DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From the Nonexistent Polar Intermetallic Pt3Pr4 via Pt2–xPr3 to Pt/Sn/Pr Ternaries

Abstract

Here the Pt–Pr phase diagram has been explored well, recent work on rare-earth metal cluster halides with endohedral transition metal atoms has provided a new binary intermetallic that is nonexistent in the known phase diagram: The binary Pt3Pr4 (1) crystallizes in a new structure type (mP56, P21/c, a = 12.353(2) Å, b = 7.4837(9) Å, c = 17.279(2) Å, β = 118.003(7)°, Z = 8) with six crystallographically independent Pt as well as eight Pr positions. The subsequent detailed investigation has led to another previously unreported, binary phase with the Ga2Gd3 structure type, Pt2–xPr3 (2, tI80, I4/mcm, a = 11.931(9) Å, c = 14.45(1) Å, Z = 16), that is practically overlapping with the rhombohedral Pt2Pr3 existing in the phase diagram. Application of different tin containing fluxes to reproduce the newly detected phases brought about two almost iso-compositional ternary compounds with Sn, Pt4Sn6Pr2.91 (3), and Pt4Sn6Pr3 (4), as well as Pt12Sn24Pr4.84 (5). 3 is a representative of the Pt4Ge6Ce3 type (oP52, Pnma, a = 7.2863(3) Å, b = 4.4909(2) Å, c = 35.114(2) Å), while 4 represents a new variant of the prolific T4E6R3 family (T = transition metal, E = main group (semi)metal, R = rare-earth metal; Pt4Sn6Pr3: oP52, Pnma, a = 27.623(1) Å, b = 4.5958(2) Å, c = 9.3499(5) Å). Pt12Sn24Pr5–x (5) crystallizes as a variant of the Ni8Sn16Gd3 type (cI82, Im$$\bar{3}$$, a = 12.274(1) Å, Z = 2). Electronic structure calculations provide hints on the origin of the structural changes (pseudo-polymorphism) for PtxPr3 with x = 1.97 and 2.00, respectively, and reveal that heteroatomic Pt–Pr bonding strongly dominates in both binaries while the addition of the reactive metal tin leads to dominating Pt–Sn bonding interactions in the ternaries; Pt–Pt bonding interactions are strong but represent a minority in the binaries and are not present at all in the ternaries.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [4]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States)
  2. Univ. zu Koln, Koln (Germany)
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States); Stockholm Univ., Stockholm (Sweden)
  4. Ames Lab. and Iowa State Univ., Ames, IA (United States); Univ. zu Koln, Koln (Germany)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1471222
Report Number(s):
IS-J-9752
Journal ID: ISSN 0020-1669
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 16; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Rhodehouse, Melissa L., Bell, Thomas, Smetana, Volodymyr, Mudring, Anja -Verena, and Meyer, Gerd H. From the Nonexistent Polar Intermetallic Pt3Pr4 via Pt2–xPr3 to Pt/Sn/Pr Ternaries. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.8b01121.
Rhodehouse, Melissa L., Bell, Thomas, Smetana, Volodymyr, Mudring, Anja -Verena, & Meyer, Gerd H. From the Nonexistent Polar Intermetallic Pt3Pr4 via Pt2–xPr3 to Pt/Sn/Pr Ternaries. United States. https://doi.org/10.1021/acs.inorgchem.8b01121
Rhodehouse, Melissa L., Bell, Thomas, Smetana, Volodymyr, Mudring, Anja -Verena, and Meyer, Gerd H. Fri . "From the Nonexistent Polar Intermetallic Pt3Pr4 via Pt2–xPr3 to Pt/Sn/Pr Ternaries". United States. https://doi.org/10.1021/acs.inorgchem.8b01121. https://www.osti.gov/servlets/purl/1471222.
@article{osti_1471222,
title = {From the Nonexistent Polar Intermetallic Pt3Pr4 via Pt2–xPr3 to Pt/Sn/Pr Ternaries},
author = {Rhodehouse, Melissa L. and Bell, Thomas and Smetana, Volodymyr and Mudring, Anja -Verena and Meyer, Gerd H.},
abstractNote = {Here the Pt–Pr phase diagram has been explored well, recent work on rare-earth metal cluster halides with endohedral transition metal atoms has provided a new binary intermetallic that is nonexistent in the known phase diagram: The binary Pt3Pr4 (1) crystallizes in a new structure type (mP56, P21/c, a = 12.353(2) Å, b = 7.4837(9) Å, c = 17.279(2) Å, β = 118.003(7)°, Z = 8) with six crystallographically independent Pt as well as eight Pr positions. The subsequent detailed investigation has led to another previously unreported, binary phase with the Ga2Gd3 structure type, Pt2–xPr3 (2, tI80, I4/mcm, a = 11.931(9) Å, c = 14.45(1) Å, Z = 16), that is practically overlapping with the rhombohedral Pt2Pr3 existing in the phase diagram. Application of different tin containing fluxes to reproduce the newly detected phases brought about two almost iso-compositional ternary compounds with Sn, Pt4Sn6Pr2.91 (3), and Pt4Sn6Pr3 (4), as well as Pt12Sn24Pr4.84 (5). 3 is a representative of the Pt4Ge6Ce3 type (oP52, Pnma, a = 7.2863(3) Å, b = 4.4909(2) Å, c = 35.114(2) Å), while 4 represents a new variant of the prolific T4E6R3 family (T = transition metal, E = main group (semi)metal, R = rare-earth metal; Pt4Sn6Pr3: oP52, Pnma, a = 27.623(1) Å, b = 4.5958(2) Å, c = 9.3499(5) Å). Pt12Sn24Pr5–x (5) crystallizes as a variant of the Ni8Sn16Gd3 type (cI82, Im$\bar{3}$, a = 12.274(1) Å, Z = 2). Electronic structure calculations provide hints on the origin of the structural changes (pseudo-polymorphism) for PtxPr3 with x = 1.97 and 2.00, respectively, and reveal that heteroatomic Pt–Pr bonding strongly dominates in both binaries while the addition of the reactive metal tin leads to dominating Pt–Sn bonding interactions in the ternaries; Pt–Pt bonding interactions are strong but represent a minority in the binaries and are not present at all in the ternaries.},
doi = {10.1021/acs.inorgchem.8b01121},
journal = {Inorganic Chemistry},
number = 16,
volume = 57,
place = {United States},
year = {Fri Aug 03 00:00:00 EDT 2018},
month = {Fri Aug 03 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Gadolinium sesquichloride, an unusual example of metal-metal bonding
journal, March 1970

