DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atmospheric changes caused by galactic cosmic rays over the period 1960–2010

Abstract

The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NOx increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2+ M → ClONO2+ M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global totalmore » ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less

Authors:
 [1];  [2];  [2];  [3];  [4]
  1. NASA Goddard Space Flight Center, Greenbelt, MD (United States)
  2. National Center for Atmospheric Research, Boulder, CO (United States)
  3. NASA Langley Research Center, Hampton, VA (United States)
  4. NASA Goddard Space Flight Center, Greenbelt, MD (United States); Science Systems and Applications Inc., Lanham, MD (United States)
Publication Date:
Research Org.:
NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
Sponsoring Org.:
USDOE Office of Science (SC); NASA Headquarters Atmospheric Composition Modeling and Analysis Program; National Science Foundation (NSF)
OSTI Identifier:
1268112
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 16; Journal Issue: 9; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 54 ENVIRONMENTAL SCIENCES; solar proton events; middle atmosphere; odd nitrogen; 2-dimensional model; particle-precipitation; chemical-composition; space exploration; ozone depletion; stratosphere; radiation

Citation Formats

Jackman, Charles H., Marsh, Daniel R., Kinnison, Douglas E., Mertens, Christopher J., and Fleming, Eric L. Atmospheric changes caused by galactic cosmic rays over the period 1960–2010. United States: N. p., 2016. Web. doi:10.5194/acp-16-5853-2016.
Jackman, Charles H., Marsh, Daniel R., Kinnison, Douglas E., Mertens, Christopher J., & Fleming, Eric L. Atmospheric changes caused by galactic cosmic rays over the period 1960–2010. United States. https://doi.org/10.5194/acp-16-5853-2016
Jackman, Charles H., Marsh, Daniel R., Kinnison, Douglas E., Mertens, Christopher J., and Fleming, Eric L. Fri . "Atmospheric changes caused by galactic cosmic rays over the period 1960–2010". United States. https://doi.org/10.5194/acp-16-5853-2016. https://www.osti.gov/servlets/purl/1268112.
@article{osti_1268112,
title = {Atmospheric changes caused by galactic cosmic rays over the period 1960–2010},
author = {Jackman, Charles H. and Marsh, Daniel R. and Kinnison, Douglas E. and Mertens, Christopher J. and Fleming, Eric L.},
abstractNote = {The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NOx increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2+ M → ClONO2+ M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.},
doi = {10.5194/acp-16-5853-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 9,
volume = 16,
place = {United States},
year = {Fri May 13 00:00:00 EDT 2016},
month = {Fri May 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Long-term modulation of galactic cosmic radiation and its model for space exploration
journal, October 1994


Galactic cosmic radiation model and its applications
journal, January 1996


Influence of Galactic Cosmic Rays on atmospheric composition and dynamics
journal, January 2011

  • Calisto, M.; Usoskin, I.; Rozanov, E.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 9
  • DOI: 10.5194/acp-11-4547-2011

Effects of a polar stratospheric cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model
journal, January 1994

  • Considine, David B.; Douglass, Anne R.; Jackman, Charles H.
  • Journal of Geophysical Research, Vol. 99, Issue D9
  • DOI: 10.1029/94JD01026

Comparison of model results transporting the odd nitrogen family with results transporting separate odd nitrogen species
journal, January 1989

  • Douglass, Anne R.; Jackman, Charles H.; Stolarski, Richard S.
  • Journal of Geophysical Research, Vol. 94, Issue D7
  • DOI: 10.1029/JD094iD07p09862

Model study of the cross-tropopause transport of biomass burning pollution
journal, January 2007

  • Duncan, B. N.; Strahan, S. E.; Yoshida, Y.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 14
  • DOI: 10.5194/acp-7-3713-2007

Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4)
journal, January 2010

  • Emmons, L. K.; Walters, S.; Hess, P. G.
  • Geoscientific Model Development, Vol. 3, Issue 1
  • DOI: 10.5194/gmd-3-43-2010

International Geomagnetic Reference Field: the eleventh generation: IGRF-11
journal, October 2010


Simulation of stratospheric tracers using an improved empirically based two-dimensional model transport formulation
journal, October 1999

