DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

Abstract

We present a comparison of 15M , 20M and 25M stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations are performed for all models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M and 20M in particular—at the pre-SN stagemore » from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M models, where it is comparable to the impact of nuclear reaction rate uncertainties. In general the differences in the results from the three codes are due to their contrasting physics assumptions (e.g. prescriptions for mass loss and convection). The broadly similar evolution of the 25M models gives us reassurance that different stellar evolution codes do produce similar results. For the 15M and 20M models, however, the different input physics and the interplay between the various convective zones lead to important differences in both the pre-supernova structure and nucleosynthesis predicted by the three codes. For the KEPLER models the core masses are different and therefore an exact match could not be expected.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [6];  [7]
  1. Univ. of Victoria, BC (Canada); Keele Univ. (United Kingdom)
  2. Keele Univ. (United Kingdom); Univ. of Tokyo (Japan)
  3. Univ. of Basel (Switzerland)
  4. Monash Univ., Melbourne, VIC (Australia); Univ. of Minnesota, Minneapolis, MN (United States). School of Physics and Astronomy; Univ. of Notre Dame, IN (United States)
  5. Keele Univ. (United Kingdom)
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  7. Univ. of Victoria, BC (Canada); Univ. of Notre Dame, IN (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1240392
Report Number(s):
LA-UR-14-28600
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 447; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Astronomy and Astrophysics

Citation Formats

Jones, S., Hirschi, R., Pignatari, M., Heger, A., Georgy, C., Nishimura, N., Fryer, C., and Herwig, F. Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning. United States: N. p., 2015. Web. doi:10.1093/mnras/stu2657.
Jones, S., Hirschi, R., Pignatari, M., Heger, A., Georgy, C., Nishimura, N., Fryer, C., & Herwig, F. Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning. United States. https://doi.org/10.1093/mnras/stu2657
Jones, S., Hirschi, R., Pignatari, M., Heger, A., Georgy, C., Nishimura, N., Fryer, C., and Herwig, F. Thu . "Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning". United States. https://doi.org/10.1093/mnras/stu2657. https://www.osti.gov/servlets/purl/1240392.
@article{osti_1240392,
title = {Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning},
author = {Jones, S. and Hirschi, R. and Pignatari, M. and Heger, A. and Georgy, C. and Nishimura, N. and Fryer, C. and Herwig, F.},
abstractNote = {We present a comparison of 15M⊙ , 20M⊙ and 25M⊙ stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations are performed for all models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M⊙ and 20M⊙ in particular—at the pre-SN stage from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M⊙ models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M⊙ model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M⊙ models, where it is comparable to the impact of nuclear reaction rate uncertainties. In general the differences in the results from the three codes are due to their contrasting physics assumptions (e.g. prescriptions for mass loss and convection). The broadly similar evolution of the 25M⊙ models gives us reassurance that different stellar evolution codes do produce similar results. For the 15M⊙ and 20M⊙ models, however, the different input physics and the interplay between the various convective zones lead to important differences in both the pre-supernova structure and nucleosynthesis predicted by the three codes. For the KEPLER models the core masses are different and therefore an exact match could not be expected.},
doi = {10.1093/mnras/stu2657},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 447,
place = {United States},
year = {Thu Jan 15 00:00:00 EST 2015},
month = {Thu Jan 15 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Hydrogen convective core mass as a function of stellar age for the 15 M (top panel), 20 M (middle panel) and 25 M (lower panel) models. @SAM - an you remove the dips in core size for KEPLER in He burn?