  • Lokken, Donald A.; Corbett, John D.
  • Journal of the American Chemical Society, Vol. 92, Issue 6
  • DOI: 10.1021/ja00709a085

Rare earth metal-metal halide systems. XV. Crystal structure of gadolinium sesquichloride. Phase with unique metal chains
journal, March 1973

  • Lokken, Donald A.; Corbett, John D.
  • Inorganic Chemistry, Vol. 12, Issue 3
  • DOI: 10.1021/ic50121a012

Metallreiche Verbindungen der Seltenen Erden Gd2Cl3, Gd2Br3 und Tb2Cl3
journal, January 1979

  • Simon, A.; Holzer, N.; Mattusch, Hj.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 456, Issue 1
  • DOI: 10.1002/zaac.19794560122

Cluster Complexes as anti-Werner Complexes
journal, December 2008

  • Meyer, Gerd
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 634, Issue 15
  • DOI: 10.1002/zaac.200800375

Encapsulation of the platinum and neighboring metals within cluster iodides of rare-earth elements
journal, June 1990

  • Payne, Martin W.; Corbett, John D.
  • Inorganic Chemistry, Vol. 29, Issue 12
  • DOI: 10.1021/ic00337a014

Condensed metal cluster iodides centered by noble metals. Six examples of cubic R3I3Z phases (R = La, Pr; Z = Os, Ir, Pt)
journal, December 1991

