DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A simple generalized gradient approximation for the noninteracting kinetic energy density functional

Abstract

A simple, novel, non-empirical, constraint-based orbital-free generalized gradient approximation (GGA) non-interacting kinetic energy density functional is presented along with illustrative applications. The innovation is adaptation of constraint-based construction to the essential properties of pseudo-densities from the pseudo-potentials that are essential in plane-wave-basis ab initio molecular dynamics. This contrasts with constraining to the qualitatively different Kato-cusp-condition densities. The single parameter in the new functional is calibrated by satisfying Pauli potential positivity constraints for pseudo-atom densities. Finally, in static lattice tests on simple metals and semiconductors, the new LKT functional outperforms the previous best constraint-based GGA functional, VT84F (Phys. Rev. B 88, 161108(R) (2013)), is generally superior to a recently proposed meta-GGA, is reasonably competitive with parametrized two-point functionals, and is substantially faster.

Authors:
 [1];  [2];  [3]
  1. Univ. of Florida, Gainesville, FL (United States). Quantum Theory Project, Dept. of Physics
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  3. Univ. of Florida, Gainesville, FL (United States). Quantum Theory Project, Dept. of Physics and Dept. of Chemistry
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1465779
Alternate Identifier(s):
OSTI ID: 1461718
Grant/Contract Number:  
NA0001944; SC0002139
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 98; Journal Issue: 4; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Luo, Kai, Karasiev, Valentin V., and Trickey, S. B. A simple generalized gradient approximation for the noninteracting kinetic energy density functional. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.98.041111.
Luo, Kai, Karasiev, Valentin V., & Trickey, S. B. A simple generalized gradient approximation for the noninteracting kinetic energy density functional. United States. https://doi.org/10.1103/PhysRevB.98.041111
Luo, Kai, Karasiev, Valentin V., and Trickey, S. B. Thu . "A simple generalized gradient approximation for the noninteracting kinetic energy density functional". United States. https://doi.org/10.1103/PhysRevB.98.041111. https://www.osti.gov/servlets/purl/1465779.
@article{osti_1465779,
title = {A simple generalized gradient approximation for the noninteracting kinetic energy density functional},
author = {Luo, Kai and Karasiev, Valentin V. and Trickey, S. B.},
abstractNote = {A simple, novel, non-empirical, constraint-based orbital-free generalized gradient approximation (GGA) non-interacting kinetic energy density functional is presented along with illustrative applications. The innovation is adaptation of constraint-based construction to the essential properties of pseudo-densities from the pseudo-potentials that are essential in plane-wave-basis ab initio molecular dynamics. This contrasts with constraining to the qualitatively different Kato-cusp-condition densities. The single parameter in the new functional is calibrated by satisfying Pauli potential positivity constraints for pseudo-atom densities. Finally, in static lattice tests on simple metals and semiconductors, the new LKT functional outperforms the previous best constraint-based GGA functional, VT84F (Phys. Rev. B 88, 161108(R) (2013)), is generally superior to a recently proposed meta-GGA, is reasonably competitive with parametrized two-point functionals, and is substantially faster.},
doi = {10.1103/PhysRevB.98.041111},
journal = {Physical Review B},
number = 4,
volume = 98,
place = {United States},
year = {Thu Jul 26 00:00:00 EDT 2018},
month = {Thu Jul 26 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 61 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Pauli enhancement factors for LKT (a = 1.3) (red dot-dashed), VT84F (blue dashed), and APBEK (orange dotted).

Save / Share:

Works referenced in this record:

Transferable local pseudopotentials for magnesium, aluminum and silicon
journal, January 2008

  • Huang, Chen; Carter, Emily A.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 47
  • DOI: 10.1039/b810407g

Explicit estimation of ground-state kinetic energies from electron densities
journal, October 1986


Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment
journal, March 2004


Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations
journal, December 2010


On the eigenfunctions of many-particle systems in quantum mechanics
journal, January 1957


Nonlocal kinetic-energy-density functionals
journal, April 1996

  • García-González, P.; Alvarellos, J. E.; Chacón, E.
  • Physical Review B, Vol. 53, Issue 15
  • DOI: 10.1103/PhysRevB.53.9509

Petascale Orbital-Free Density Functional Theory Enabled by Small-Box Algorithms
journal, May 2016

  • Chen, Mohan; Jiang, Xiang-Wei; Zhuang, Houlong
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 6
  • DOI: 10.1021/acs.jctc.6b00326

Semiclassical Neutral Atom as a Reference System in Density Functional Theory
journal, May 2011


Zur Theorie der Kernmassen
journal, July 1935

  • Weizs�cker, C. F. v.
  • Zeitschrift f�r Physik, Vol. 96, Issue 7-8
  • DOI: 10.1007/BF01337700

Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of ( H 2 O ) 2
journal, July 1993