  • Fleming, Eric L.; Jackman, Charles H.; Stolarski, Richard S.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D19
  • DOI: 10.1029/1999JD900332

The impact of interannual variability on multidecadal total ozone simulations: INTERANNUAL VARIABILITY ON OZONE SIMULATIONS
journal, May 2007

  • Fleming, Eric L.; Jackman, Charles H.; Weisenstein, Debra K.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD007953

A model study of the impact of source gas changes on the stratosphere for 1850–2100
journal, January 2011

  • Fleming, E. L.; Jackman, C. H.; Stolarski, R. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8515-2011

The impact of current CH 4 and N 2 O atmospheric loss process uncertainties on calculated ozone abundances and trends: CH 4 AND N 2 O LOSS UNCERTAINTIES
journal, May 2015

  • Fleming, Eric L.; George, Christian; Heard, Dwayne E.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 10
  • DOI: 10.1002/2014JD022067

A numerical response of the middle atmosphere to the 11-year solar cycle
journal, April 1984


Effects of Energetic Particles on Minor Constituents of the Middle Atmosphere
journal, January 1991


Energetic particle influences on NOY and ozone in the middle atmosphere
book, January 1993

  • Jackman, Charles H.
  • Interactions Between Global Climate Subsystems: The Legacy of Hann
  • DOI: 10.1029/GM075p0131

Production of odd nitrogen in the stratosphere and mesosphere: An intercomparison of source strengths
journal, December 1980

  • Jackman, C. H.; Frederick, J. E.; Stolarski, R. S.
  • Journal of Geophysical Research: Oceans, Vol. 85, Issue C12
  • DOI: 10.1029/JC085iC12p07495

An intercomparison of nitrogen-containing species in Nimbus 7 LIMS and SAMS data
journal, January 1987

  • Jackman, Charles H.; Guthrie, Paul D.; Kaye, Jack A.
  • Journal of Geophysical Research, Vol. 92, Issue D1
  • DOI: 10.1029/JD092iD01p00995

Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model
journal, January 1990

  • Jackman, Charles H.; Douglass, Anne R.; Rood, Richard B.
  • Journal of Geophysical Research, Vol. 95, Issue D6
  • DOI: 10.1029/JD095iD06p07417

Past, present, and future modeled ozone trends with comparisons to observed trends
journal, December 1996

  • Jackman, Charles H.; Fleming, Eric L.; Chandra, Sushil
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D22
  • DOI: 10.1029/96JD03088

Neutral atmospheric influences of the solar proton events in October-November 2003: EFFECTS OF OCTOBER-NOVEMBER 2003 SPEs
journal, July 2005

  • Jackman, Charles H.; DeLand, Matthew T.; Labow, Gordon J.
  • Journal of Geophysical Research: Space Physics, Vol. 110, Issue A9
  • DOI: 10.1029/2004JA010888

The NCEP/NCAR 40-Year Reanalysis Project
journal, March 1996


The NCEP–NCAR 50–Year Reanalysis: Monthly Means CD–ROM and Documentation
journal, February 2001


Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model
journal, January 2007

  • Kinnison, D. E.; Brasseur, G. P.; Walters, S.
  • Journal of Geophysical Research, Vol. 112, Issue D20
  • DOI: 10.1029/2006JD007879

Long-term tropospheric variations of ozone content caused by galactic cosmic ray influence
journal, January 2001


Influence of cosmic rays on chemical composition of the atmosphere: data analysis and photochemical modelling
journal, January 2002

  • Krivolutsky, A.; Bazilevskaya, G.; Vyushkova, T.
  • Physics and Chemistry of the Earth, Parts A/B/C, Vol. 27, Issue 6-8
  • DOI: 10.1016/S1474-7065(02)00028-1

Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses: CHEMICAL AND DYNAMICAL DISCONTINUITY
journal, December 2011

  • Kunz, A.; Pan, L. L.; Konopka, P.
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D24
  • DOI: 10.1029/2011JD016686

CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model
journal, January 2012

  • Lamarque, J. -F.; Emmons, L. K.; Hess, P. G.
  • Geoscientific Model Development, Vol. 5, Issue 2
  • DOI: 10.5194/gmd-5-369-2012