  • Dorhout, Peter K.; Payne, Martin W.; Corbett, John D.
  • Inorganic Chemistry, Vol. 30, Issue 26
  • DOI: 10.1021/ic00026a021

Reduced Praseodymium Cluster Bromides Stabilized by Transition Metals
journal, March 1994

  • Llusar, Rosa; Corbett, John D.
  • Inorganic Chemistry, Vol. 33, Issue 5
  • DOI: 10.1021/ic00083a004

An analysis of the ammonium chloride route to anhydrous rare-earth metal chlorides
journal, November 1982


Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination
journal, January 2015

  • Krause, Lennard; Herbst-Irmer, Regine; Sheldrick, George M.
  • Journal of Applied Crystallography, Vol. 48, Issue 1
  • DOI: 10.1107/S1600576714022985

SHELXT – Integrated space-group and crystal-structure determination
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053273314026370

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Explicit, First-Principles Tight-Binding Theory
journal, December 1984


Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge
journal, August 1986


Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
journal, August 1993

  • Dronskowski, Richard; Bloechl, Peter E.
  • The Journal of Physical Chemistry, Vol. 97, Issue 33
  • DOI: 10.1021/j100135a014

Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


R 3 T 2 compounds ( R = rare earth or Y; T = Rh, Pd, Pt) with the rhombohedral Er 3 Ni 2 structure type
journal, August 1977

  • Le Roy, J.; Moreau, J. -M.; Paccard, D.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 33, Issue 8
  • DOI: 10.1107/S0567740877008632

The Crystal Structure of Two Novel Compounds: CeAlSi2andCe3Al4Si6
journal, December 1996

  • Flandorfer, Hans; Rogl, Peter
  • Journal of Solid State Chemistry, Vol. 127, Issue 2
  • DOI: 10.1006/jssc.1996.0388

Crystal structure of the novel compound Ce3Pt4Al6
journal, January 2008

  • Tursina, A. I.; Gribanov, A. V.; Bukhan’Ko, N. G.
  • Chemistry of Metals and Alloys, Vol. 1, Issue 1
  • DOI: 10.30970/cma1.0027

Crystal structure of the compound Ce3Pt4Ge6
journal, February 1992


The Stannides La 3 Pd 4 Sn 6 , Ce 3 Pd 4 Sn 6 , and Pr 3 Pd 4 Sn 6 :  A New Structure Type with a Complex Three-Dimensional [Pd 4 Sn 6 ] Polyanion
journal, February 2000

  • Niepmann, Dirk; Pöttgen, Rainer; Künnen, Bernd
  • Chemistry of Materials, Vol. 12, Issue 2
  • DOI: 10.1021/cm991142z

Neue Germanide mit geordneter Ce3Pt4Ge6-Struktur – Die VerbindungenLn3Pt4Ge6 (Ln: Pr–Dy)
journal, June 2006

  • Imre, Anette; Hellmann, Andrea; Mewis, Albrecht
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 632, Issue 7
  • DOI: 10.1002/zaac.200500378

Crystal structure of Y3Pt4Ge6: An intergrowth of BaAl4 and YIrGe2 slabs
journal, December 1990


Kristallstruktur von Gd3Ga2 und isotypen Verbindungen
journal, January 1986

  • Yatsenko, S. P.; Hladyschewsky, R. E.; Sitschewitsch, O. M.
  • Journal of the Less Common Metals, Vol. 115, Issue 1
  • DOI: 10.1016/0022-5088(86)90367-X

Eight-Coordinate Endohedral Rhenium, Osmium and Iridium Atoms in Rare-Earth Halide Cluster Complexes
journal, May 2010

  • Zimmermann, Sina; Brühmann, Matthias; Casper, Frederick
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 18
  • DOI: 10.1002/ejic.201000223

Electronic and structural properties of the novel chain compound tantalum telluride silicide, Ta4Te4Si
journal, October 1990

