DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing the Li Insertion Mechanism of ZnFe2O4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe2O4 in Li ion batteries: A combined XRD, EXAFS, and DFT study]

Abstract

Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe2O4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Li+ ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe2O3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe2O4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.

Authors:
 [1];  [2];  [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [1];  [1]; ORCiD logo [3]
  1. Stony Brook Univ., Stony Brook, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1376672
Report Number(s):
BNL-114141-2017-JA
Journal ID: ISSN 0897-4756
Grant/Contract Number:  
SC0012704; SC0012673
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 10; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zhang, Yiman, Pelliccione, Christopher J., Brady, Alexander B., Guo, Haoyue, Smith, Paul F., Liu, Ping, Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Probing the Li Insertion Mechanism of ZnFe2O4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe2O4 in Li ion batteries: A combined XRD, EXAFS, and DFT study]. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00467.
Zhang, Yiman, Pelliccione, Christopher J., Brady, Alexander B., Guo, Haoyue, Smith, Paul F., Liu, Ping, Marschilok, Amy C., Takeuchi, Kenneth J., & Takeuchi, Esther S. Probing the Li Insertion Mechanism of ZnFe2O4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe2O4 in Li ion batteries: A combined XRD, EXAFS, and DFT study]. United States. https://doi.org/10.1021/acs.chemmater.7b00467
Zhang, Yiman, Pelliccione, Christopher J., Brady, Alexander B., Guo, Haoyue, Smith, Paul F., Liu, Ping, Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Mon . "Probing the Li Insertion Mechanism of ZnFe2O4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe2O4 in Li ion batteries: A combined XRD, EXAFS, and DFT study]". United States. https://doi.org/10.1021/acs.chemmater.7b00467. https://www.osti.gov/servlets/purl/1376672.
@article{osti_1376672,
title = {Probing the Li Insertion Mechanism of ZnFe2O4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe2O4 in Li ion batteries: A combined XRD, EXAFS, and DFT study]},
author = {Zhang, Yiman and Pelliccione, Christopher J. and Brady, Alexander B. and Guo, Haoyue and Smith, Paul F. and Liu, Ping and Marschilok, Amy C. and Takeuchi, Kenneth J. and Takeuchi, Esther S.},
abstractNote = {Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe2O4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Li+ ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe2O3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe2O4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.},
doi = {10.1021/acs.chemmater.7b00467},
journal = {Chemistry of Materials},
number = 10,
volume = 29,
place = {United States},
year = {Mon Apr 24 00:00:00 EDT 2017},
month = {Mon Apr 24 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanocrystalline ZnFe[sub 2]O[sub 4] and Ag-Doped ZnFe[sub 2]O[sub 4] Films Used as New Anode Materials for Li-Ion Batteries
journal, January 2004

  • NuLi, Yan-Na; Chu, Yan-Qiu; Qin, Qi-Zong
  • Journal of The Electrochemical Society, Vol. 151, Issue 7
  • DOI: 10.1149/1.1760576

Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries
journal, January 2008


High capacity ZnFe2O4 anode material for lithium ion batteries
journal, October 2011


Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries
journal, June 2010


Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries
journal, January 2011

  • Teh, Pei Fen; Sharma, Yogesh; Pramana, Stevin Snellius
  • Journal of Materials Chemistry, Vol. 21, Issue 38
  • DOI: 10.1039/c1jm12088c

One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries
journal, June 2012


Facile synthesis of MWCNT–ZnFe2O4 nanocomposites as anode materials for lithium ion batteries
journal, January 2012

  • Sui, Jiehe; Zhang, Cheng; Hong, Da
  • Journal of Materials Chemistry, Vol. 22, Issue 27
  • DOI: 10.1039/c2jm31905e

Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries
journal, January 2012

  • Song, Wentao; Xie, Jian; Liu, Shuangyu
  • New Journal of Chemistry, Vol. 36, Issue 11
  • DOI: 10.1039/c2nj40534b

Carbon Coated ZnFe 2 O 4 Nanoparticles for Advanced Lithium-Ion Anodes
journal, November 2012