Nonlocal kinetic energy functionals by functional integration
journal, May 2018

  • Mi, Wenhui; Genova, Alessandro; Pavanello, Michele
  • The Journal of Chemical Physics, Vol. 148, Issue 18
  • DOI: 10.1063/1.5023926

Finite Elastic Strain of Cubic Crystals
journal, June 1947


On the atomic kinetic energy functionals with full Weizsacker correction
journal, February 1982

  • Gázquez, J. L.; Robles, J.
  • The Journal of Chemical Physics, Vol. 76, Issue 3
  • DOI: 10.1063/1.443107

Exact differential equation for the density and ionization energy of a many-particle system
journal, November 1984


Finite-temperature orbital-free DFT molecular dynamics: Coupling Profess and Quantum Espresso
journal, December 2014

  • Karasiev, Valentin V.; Sjostrom, Travis; Trickey, S. B.
  • Computer Physics Communications, Vol. 185, Issue 12
  • DOI: 10.1016/j.cpc.2014.08.023

Orbital-free density functional theory implementation with the projector augmented-wave method
journal, December 2014

  • Lehtomäki, Jouko; Makkonen, Ilja; Caro, Miguel A.
  • The Journal of Chemical Physics, Vol. 141, Issue 23
  • DOI: 10.1063/1.4903450

Inhomogeneous Electron Gas
journal, November 1964


A B I NITIO M OLECULAR D YNAMICS WITH D ENSITY F UNCTIONAL T HEORY
journal, October 2002


Density Functional Theory
book, January 1990


Norm-Conserving Pseudopotentials
journal, November 1979


The role of the kinetic energy density in approximations to the exchange energy
journal, April 2000


Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory
journal, May 2018


Nonlocal kinetic energy functional for nonhomogeneous electron systems
journal, December 1985


Some open problems about Coulomb systems
book, January 1980


The calculation of atomic fields
journal, January 1927

  • Thomas, L. H.
  • Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 23, Issue 5
  • DOI: 10.1017/S0305004100011683

ABINIT: First-principles approach to material and nanosystem properties
journal, December 2009


Orbital-free kinetic-energy functionals for first-principles molecular dynamics
journal, February 1994


Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine
journal, April 2008

  • Oliveira, Micael J. T.; Nogueira, Fernando
  • Computer Physics Communications, Vol. 178, Issue 7
  • DOI: 10.1016/j.cpc.2007.11.003

Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations
journal, October 2013

  • Karasiev, Valentin V.; Chakraborty, Debajit; Shukruto, Olga A.
  • Physical Review B, Vol. 88, Issue 16
  • DOI: 10.1103/PhysRevB.88.161108

Erratum: Orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B 60 , 16 350 (1999)]
journal, August 2001


Orbital-free density functional theory for materials research
journal, January 2018

  • Witt, William C.; del Rio, Beatriz G.; Dieterich, Johannes M.
  • Journal of Materials Research, Vol. 33, Issue 7
  • DOI: 10.1557/jmr.2017.462

Properties of constraint-based single-point approximate kinetic energy functionals
journal, December 2009


Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations
journal, September 2012


Ab Initio Molecular Dynamics
book, January 2009


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Non-empirical Generalized Gradient Approximation Free Energy Functional for Orbital-free Simulations
text, January 2013


The importance of finite-temperature exchange-correlation for warm dense matter calculations
text, January 2016


Nonlocal Kinetic Energy Functionals By Functional Integration
text, January 2017


Works referencing / citing this record:

Is it worthwhile to go beyond the local‐density approximation in subsystem density functional theory?
journal, December 2019

  • Grimmel, Stephanie A.; Teodoro, Tiago Q.; Visscher, Lucas
  • International Journal of Quantum Chemistry, Vol. 120, Issue 21
  • DOI: 10.1002/qua.26111

Kinetic energy densities based on the fourth order gradient expansion: performance in different classes of materials and improvement via machine learning
journal, January 2019

  • Golub, Pavlo; Manzhos, Sergei
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 1
  • DOI: 10.1039/c8cp06433d

Quantum hydrodynamics for plasmas— Quo vadis ?
journal, September 2019

  • Bonitz, M.; Moldabekov, Zh. A.; Ramazanov, T. S.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5097885

Upper bound to the gradient-based kinetic energy density of noninteracting electrons in an external potential
journal, August 2019

  • Witt, William C.; Jiang, Kaili; Carter, Emily A.
  • The Journal of Chemical Physics, Vol. 151, Issue 6
  • DOI: 10.1063/1.5108896

Large-Z limit in atoms and solids from first principles
journal, December 2019

  • Lehtomäki, Jouko; Lopez-Acevedo, Olga
  • The Journal of Chemical Physics, Vol. 151, Issue 24
  • DOI: 10.1063/1.5129397