Save / Share:

Works referenced in this record:

Evolution of Massive Stars Up to the End of Central Oxygen Burning
journal, August 2004

  • El Eid, M. F.; Meyer, B. S.; The, L. ‐S.
  • The Astrophysical Journal, Vol. 611, Issue 1
  • DOI: 10.1086/422162

Nucleosynthesis and remnants in massive stars of solar metallicity
journal, April 2007


Astrophysical Reaction Rates From Statistical Model Calculations
journal, May 2000

  • Rauscher, Thomas; Thielemann, Friedrich-Karl
  • Atomic Data and Nuclear Data Tables, Vol. 75, Issue 1-2
  • DOI: 10.1006/adnd.2000.0834

Evolution and fate of very massive stars
journal, June 2013

  • Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 2
  • DOI: 10.1093/mnras/stt794

Asymptotic normalization coefficients for 14 N + p 15 O and the astrophysical S factor for 14 N ( p , γ ) 15 O
journal, June 2003


Astrophysical Reaction Rate of 12 C(α, γ) 16 O
journal, March 2002

  • Kunz, R.; Fey, M.; Jaeger, M.
  • The Astrophysical Journal, Vol. 567, Issue 1
  • DOI: 10.1086/338384

s ‐Process Nucleosynthesis in Advanced Burning Phases of Massive Stars
journal, February 2007

  • The, Lih‐Sin; El Eid, Mounib F.; Meyer, Bradley S.
  • The Astrophysical Journal, Vol. 655, Issue 2
  • DOI: 10.1086/509753

An Equation of State for Low-Mass Stars and Giant Planets
journal, July 1995

  • Saumon, D.; Chabrier, G.; van Horn, H. M.
  • The Astrophysical Journal Supplement Series, Vol. 99
  • DOI: 10.1086/192204

Low-temperature Rosseland opacities
journal, December 1994

  • Alexander, D. R.; Ferguson, J. W.
  • The Astrophysical Journal, Vol. 437
  • DOI: 10.1086/175039

β -decay rate of Se 79 m and its consequences for the s -process temperature
journal, July 1988


Grids of stellar models with rotation: I. Models from 0.8 to 120 
journal, January 2012


The Impact of Helium-Burning Reaction Rates on Massive star Evolution and Nucleosynthesis
journal, April 2013

  • West, Christopher; Heger, Alexander; Austin, Sam M.
  • The Astrophysical Journal, Vol. 769, Issue 1
  • DOI: 10.1088/0004-637X/769/1/2

Non-standard s-process in low metallicity massive rotating stars
journal, January 2012


On the Sensitivity of Massive Star Nucleosynthesis and Evolution to Solar Abundances and to Uncertainties in Helium‐Burning Reaction Rates
journal, December 2007

  • Tur, Clarisse; Heger, Alexander; Austin, Sam M.
  • The Astrophysical Journal, Vol. 671, Issue 1
  • DOI: 10.1086/523095

The Chemical Composition of the Sun
journal, September 2009


Nucleosynthetic Constraints on the mass of the Heaviest Supernovae
journal, May 2013


Thermal Conduction by Electrons in Stellar Matter
journal, June 1969

  • Hubbard, W. B.; Lampe, Martin
  • The Astrophysical Journal Supplement Series, Vol. 18
  • DOI: 10.1086/190192

Compton scattering opacities in a partially degenerate electron plasma at high temperatures
journal, November 1976

  • Buchler, J. R.; Yueh, W. R.
  • The Astrophysical Journal, Vol. 210
  • DOI: 10.1086/154847

Models for Type I X‐Ray Bursts with Improved Nuclear Physics
journal, March 2004

  • Woosley, S. E.; Heger, A.; Cumming, A.
  • The Astrophysical Journal Supplement Series, Vol. 151, Issue 1
  • DOI: 10.1086/381533

The jina Reaclib Database: its Recent Updates and Impact on Type-I X-Ray Bursts
journal, June 2010

  • Cyburt, Richard H.; Amthor, A. Matthew; Ferguson, Ryan
  • The Astrophysical Journal Supplement Series, Vol. 189, Issue 1
  • DOI: 10.1088/0067-0049/189/1/240

The Opacity at High Temperatures due to Compton Scattering.
journal, January 1959

  • Sampson, Douglas H.
  • The Astrophysical Journal, Vol. 129
  • DOI: 10.1086/146671

