DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets

Abstract

Substitution of a native ion in the crystals with a foreign ion that differs in valence (aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such as those for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.

Authors:
 [1];  [1];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1213330
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 16; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Chen, Yan, Rangasamy, Ezhiylmurugan, Liang, Chengdu, and An, Ke. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets. United States: N. p., 2015. Web. doi:10.1021/acs.chemmater.5b02521.
Chen, Yan, Rangasamy, Ezhiylmurugan, Liang, Chengdu, & An, Ke. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets. United States. https://doi.org/10.1021/acs.chemmater.5b02521
Chen, Yan, Rangasamy, Ezhiylmurugan, Liang, Chengdu, and An, Ke. Thu . "Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets". United States. https://doi.org/10.1021/acs.chemmater.5b02521. https://www.osti.gov/servlets/purl/1213330.
@article{osti_1213330,
title = {Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets},
author = {Chen, Yan and Rangasamy, Ezhiylmurugan and Liang, Chengdu and An, Ke},
abstractNote = {Substitution of a native ion in the crystals with a foreign ion that differs in valence (aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such as those for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.},
doi = {10.1021/acs.chemmater.5b02521},
journal = {Chemistry of Materials},
number = 16,
volume = 27,
place = {United States},
year = {Thu Aug 06 00:00:00 EDT 2015},
month = {Thu Aug 06 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 70 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Intermediate temperature solid oxide fuel cells
journal, January 2008

  • Brett, Daniel J. L.; Atkinson, Alan; Brandon, Nigel P.
  • Chemical Society Reviews, Vol. 37, Issue 8
  • DOI: 10.1039/b612060c

Novel Chemically Stable Ba 3 Ca 1.18 Nb 1.82– x Y x O 9−δ Proton Conductor: Improved Proton Conductivity through Tailored Cation Ordering
journal, March 2014

  • Wang, Siwei; Chen, Yan; Fang, Shumin
  • Chemistry of Materials, Vol. 26, Issue 6
  • DOI: 10.1021/cm403684b

Inorganic solid Li ion conductors: An overview
journal, June 2009


Ion transport in sodium ion conducting solid electrolytes
journal, October 2012


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ionconductors
journal, April 2013


Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
journal, January 2010

  • Kotobuki, Masashi; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3474232

Lithium Distribution in Aluminum-Free Cubic Li 7 La 3 Zr 2 O 12
journal, August 2011

  • Xie, Hui; Alonso, Jose A.; Li, Yutao
  • Chemistry of Materials, Vol. 23, Issue 16
  • DOI: 10.1021/cm201671k

Crystal Chemistry and Stability of “Li7La3Zr2O12 ” Garnet: A Fast Lithium-Ion Conductor
journal, February 2011

  • Geiger, Charles A.; Alekseev, Evgeny; Lazic, Biljana
  • Inorganic Chemistry, Vol. 50, Issue 3, p. 1089-1097
  • DOI: 10.1021/ic101914e

High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet
journal, December 2011


Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12
journal, June 2012


Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets
journal, October 2013


The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12
journal, January 2012

  • Rangasamy, Ezhiyl; Wolfenstine, Jeff; Sakamoto, Jeffrey
  • Solid State Ionics, Vol. 206, p. 28-32
  • DOI: 10.1016/j.ssi.2011.10.022

Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure
journal, August 2009

  • Awaka, Junji; Kijima, Norihito; Hayakawa, Hiroshi
  • Journal of Solid State Chemistry, Vol. 182, Issue 8, p. 2046-2052
  • DOI: 10.1016/j.jssc.2009.05.020

Mechanisms of Li + transport in garnet-type cubic Li 3 + x La 3 M 2 O 12 ( M = Te, Nb, Zr)
journal, February 2012


First In Situ Lattice Strains Measurements Under Load at VULCAN
journal, October 2010