  • Bresser, Dominic; Paillard, Elie; Kloepsch, Richard
  • Advanced Energy Materials, Vol. 3, Issue 4
  • DOI: 10.1002/aenm.201200735

In-Situ Crafting of ZnFe 2 O 4 Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials
journal, January 2016


A particle–carbon matrix architecture for long-term cycle stability of ZnFe 2 O 4 anode
journal, January 2016

  • Wang, Qiuxian; Yue, Hongyun; Du, Ting
  • RSC Advances, Vol. 6, Issue 41
  • DOI: 10.1039/C6RA04382H

In situ Raman spectroscopy of carbon-coated ZnFe 2 O 4 anode material in Li-ion batteries – investigation of SEI growth
journal, January 2016

  • Cabo-Fernandez, Laura; Mueller, Franziska; Passerini, Stefano
  • Chemical Communications, Vol. 52, Issue 20
  • DOI: 10.1039/C5CC09350C

Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-Edge Absorption Spectroscopy
journal, February 2016

  • Rezvani, S. J.; Ciambezi, M.; Gunnella, R.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcc.5b11798

Lithium insertion reactions of spinels: Effect of the distribution and reducibility of cations in selected manganite and zinc spinels
journal, May 1986


Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

In Situ XAFS Study of the Capacity Fading Mechanisms in ZnO Anodes for Lithium-Ion Batteries
journal, January 2015

  • Pelliccione, Christopher J.; Ding, Yujia; Timofeeva, Elena V.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.1011509jes

Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties
journal, January 2014

  • Kim, Jong Guk; Kim, Youngmin; Noh, Yuseong
  • RSC Advances, Vol. 4, Issue 53
  • DOI: 10.1039/c4ra02095b

Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by a low-energy ball milling
journal, May 2015


Lithium Storage Properties of Pristine and (Mg, Cu) Codoped ZnFe 2 O 4 Nanoparticles
journal, June 2014

  • Hameed, A. Shahul; Bahiraei, Hamed; Reddy, M. V.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am502605s

Li-cycling properties of nano-crystalline (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1)
journal, February 2012

  • Cherian, Christie Thomas; Reddy, M. V.; Rao, G. V. Subba
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 5
  • DOI: 10.1007/s10008-012-1662-2

Elucidation of Capacity Fading on CoFe[sub 2]O[sub 4] Conversion Electrodes for Lithium Batteries Based on [sup 57]Fe Mössbauer Spectroscopy
journal, January 2009

  • Lavela, P.; Tirado, J. L.; Womes, M.
  • Journal of The Electrochemical Society, Vol. 156, Issue 7
  • DOI: 10.1149/1.3129691

CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries
journal, October 2007


Lithium-induced conversion reaction in wüstite Fe1−xO studied by 57Fe Mössbauer spectroscopy
journal, March 2012


Disproportionation of wustite
journal, June 1969


Insights into Ionic Transport and Structural Changes in Magnetite during Multiple-Electron Transfer Reactions
journal, March 2016

  • Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502471

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Synthesis of nanocrystalline zinc ferrite powders from sulphuric pickling waste water
journal, January 1998

  • López, F. A.; López-Delgado, A.; Martı́n de Vidales, J. L.
  • Journal of Alloys and Compounds, Vol. 265, Issue 1-2
  • DOI: 10.1016/S0925-8388(97)00282-X

An X‐Ray Study of the Wüstite (FeO) Solid Solutions
journal, January 1933

  • Jette, Eric R.; Foote, Frank
  • The Journal of Chemical Physics, Vol. 1, Issue 1
  • DOI: 10.1063/1.1749215

XLI. Precision measurements of crystal parameters
journal, February 1933

  • Owen, E. A.; Yates, E. L.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 15, Issue 98
  • DOI: 10.1080/14786443309462199

Ab initio curved-wave x-ray-absorption fine structure
journal, September 1991


Theoretical x-ray absorption fine structure standards
journal, July 1991

  • Rehr, J. J.; Mustre de Leon, J.; Zabinsky, S. I.
  • Journal of the American Chemical Society, Vol. 113, Issue 14
  • DOI: 10.1021/ja00014a001