Progenitor-Explosion Connection and Remnant Birth Masses for Neutrino-Driven Supernovae of Iron-Core Progenitors
journal, September 2012

  • Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas
  • The Astrophysical Journal, Vol. 757, Issue 1
  • DOI: 10.1088/0004-637X/757/1/69

The evolution of isotope ratios in the Milky Way Galaxy: The evolution of isotope ratios
journal, May 2011

  • Kobayashi, Chiaki; Karakas, Amanda I.; Umeda, Hideyuki
  • Monthly Notices of the Royal Astronomical Society, Vol. 414, Issue 4
  • DOI: 10.1111/j.1365-2966.2011.18621.x

A comparison of evolutionary tracks for single Galactic massive stars
journal, November 2013


Revival of the Stalled Core-Collapse Supernova Shock Triggered by Precollapse Asphericity in the Progenitor star
journal, October 2013


Grids of stellar models with rotation: III. Models from 0.8 to 120
journal, October 2013


Black hole Formation in Failing Core-Collapse Supernovae
journal, March 2011


The Chemical Evolution of the Galaxy: The Two‐Infall Model
journal, March 1997

  • Chiappini, C.; Matteucci, F.; Gratton, R.
  • The Astrophysical Journal, Vol. 477, Issue 2
  • DOI: 10.1086/303726

Modules for Experiments in Stellar Astrophysics (Mesa): Planets, Oscillations, Rotation, and Massive Stars
journal, August 2013

  • Paxton, Bill; Cantiello, Matteo; Arras, Phil
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 1
  • DOI: 10.1088/0067-0049/208/1/4

Updated Opal Opacities
journal, June 1996

  • Iglesias, Carlos A.; Rogers, Forrest J.
  • The Astrophysical Journal, Vol. 464
  • DOI: 10.1086/177381

Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances
journal, January 2005

  • Fynbo, Hans O. U.; Diget, Christian Aa.; Bergmann, Uffe C.
  • Nature, Vol. 433, Issue 7022
  • DOI: 10.1038/nature03219

The bottleneck of CNO burning and the age of Globular Clusters
journal, May 2004


The Supernova Channel of Super‐AGB Stars
journal, March 2008

  • Poelarends, A. J. T.; Herwig, F.; Langer, N.
  • The Astrophysical Journal, Vol. 675, Issue 1
  • DOI: 10.1086/520872

A New Method of Automatic Computation of Stellar Evolution.
journal, January 1964

  • Henyey, L. G.; Forbes, J. E.; Gould, N. L.
  • The Astrophysical Journal, Vol. 139
  • DOI: 10.1086/147754

New Stellar Reaction Rate for [TSUP]12[/TSUP]C(α, γ)[TSUP]16[/TSUP]O
journal, September 1996

  • Buchmann, L.
  • The Astrophysical Journal, Vol. 468, Issue 2
  • DOI: 10.1086/310240

The evolution and explosion of massive stars
journal, November 2002


Modules for Experiments in Stellar Astrophysics (Mesa)
journal, December 2010

  • Paxton, Bill; Bildsten, Lars; Dotter, Aaron
  • The Astrophysical Journal Supplement Series, Vol. 192, Issue 1
  • DOI: 10.1088/0067-0049/192/1/3

ADVANCED BURNING STAGES AND FATE OF 8-10 M STARS
journal, July 2013


Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields
journal, June 2005

  • Heger, A.; Woosley, S. E.; Spruit, H. C.
  • The Astrophysical Journal, Vol. 626, Issue 1
  • DOI: 10.1086/429868

A new Multi-Dimensional General Relativistic Neutrino Hydrodynamics code for Core-Collapse Supernovae. ii. Relativistic Explosion Models of Core-Collapse Supernovae
journal, August 2012

  • Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas
  • The Astrophysical Journal, Vol. 756, Issue 1
  • DOI: 10.1088/0004-637X/756/1/84

Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process
journal, May 2014


DEPENDENCE OF s -PROCESS NUCLEOSYNTHESIS IN MASSIVE STARS ON TRIPLE-ALPHA AND 12 C(α, γ) 16 O REACTION RATE UNCERTAINTIES
journal, August 2009


Presupernova Evolution and Explosive Nucleosynthesis of zero Metal Massive Stars
journal, April 2012


Progenitors of Core-Collapse Supernovae
journal, September 2009


The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status
journal, September 2003


The Geneva stellar evolution code
journal, June 2007


SN 2009md: another faint supernova from a low-mass progenitor: Supernova 2009md
journal, September 2011


Mass-loss predictions for O and B stars as a function of metallicity
journal, April 2001

  • Vink, Jorick S.; de Koter, A.; Lamers, H. J. G. L. M.
  • Astronomy & Astrophysics, Vol. 369, Issue 2
  • DOI: 10.1051/0004-6361:20010127

How Massive Single Stars End Their Life
journal, July 2003

  • Heger, A.; Fryer, C. L.; Woosley, S. E.
  • The Astrophysical Journal, Vol. 591, Issue 1
  • DOI: 10.1086/375341

Updated and Expanded OPAL Equation‐of‐State Tables: Implications for Helioseismology
journal, September 2002

  • Rogers, F. J.; Nayfonov, A.
  • The Astrophysical Journal, Vol. 576, Issue 2
  • DOI: 10.1086/341894

Erratum: Equation of State of a Fermi Gas: Approximations for Various Degrees of Relativism and Degeneracy
journal, October 1998

  • Blinnikov, S. I.; Dunina‐Barkovskaya, N. V.; Nadyozhin, D. K.
  • The Astrophysical Journal Supplement Series, Vol. 118, Issue 2
  • DOI: 10.1086/313140

Thermodynamic Functions of Dense Plasmas: Analytic Approximations for Astrophysical Applications
journal, January 2010


The Weak s-Component and Nucleosynthesis in Massive Stars
journal, December 1993

  • Raiteri, C. M.; Gallino, R.; Busso, M.
  • The Astrophysical Journal, Vol. 419
  • DOI: 10.1086/173476

The alpha-process and the r-process
journal, August 1992

  • Woosley, S. E.; Hoffman, Robert D.
  • The Astrophysical Journal, Vol. 395
  • DOI: 10.1086/171644

Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics
journal, September 2002

  • Rauscher, T.; Heger, A.; Hoffman, R. D.
  • The Astrophysical Journal, Vol. 576, Issue 1
  • DOI: 10.1086/341728

THE WEAK s -PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS
journal, February 2010


The evolution of runaway stellar collision products
journal, February 2009


The Nucleosynthetic Signature of Population III
journal, March 2002

  • Heger, A.; Woosley, S. E.
  • The Astrophysical Journal, Vol. 567, Issue 1
  • DOI: 10.1086/338487

Charged-Particle and Neutron-Capture Processes in the High-Entropy wind of Core-Collapse Supernovae
journal, March 2010


The Opacity due to Compton Scattering at Relativistic Temeperatures in a Semidegenerate Electron Gas.
journal, November 1965

  • Chin, Chao-Wen
  • The Astrophysical Journal, Vol. 142
  • DOI: 10.1086/148431

A compilation of charged-particle induced thermonuclear reaction rates
journal, August 1999


A Study of Pulsation in RR Lyrae Models
journal, April 1966

  • Christy, Robert F.
  • The Astrophysical Journal, Vol. 144
  • DOI: 10.1086/148593

Convective overshooting and production of s-nuclei in massive stars during their core He-burning phase
journal, November 2010


Low‐Temperature Opacities
journal, April 2005

  • Ferguson, Jason W.; Alexander, David R.; Allard, France
  • The Astrophysical Journal, Vol. 623, Issue 1
  • DOI: 10.1086/428642

