.1016/S1388-2481(03)00167-X

Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide
journal, July 2015

  • Chung, Sheng-Heng; Han, Pauline; Singhal, Richa
  • Advanced Energy Materials, Vol. 5, Issue 18
  • DOI: 10.1002/aenm.201500738

Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode
journal, January 2015

  • Yu, Xingwen; Joseph, Jorphin; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 3, Issue 30
  • DOI: 10.1039/C5TA04289E

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries
journal, January 2014

  • Huang, Jia-Qi; Zhang, Qiang; Peng, Hong-Jie
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42223B

All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte
journal, January 2013


A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery
journal, January 2013

  • Barghamadi, Marzieh; Kapoor, Ajay; Wen, Cuie
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.096308jes

A Polyethylene Glycol-Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium-Sulfur Batteries
journal, September 2014


Lithium-sulfur batteries
journal, May 2014

  • Nazar, Linda F.; Cuisinier, Marine; Pang, Quan
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.86

All solid-state battery with sulfur electrode and thio-LISICON electrolyte
journal, August 2008


A class of polysulfide catholytes for lithium–sulfur batteries: energy density, cyclability, and voltage enhancement
journal, January 2015

  • Yu, Xingwen; Manthiram, Arumugam
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 3
  • DOI: 10.1039/C4CP04895D

A review of electrolytes for lithium–sulphur batteries
journal, June 2014


A strategic approach to recharging lithium-sulphur batteries for long cycle life
journal, December 2013

  • Su, Yu-Sheng; Fu, Yongzhu; Cochell, Thomas
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3985

Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411109

Moving to a Solid-State Configuration: A Valid Approach to Making Lithium-Sulfur Batteries Viable for Practical Applications
journal, September 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Advanced Materials, Vol. 22, Issue 45, p. 5198-5201
  • DOI: 10.1002/adma.201002584

High Li+ conduction in NASICON-type Li1+xYxZr2−x(PO4)3 at room temperature
journal, October 2013


Microwave Processing for Improved Ionic Conductivity in Li 2 O–Al 2 O 3 –TiO 2 –P 2 O 5 Glass‐Ceramics
journal, May 2015

  • Davis, Calvin; Nino, Juan C.
  • Journal of the American Ceramic Society, Vol. 98, Issue 8
  • DOI: 10.1111/jace.13638

Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie, Vol. 127, Issue 14
  • DOI: 10.1002/ange.201411109

Works referencing / citing this record:

Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries
journal, July 2018

  • Wang, Lili; Ye, Yusheng; Chen, Nan
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201800919

Enhanced Interfacial Stability of Hybrid-Electrolyte Lithium-Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity
journal, November 2018

  • Yu, Xingwen; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 29, Issue 3
  • DOI: 10.1002/adfm.201805996

Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
journal, February 2018


Advances in Interfaces between Li Metal Anode and Electrolyte
journal, December 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Qiang
  • Advanced Materials Interfaces, Vol. 5, Issue 2
  • DOI: 10.1002/admi.201701097

Sulfur Immobilization by “Chemical Anchor” to Suppress the Diffusion of Polysulfides in Lithium-Sulfur Batteries
journal, December 2017


Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

Advanced Phosphorus-Based Materials for Lithium/Sodium-Ion Batteries: Recent Developments and Future Perspectives
journal, January 2018

  • Fu, Yanqing; Wei, Qiliang; Zhang, Gaixia
  • Advanced Energy Materials, Vol. 8, Issue 13
  • DOI: 10.1002/aenm.201702849

Hybrid Lithium-Sulfur Batteries with an Advanced Gel Cathode and Stabilized Lithium-Metal Anode
journal, May 2018

  • Xu, Henghui; Wang, Shaofei; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800813

MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Li‐S Batteries
journal, November 2019


Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries
journal, October 2017

  • Fu, Kun Kelvin; Gong, Yunhui; Fu, Zhezhen
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201708637

A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries
journal, June 2018

  • Li, Yutao; Xu, Henghui; Chien, Po-Hsiu
  • Angewandte Chemie International Edition, Vol. 57, Issue 28
  • DOI: 10.1002/anie.201804114

Reducing the Interfacial Resistance in All‐Solid‐State Lithium Batteries Based on Oxide Ceramic Electrolytes
journal, April 2019


2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries
journal, March 2020


Ambient-Temperature Energy Storage with Polyvalent Metal-Sulfur Chemistry
journal, October 2017


A review of solid electrolytes for safe lithium-sulfur batteries
journal, November 2017


Recent Progress in Liquid Electrolyte-Based Li–S Batteries: Shuttle Problem and Solutions
journal, November 2018


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries
journal, January 2017

  • Gu, Sui; Huang, Xiao; Wang, Qing
  • Journal of Materials Chemistry A, Vol. 5, Issue 27
  • DOI: 10.1039/c7ta04017b

Single-ion conducting gel polymer electrolytes: design, preparation and application
journal, January 2020

  • Deng, Kuirong; Zeng, Qingguang; Wang, Da
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta11178f

Dense, Melt Cast Sulfide Glass Electrolyte Separators for Li Metal Batteries
journal, January 2019

  • Yersak, Thomas A.; Salvador, James R.; Pieczonka, Nicholas P. W.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0841908jes

Research Progress of the Solid State Lithium-Sulfur Batteries
journal, October 2019


Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries
journal, October 2017


A Perovskite Electrolyte That Is Stable in Moist Air for Lithium‐Ion Batteries
journal, June 2018


Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892