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


PDFgetX3 : a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions
journal, March 2013


PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Magnetic properties of the Zn Fe 2 O 4 spinel
journal, April 1996


The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries
journal, February 2016


Electrospun synthesis and electrochemical property of zinc ferrite nanofibers
journal, December 2015


ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone
journal, December 2015


SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy
journal, July 2015

  • Di Cicco, Andrea; Giglia, Angelo; Gunnella, Roberto
  • Advanced Energy Materials, Vol. 5, Issue 18
  • DOI: 10.1002/aenm.201500642

What Happens Structurally and Electronically during the Li Conversion Reaction of CoFe 2 O 4 Nanoparticles: An Operando XAS and XRD Investigation
journal, January 2016


Electrochemical insertion of Li into nanocrystalline MnFe2O4: a study of the reaction mechanism
journal, January 2013

  • Permien, Stefan; Hain, Holger; Scheuermann, Marco
  • RSC Advances, Vol. 3, Issue 45
  • DOI: 10.1039/c3ra44383c

Comparison of extended x-ray absorption fine structure and Scherrer analysis of x-ray diffraction as methods for determining mean sizes of polydisperse nanoparticles
journal, December 2005

  • Calvin, S.; Luo, S. X.; Caragianis-Broadbridge, C.
  • Applied Physics Letters, Vol. 87, Issue 23
  • DOI: 10.1063/1.2137872

Determination of crystallite size in a magnetic nanocomposite using extended x-ray absorption fine structure
journal, July 2003

  • Calvin, S.; Miller, M. M.; Goswami, R.
  • Journal of Applied Physics, Vol. 94, Issue 1
  • DOI: 10.1063/1.1581344

A View from the Inside:  Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles
journal, December 2001

  • Frenkel, Anatoly I.; Hills, Charles W.; Nuzzo, Ralph G.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 51
  • DOI: 10.1021/jp012769j

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Evaluating Pristine and Modified SnS 2 as a Lithium-Ion Battery Anode: A First-Principles Study
journal, February 2015

  • Liu, Zhixiao; Deng, Huiqiu; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 7
  • DOI: 10.1021/am5068707

Works referencing / citing this record:

Electrochemical (de)lithiation of silver ferrite and composites: mechanistic insights from ex situ, in situ, and operando X-ray techniques
journal, January 2017

  • Durham, Jessica L.; Brady, Alexander B.; Cama, Christina A.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 33
  • DOI: 10.1039/c7cp04012a

High-performance NO 2 -gas sensing of ultrasmall ZnFe 2 O 4 nanoparticles based on surface charge transfer
journal, January 2019

  • Li, Ke; Luo, Yuanyuan; Liu, Bo
  • Journal of Materials Chemistry A, Vol. 7, Issue 10
  • DOI: 10.1039/c8ta12168k

Probing enhanced lithium-ion transport kinetics in 2D holey nanoarchitectured electrodes
journal, August 2018


A first principles study of spinel ZnFe 2 O 4 for electrode materials in lithium-ion batteries
journal, January 2017

  • Guo, Haoyue; Zhang, Yiman; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 38
  • DOI: 10.1039/c7cp04590e

In Situ Probing Multiple-Scale Structures of Energy Materials for Li-Ion Batteries
journal, May 2019


Rationalization of Diversity in Spinel MgFe 2 O 4 Surfaces
journal, September 2019

  • Guo, Haoyue; Marschilok, Amy C.; Takeuchi, Kenneth J.
  • Advanced Materials Interfaces, Vol. 6, Issue 22
  • DOI: 10.1002/admi.201901218

Incorporation of Alloy-de-Alloy Phase with Conversion Based Manganese Oxide to Enable High and Stable Capacity and Density Functional Theory Study of CdMn 2 O 4
journal, January 2018

  • Sahoo, Asit; Deka, Bhrigumoni; Sharma, Yogesh
  • Journal of The Electrochemical Society, Vol. 165, Issue 9
  • DOI: 10.1149/2.0101809jes

Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite
journal, January 2019


Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite
journal, January 2019