The Accuracy, Consistency, and Speed of an Electron‐Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy
journal, February 2000

  • Timmes, F. X.; Swesty, F. Douglas
  • The Astrophysical Journal Supplement Series, Vol. 126, Issue 2
  • DOI: 10.1086/313304

The 12 C(α, γ) 16 O Reaction Rate and the Evolution of Stars in the Mass Range 0.8 ≤  M / M  ≤ 25
journal, September 2001

  • Imbriani, Gianluca; Limongi, Marco; Gialanella, Lucio
  • The Astrophysical Journal, Vol. 558, Issue 2
  • DOI: 10.1086/322288

GCD+: a new chemodynamical approach to modelling supernovae and chemical enrichment in elliptical galaxies
journal, April 2003


Dynamo action by differential rotation in a stably stratified stellar interior
journal, January 2002


Observational Tests and Predictive Stellar Evolution. II. Nonstandard Models
journal, January 2005

  • Young, Patrick A.; Arnett, David
  • The Astrophysical Journal, Vol. 618, Issue 2
  • DOI: 10.1086/426131

Thermonuclear reaction rates V
journal, November 1988


Helium-burning evolutionary phases in population II stars. I Breathing pulses in horizontal branch stars
journal, September 1985

  • Castellani, V.; Chieffi, A.; Tornambe, A.
  • The Astrophysical Journal, Vol. 296
  • DOI: 10.1086/163437

Nucleosynthesis in neutrino-driven supernovae
journal, October 2006


THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51
journal, September 2011


Production of Light-Element Primary Process Nuclei in Neutrino-Driven Winds
journal, March 2011


Stellar population synthesis at the resolution of 2003
journal, October 2003


Implications of low-energy fusion hindrance on stellar burning and nucleosynthesis
journal, September 2007


Presupernova evolution of massive stars
journal, October 1978

  • Weaver, T. A.; Zimmerman, G. B.; Woosley, S. E.
  • The Astrophysical Journal, Vol. 225
  • DOI: 10.1086/156569

Equation of State of a Fermi Gas: Approximations for Various Degrees of Relativism and Degeneracy
journal, September 1996

  • Blinnikov, S. I.; Dunina-Barkovskaya, N. V.; Nadyozhin, D. K.
  • The Astrophysical Journal Supplement Series, Vol. 106
  • DOI: 10.1086/192334

Solar System Abundances and Condensation Temperatures of the Elements
journal, July 2003

  • Lodders, Katharina
  • The Astrophysical Journal, Vol. 591, Issue 2
  • DOI: 10.1086/375492

N 22 e ( α , n ) M 25 g : The Key Neutron Source in Massive Stars
journal, October 2001


Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure
journal, January 2000

  • Heger, A.; Langer, N.; Woosley, S. E.
  • The Astrophysical Journal, Vol. 528, Issue 1
  • DOI: 10.1086/308158

THE 12 C + 12 C REACTION AND THE IMPACT ON NUCLEOSYNTHESIS IN MASSIVE STARS
journal, December 2012


Electrical Conductivity and Conductive Opacity of a Relativistic Electron Gas
journal, January 1970

  • Canuto, Vittorio
  • The Astrophysical Journal, Vol. 159
  • DOI: 10.1086/150338

Spectral population synthesis including massive binaries
journal, December 2009


Rotating massive main-sequence stars: I. Grids of evolutionary models and isochrones⋆
journal, May 2011


The progenitors of core-collapse supernovae
journal, September 2004


The effect of 12C +12C rate uncertainties on the evolution and nucleosynthesis of massive stars: The effect of 12C +12C rate uncertainties
journal, February 2012


S-process nucleosynthesis in massive stars and the weak component. I - Evolution and neutron captures in a 25 solar mass star
journal, January 1991

  • Raiteri, C. M.; Busso, M.; Picchio, G.
  • The Astrophysical Journal, Vol. 367
  • DOI: 10.1086/169622