  • An, Ke; Skorpenske, Harley D.; Stoica, Alexandru D.
  • Metallurgical and Materials Transactions A, Vol. 42, Issue 1
  • DOI: 10.1007/s11661-010-0495-9

DFT Study of the Role of Al 3+ in the Fast Ion-Conductor Li 7–3 x Al 3+ x La 3 Zr 2 O 12 Garnet
journal, April 2014

  • Rettenwander, Daniel; Blaha, Peter; Laskowski, Robert
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm5000999

High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction
journal, May 2014


Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li 7 La 3 Zr 2 O 12
journal, January 2013

  • Jalem, Randy; Yamamoto, Yoshihiro; Shiiba, Hiromasa
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303542x

Effects of Gallium Doping in Garnet-Type Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, April 2015

  • Jalem, Randy; Rushton, M. J. D.; Manalastas, William
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm5045122

Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12
journal, July 2012


Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions
journal, February 2011


Effect of calcining and Al doping on structure and conductivity of Li 7 La 3 Zr 2 O 12
journal, November 2014


Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites
journal, August 2013


Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor Li 7 La 3 Zr 2 O 12 Doped with Fe
journal, July 2013

  • Rettenwander, Daniel; Geiger, Charles A.; Amthauer, Georg
  • Inorganic Chemistry, Vol. 52, Issue 14
  • DOI: 10.1021/ic400589u

Tetragonal vs. cubic phase stability in Al – free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO)
journal, January 2014

  • Thompson, Travis; Wolfenstine, Jeff; Allen, Jan L.
  • J. Mater. Chem. A, Vol. 2, Issue 33
  • DOI: 10.1039/C4TA02099E

Works referencing / citing this record:

An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Lithium ion micrometer diffusion in a garnet-type cubic Li 7 La 3 Zr 2 O 12 (LLZO) studied using 7 Li NMR spectroscopy
journal, January 2017

  • Hayamizu, Kikuko; Seki, Shiro; Haishi, Tomoyuki
  • The Journal of Chemical Physics, Vol. 146, Issue 2
  • DOI: 10.1063/1.4973827

Electrochemical and mechanical stability of Li x La 0.557 TiO 3‐ δ perovskite electrolyte at various voltages
journal, September 2018

  • Hu, Xitao; Yan, Gang; Cheng, Xu
  • Journal of the American Ceramic Society
  • DOI: 10.1111/jace.16049

Sol Gel vs Solid State Synthesis of the Fast Lithium-Ion Conducting Solid State Electrolyte Li 7 La 3 Zr 2 O 12 Substituted with Iron
journal, January 2019

  • Paulus, Anja; Kammler, Simon; Heuer, Sabrina
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0641903jes

Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study
journal, November 2017


Fast Lithium Ion Conduction in Lithium Phosphidoaluminates
journal, January 2020

  • Restle, Tassilo M. F.; Sedlmeier, Christian; Kirchhain, Holger
  • Angewandte Chemie, Vol. 132, Issue 14
  • DOI: 10.1002/ange.201914613

An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li 7 La 3 Zr 2 O 12
journal, January 2019

  • Meesala, Yedukondalu; Liao, Yu-Kai; Jena, Anirudha
  • Journal of Materials Chemistry A, Vol. 7, Issue 14
  • DOI: 10.1039/c9ta00417c

Microwave assisted reactive sintering for Al doped Li 7 La 3 Zr 2 O 12 lithium ion solid state electrolyte
journal, December 2019


Lithium diffusion in L i 2 X ( X = O , S, and Se): Ab initio simulations and inelastic neutron scattering measurements
journal, June 2019


An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016


Fast Lithium Ion Conduction in Lithium Phosphidoaluminates
journal, January 2020

  • Restle, Tassilo M. F.; Sedlmeier, Christian; Kirchhain, Holger
  • Angewandte Chemie International Edition, Vol. 59, Issue 14
  • DOI: 10.1002/anie.201914613