A model study of the stratospheric budget of odd nitrogen, including effects of solar cycle variations
journal, September 1989


Ozone climatological profiles for satellite retrieval algorithms
journal, January 2007

  • McPeters, Richard D.; Labow, Gordon J.; Logan, Jennifer A.
  • Journal of Geophysical Research, Vol. 112, Issue D5
  • DOI: 10.1029/2005JD006823

NAIRAS aircraft radiation model development, dose climatology, and initial validation
journal, October 2013

  • Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven
  • Space Weather, Vol. 11, Issue 10
  • DOI: 10.1002/swe.20100

Energetic Particle Influence on the Earth’s Atmosphere
journal, September 2015

  • Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank
  • Space Science Reviews, Vol. 194, Issue 1-4
  • DOI: 10.1007/s11214-015-0185-4

A possible role of galactic cosmic rays in chlorine activation during polar night
journal, January 1993

  • Müller, Rolf; Crutzen, Paul J.
  • Journal of Geophysical Research, Vol. 98, Issue D11
  • DOI: 10.1029/93JD02455

On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere
journal, April 1975


Deterministic pion and muon transport in Earth’s atmosphere
journal, July 2012


An extension of HZETRN for cosmic ray initiated electromagnetic cascades
journal, June 2013


Badhwar–O'Neill 2010 Galactic Cosmic Ray Flux Model—Revised
journal, December 2010


NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues: TECHNIQUES
journal, December 2002

  • Picone, J. M.; Hedin, A. E.; Drob, D. P.
  • Journal of Geophysical Research: Space Physics, Vol. 107, Issue A12
  • DOI: 10.1029/2002JA009430

Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air
journal, July 1976

  • Porter, H. S.; Jackman, C. H.; Green, A. E. S.
  • The Journal of Chemical Physics, Vol. 65, Issue 1
  • DOI: 10.1063/1.432812

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications
journal, July 2011


Origin of the sunspot modulation of ozone: Its implications for stratospheric NO injection
journal, February 1975


Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation
journal, January 2011

  • Semeniuk, K.; Fomichev, V. I.; McConnell, J. C.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 10
  • DOI: 10.5194/acp-11-5045-2011

Pion and electromagnetic contribution to dose: Comparisons of HZETRN to Monte Carlo results and ISS data
journal, July 2013

  • Slaba, Tony C.; Blattnig, Steve R.; Reddell, Brandon
  • Advances in Space Research, Vol. 52, Issue 1
  • DOI: 10.1016/j.asr.2013.02.015

Geomagnetic cutoffs: A review for space dosimetry applications
journal, October 1994


A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft
journal, January 2005


The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen
journal, August 1981


Simulation of polar ozone depletion: An update
journal, August 2015

  • Solomon, Susan; Kinnison, Doug; Bandoro, Justin
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 15
  • DOI: 10.1002/2015JD023365

Three-dimensional climatological distribution of tropospheric OH: Update and evaluation
journal, April 2000

  • Spivakovsky, C. M.; Logan, J. A.; Montzka, S. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D7
  • DOI: 10.1029/1999JD901006

Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model
journal, January 2007

  • Strahan, S. E.; Duncan, B. N.; Hoor, P.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 9
  • DOI: 10.5194/acp-7-2435-2007

Trends and variability in surface ozone over the United States
journal, September 2015

  • Strode, Sarah A.; Rodriguez, Jose M.; Logan, Jennifer A.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 17
  • DOI: 10.1002/2014JD022784

The importance of energetic particle precipitation on the chemical composition of the middle atmosphere
journal, March 1980

  • Thorne, Richard Mansergh
  • Pure and Applied Geophysics PAGEOPH, Vol. 118, Issue 1
  • DOI: 10.1007/BF01586448

Computed contributions to odd nitrogen concentrations in the Earth’s polar middle atmosphere by energetic charged particles
journal, May 2000

  • Vitt, Francis M.; Armstrong, Thomas P.; Cravens, Thomas E.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 62, Issue 8
  • DOI: 10.1016/S1364-6826(00)00048-1

Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model: POLAR STRATOSPHERIC CLOUDS IN SD-WACCM 4
journal, May 2013

  • Wegner, T.; Kinnison, D. E.; Garcia, R. R.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50415

Long-term modulation of galactic cosmic radiation and its model for space exploration
journal, October 1994


Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere
journal, January 2010

  • Usoskin, Ilya G.; Kovaltsov, Gennady A.; Mironova, Irina A.
  • Journal of Geophysical Research, Vol. 115, Issue D10
  • DOI: 10.1029/2009jd013142

A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two-dimensional model
journal, March 1996

  • Vitt, Francis M.; Jackman, Charles H.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D3
  • DOI: 10.1029/95jd03386

Cosmic radiation as a source of odd nitrogen in the stratosphere
journal, November 1972


Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air
journal, July 1976

  • Porter, H. S.; Jackman, C. H.; Green, A. E. S.
  • The Journal of Chemical Physics, Vol. 65, Issue 1
  • DOI: 10.1063/1.432812

On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere
text, January 1974

  • Nicolet, M.
  • Royal Belgian Institute for Space Aeronomy
  • DOI: 10.18758/a_134

Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model
journal, January 2007

  • Strahan, S. E.; Duncan, B. N.; Hoor, P.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 9
  • DOI: 10.5194/acp-7-2435-2007

Model study of the cross-tropopause transport of biomass burning pollution
journal, January 2007

  • Duncan, B. N.; Strahan, S. E.; Yoshida, Y.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 14
  • DOI: 10.5194/acp-7-3713-2007

Works referencing / citing this record:

Cosmic Noise Absorption During Solar Proton Events in WACCM‐D and Riometer Observations
journal, February 2019

  • Heino, Erkka; Verronen, Pekka T.; Kero, Antti
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 2
  • DOI: 10.1029/2018ja026192

Quasi-Decadal Variations of Lower Stratosphere Meteorological Parameters and Total Ozone Global Fields Based on Satellite Data
journal, December 2018

  • Visheratin, K. N.; Kalashnik, M. V.
  • Izvestiya, Atmospheric and Oceanic Physics, Vol. 54, Issue 9
  • DOI: 10.1134/s0001433818090414

Implications of potential future grand solar minimum for ozone layer and climate
journal, January 2018

  • Arsenovic, Pavle; Rozanov, Eugene; Anet, Julien
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 5
  • DOI: 10.5194/acp-18-3469-2018

Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations
journal, January 2018

  • Kyrölä, Erkki; Andersson, Monika E.; Verronen, Pekka T.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 7
  • DOI: 10.5194/acp-18-5001-2018

Evaluation of CESM1 (WACCM) free-running and specified dynamics atmospheric composition simulations using global multispecies satellite data records
journal, January 2019

  • Froidevaux, Lucien; Kinnison, Douglas E.; Wang, Ray
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 7
  • DOI: 10.5194/acp-19-4783-2019

Solar forcing for CMIP6 (v3.2)
journal, January 2017

  • Matthes, Katja; Funke, Bernd; Andersson, Monika E.
  • Geoscientific Model Development, Vol. 10, Issue 6
  • DOI: 10.5194/gmd-10-2247-2017

Solar forcing for CMIP6 (v3.2)
text, January 2017


Implications of potential future grand solar minimum for ozone layer and climate
text, January 2018


Implications of potential future grand solar minimum for ozone layer and climate
text, January 2018


Cosmic Noise Absorption During Solar Proton Events in WACCM-D and Riometer Observations
text, January 2019


Middle atmospheric ozone, nitrogen dioxide, and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations
journal, December 2017

  • Kyrola, Erkki; Andersson, Monika E.; Verronen, Pekka T.
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-1161

From Cosmic Explosions to Terrestrial Fires? A Discussion
journal, July 2020

  • Deschamps, Frédéric; Mottez, Fabrice
  • The Journal of Geology, Vol. 128, Issue 4
  • DOI: 10.1086/709750

On the discrepancy of HCl processing in the dark polar vortices
posted_content, February 2018

  • Grooß, Jens-Uwe; Müller, Rolf; Spang, Reinhold
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2018-202