DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precipitation in pores: A geochemical frontier

Abstract

This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation inmore » porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities (Yoon et al. 2012). An improved ability to synthesize idealized porous media will allow for tailored control of pore distributions, mineralogy and will allow more reproducible results. This in turn may allow us to isolate specific processes without the competing and obfuscatory effects that hinder generalization of observations when working with solely natural samples. It is likely that no one single experiment, or simulation technique will provide the key discoveries: to make substantive progress will require a collaborative effort to understand the interplay between fluid transport and geochemistry. Finally, where rock fracturing and elevated pressures are of concern, an understanding and capability to model geomechanical properties are necessary (Scherer 1999).« less

Authors:
 [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1185987
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Reviews in Mineralogy and Geochemistry
Additional Journal Information:
Journal Volume: 80; Journal Issue: 1; Journal ID: ISSN 1529-6466
Publisher:
Mineralogical Society of America
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; barite; CO2 sequestration

Citation Formats

Stack, Andrew G. Precipitation in pores: A geochemical frontier. United States: N. p., 2015. Web. doi:10.2138/rmg.2015.80.05.
Stack, Andrew G. Precipitation in pores: A geochemical frontier. United States. https://doi.org/10.2138/rmg.2015.80.05
Stack, Andrew G. Wed . "Precipitation in pores: A geochemical frontier". United States. https://doi.org/10.2138/rmg.2015.80.05. https://www.osti.gov/servlets/purl/1185987.
@article{osti_1185987,
title = {Precipitation in pores: A geochemical frontier},
author = {Stack, Andrew G.},
abstractNote = {This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities (Yoon et al. 2012). An improved ability to synthesize idealized porous media will allow for tailored control of pore distributions, mineralogy and will allow more reproducible results. This in turn may allow us to isolate specific processes without the competing and obfuscatory effects that hinder generalization of observations when working with solely natural samples. It is likely that no one single experiment, or simulation technique will provide the key discoveries: to make substantive progress will require a collaborative effort to understand the interplay between fluid transport and geochemistry. Finally, where rock fracturing and elevated pressures are of concern, an understanding and capability to model geomechanical properties are necessary (Scherer 1999).},
doi = {10.2138/rmg.2015.80.05},
journal = {Reviews in Mineralogy and Geochemistry},
number = 1,
volume = 80,
place = {United States},
year = {Wed Jul 29 00:00:00 EDT 2015},
month = {Wed Jul 29 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Model of mineral precipitation due to mixing of CO2-rich fluids with surrounding brine. a) The warmer (lighter gray) colors show where precipated carbonate minerals are predicted to occur, creating a zone of low permeability between the two liquids and self-limiting the precipitation reaction. Units on X and Ymore » are characteristic lengths. b) Profile along the white arrow marked in part a). [Images slightly modified from Cohen and Rothman (2014), Proc. R. Soc. A 471:2010853. Creative Commons license, v.4.0]« less

Save / Share:

Works referencing / citing this record:

Novel In-situ Precipitation Process to Engineer Low Permeability Porous Composite
journal, July 2018


Calcium carbonate precipitation in compacted bentonite using electromigration reaction method and its application to estimate the ion activity coefficient in the porewater
journal, June 2019

  • Rachmadetin, Jaka; Mizuto, Masaya; Tanaka, Shingo
  • Journal of Nuclear Science and Technology, Vol. 56, Issue 11
  • DOI: 10.1080/00223131.2019.1630020

Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation
text, January 2020


Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation
journal, February 2020

  • Poonoosamy, Jenna; Haber-Pohlmeier, Sabina; Deng, Hang
  • Minerals, Vol. 10, Issue 3
  • DOI: 10.3390/min10030226

Novel In-situ Precipitation Process to Engineer Low Permeability Porous Composite
journal, July 2018