  • Li, Jing; Hoffmann, Roald; Badding, Michael E.
  • Inorganic Chemistry, Vol. 29, Issue 20
  • DOI: 10.1021/ic00345a008

{Os5Lu20}I24, the First Extended Cluster Complex of Lutetium with Eight-Coordinate Endohedral Osmium Atoms in Two Different Environments
journal, August 2011

  • Brühmann, Matthias; Mudring, Anja-Verena; Valldor, Martin
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 26
  • DOI: 10.1002/ejic.201100451

R12Pt7In (R=Ce, Pr, Nd, Gd, Ho)—new derivatives of the Gd3Ga2-type
journal, January 2004


Structure cristalline des composés intermétalliques T 4 Co 3 ( T = Y, Gd, Tb, Dy, Ho, Er et Tm)
journal, April 1969

  • Lemaire, R.; Schweizer, J.; Yakinthos, J.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 25, Issue 4
  • DOI: 10.1107/S056774086900286X

The phase diagram of the La—Rh system
journal, December 1992


The alloy systems Ln-Sb
journal, November 1986


The crystal structure of Ce 4 Ru 3
journal, January 1992


A ternary alloy with PbCl2-type structure: TiNiSi(E)
journal, May 1965


Synthesis, Structure and Properties of the High-pressure Modifications of the Ternary Compounds REPtSn (RE = La, Pr, Sm)
journal, December 2006

  • Riecken, Jan F.; Rodewald, Ute Ch.; Heymann, Gunter
  • Zeitschrift für Naturforschung B, Vol. 61, Issue 12
  • DOI: 10.1515/znb-2006-1203

Gold Polar Intermetallics: Structural Versatility through Exclusive Bonding Motifs
journal, October 2017


Four Polyanionic Compounds in the K–Au–Ga System: A Case Study in Exploratory Synthesis and of the Art of Structural Analysis
journal, January 2012

  • Smetana, Volodymyr; Corbett, John D.; Miller, Gordon J.
  • Inorganic Chemistry, Vol. 51, Issue 3
  • DOI: 10.1021/ic201999u

Three Alkali-Metal–Gold–Gallium Systems. Ternary Tunnel Structures and Some Problems with Poorly Ordered Cations
journal, April 2012

  • Smetana, Volodymyr; Miller, Gordon J.; Corbett, John D.
  • Inorganic Chemistry, Vol. 51, Issue 14
  • DOI: 10.1021/ic300740u

Near-threshold laser spectroscopy of iridium and platinum negative ions: Electron affinities and the threshold law
journal, December 1999


Electron affinity of tin measured by photodetachment microscopy
journal, June 2013

  • Vandevraye, M.; Drag, C.; Blondel, C.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 46, Issue 12
  • DOI: 10.1088/0953-4075/46/12/125002

Atomic negative ions: structure, dynamics and collisions
journal, May 2004


Electronegativity values from thermochemical data
journal, June 1961


Transformation of AeIn 4 Indides (Ae = Ba, Sr) into an AeAu 2 In 2 Structure Type Through Gold Substitution
journal, May 2007

  • Dai, Jing-Cao; Corbett, John D.
  • Inorganic Chemistry, Vol. 46, Issue 11
  • DOI: 10.1021/ic070142v

Ba 2 AuTl 7 :  An Intermetallic Compound with a Novel Condensed Structure
journal, April 2004

  • Liu, Shengfeng; Corbett, John D.
  • Inorganic Chemistry, Vol. 43, Issue 8
  • DOI: 10.1021/ic035399h

SrAu 4 In 4 and Sr 4 Au 9 In 13 : Polar Intermetallic Structures with Cations in Augmented Hexagonal Prismatic Environments
journal, March 2008

  • Palasyuk, Andriy; Dai, Jing-Cao; Corbett, John D.
  • Inorganic Chemistry, Vol. 47, Issue 8
  • DOI: 10.1021/ic702145y