A Study of Pulsation in RR Lyrae Models.
journal, January 1964

  • Christy, Robert F.
  • The Astronomical Journal, Vol. 69
  • DOI: 10.1086/109442

Progenitors of core-collapse supernovae
text, January 2009


Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones
text, January 2011


Grids of stellar models with rotation - I. Models from 0.8 to 120 Msun at solar metallicity (Z = 0.014)
text, January 2011


The 12C + 12C reaction and the impact on nucleosynthesis in massive stars
text, January 2012


Nucleosynthetic Constraints on the Mass of the Heaviest Supernovae
text, January 2013


How Massive Single Stars End their Life
text, January 2002


Stellar population synthesis at the resolution of 2003
text, January 2003


Low Temperature Opacities
text, January 2005


Works referencing / citing this record:

Beyond Mixing-Length Theory: a step Toward 321d
journal, August 2015


Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background
journal, June 2016

  • Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 4
  • DOI: 10.1093/mnras/stw1477

Convective boundary mixing in a post-He core burning massive star model
journal, December 2018

  • Davis, A.; Jones, S.; Herwig, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 3
  • DOI: 10.1093/mnras/sty3415

60Fe in core-collapse supernovae and prospects for X-ray and gamma-ray detection in supernova remnants
journal, February 2019

  • Jones, Samuel W.; Möller, Heiko; Fryer, Chris L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 3
  • DOI: 10.1093/mnras/stz536

The C 12 ( α , γ ) O 16 reaction and its implications for stellar helium burning
journal, September 2017


NUGRID STELLAR DATA SET. I. STELLAR YIELDS FROM H TO BI FOR STARS WITH METALLICITIES Z = 0.02 and Z = 0.01
journal, August 2016

  • Pignatari, M.; Herwig, F.; Hirschi, R.
  • The Astrophysical Journal Supplement Series, Vol. 225, Issue 2
  • DOI: 10.3847/0067-0049/225/2/24

Evolutionary Models of Red Supergiants: Evidence for A Metallicity-dependent Mixing Length and Implications for Type IIP Supernova Progenitors
journal, January 2018

  • Chun, Sang-Hyun; Yoon, Sung-Chul; Jung, Moo-Keon
  • The Astrophysical Journal, Vol. 853, Issue 1
  • DOI: 10.3847/1538-4357/aa9a37

Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields
journal, March 2018

  • Fryer, Chris L.; Andrews, Sydney; Even, Wesley
  • The Astrophysical Journal, Vol. 856, Issue 1
  • DOI: 10.3847/1538-4357/aaaf6f

Validating Semi-analytic Models of High-redshift Galaxy Formation Using Radiation Hydrodynamical Simulations
journal, May 2018

  • Côté, Benoit; Silvia, Devin W.; O’Shea, Brian W.
  • The Astrophysical Journal, Vol. 859, Issue 1
  • DOI: 10.3847/1538-4357/aabe8f

SkyNet: A Modular Nuclear Reaction Network Library
journal, December 2017

  • Lippuner, Jonas; Roberts, Luke F.
  • The Astrophysical Journal Supplement Series, Vol. 233, Issue 2
  • DOI: 10.3847/1538-4365/aa94cb

Astrophysical Implications of the Binary Black hole Merger Gw150914
journal, February 2016


NuGrid stellar data set – II. Stellar yields from H to Bi for stellar models with MZAMS = 1–25 M⊙ and Z = 0.0001–0.02
journal, June 2018

  • Ritter, C.; Herwig, F.; Jones, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 1
  • DOI: 10.1093/mnras/sty1729

Beyond Mixing-length Theory: a step toward 321D
text, January 2015


Parameterizing the Supernova Engine and its Effects on Remnants and Basic Yields
text, January 2017


Linking 1D Evolutionary to 3D Hydrodynamical Simulations of Massive Stars
text, January 2016


New insights from cosmic gamma rays
text, January 2016