Single Crystal X-ray Structure Investigation and Electronic Structure Studies of La-Deficient Nickel Stannide La4.87Ni12Sn24 Grown from Sn Flux
journal, February 2003

  • Zhuravleva, Marina A.; Bilc, Daniel; Mahanti, S. D.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 629, Issue 2
  • DOI: 10.1002/zaac.200390052

Crystallographic, magnetic and electrical characteristics of some R5−xNi12Sn24+x intermetallics
journal, March 2010


Mixed valent stannide EuRuSn3 – Structure, magnetic properties, and Mössbauer spectroscopic investigation
journal, February 2010


R�ntgenographische Untersuchungen im System: Platin-Quecksilber
journal, January 1953

  • Bauer, E.; Nowotny, H.; Stempfl, A.
  • Monatshefte f�r Chemie, Vol. 84, Issue 4
  • DOI: 10.1007/BF00902768

Cs2Pt: A Platinide(-II) Exhibiting Complete Charge Separation
journal, October 2003

  • Karpov, Andrey; Nuss, Jürgen; Wedig, Ulrich
  • Angewandte Chemie International Edition, Vol. 42, Issue 39
  • DOI: 10.1002/anie.200352314

Cesium Platinide Hydride 4Cs 2 Pt⋅CsH: An Intermetallic Double Salt Featuring Metal Anions
journal, October 2016

  • Smetana, Volodymyr; Mudring, Anja-Verena
  • Angewandte Chemie International Edition, Vol. 55, Issue 47
  • DOI: 10.1002/anie.201606682

Synthesis, Structure, and Bonding Analysis of the Polar Intermetallic Phase Ca 2 Pt 2 Cd
journal, August 2012

  • Samal, Saroj L.; Corbett, John D.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 638, Issue 12-13
  • DOI: 10.1002/zaac.201200179

Cluster Chemistry in Electron-Poor Ae–Pt–Cd Systems (Ae = Ca, Sr, Ba): (Sr,Ba)Pt 2 Cd 4 , Ca 6 Pt 8 Cd 16 , and Its Known Antitype Er 6 Pd 16 Sb 8
journal, February 2013

  • Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.
  • Inorganic Chemistry, Vol. 52, Issue 5
  • DOI: 10.1021/ic302767b

Substantial Cd–Cd Bonding in Ca 6 PtCd 11 : A Condensed Intermetallic Phase Built of Pentagonal Cd 7 and Rectangular Cd 4/2 Pt Pyramids
journal, August 2013

  • Gulo, Fakhili; Samal, Saroj L.; Corbett, John D.
  • Inorganic Chemistry, Vol. 52, Issue 17
  • DOI: 10.1021/ic401455c

Gold in the Layered Structures of R 3 Au 7 Sn 3 : From Relativity to Versatility
journal, September 2016

  • Provino, Alessia; Steinberg, Simon; Smetana, Volodymyr
  • Crystal Growth & Design, Vol. 16, Issue 10
  • DOI: 10.1021/acs.cgd.6b00478

Covalent radii revisited
journal, January 2008

  • Cordero, Beatriz; Gómez, Verónica; Platero-Prats, Ana E.
  • Dalton Transactions, Issue 21
  • DOI: 10.1039/b801115j

Na8Au9.8(4)Ga7.2 and Na17Au5.87(2)Ga46.63: The diversity of pseudo 5-fold symmetries in the Na–Au–Ga system
journal, November 2013

  • Smetana, Volodymyr; Corbett, John D.; Miller, Gordon J.
  • Journal of Solid State Chemistry, Vol. 207
  • DOI: 10.1016/j.jssc.2013.08.017

Works referencing / citing this record:

Tb 3 Pd 2 , Er 3 Pd 2 and Er 6 Co 5– x : structural variations and bonding in rare-earth-richer binary intermetallics
journal, August 2018

  • Bell, Thomas; Celania, Chris R.; Smetana, Volodymyr
  • Acta Crystallographica Section C Structural Chemistry, Vol. 74, Issue 9
  • DOI: 10.1107/s2053229618010549