DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study

Abstract

Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of β-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-angle X-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.

Authors:
 [1];  [2]
  1. Univ. of Wisconsin-Milwaukee, WI (United States). Dept. of Physics; Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry
  2. Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOD; National Science Foundation (NSF)
OSTI Identifier:
1168489
Grant/Contract Number:  
AC02-06CH11357; SC0004791
Resource Type:
Accepted Manuscript
Journal Name:
RSC Adv.
Additional Journal Information:
Journal Volume: 5; Journal Issue: (2) ; 2015
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE

Citation Formats

Sampath, Sujatha, and Yarger, Jeffery L. Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study. United States: N. p., 2014. Web. doi:10.1039/C4RA13936D.
Sampath, Sujatha, & Yarger, Jeffery L. Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study. United States. https://doi.org/10.1039/C4RA13936D
Sampath, Sujatha, and Yarger, Jeffery L. Thu . "Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study". United States. https://doi.org/10.1039/C4RA13936D. https://www.osti.gov/servlets/purl/1168489.
@article{osti_1168489,
title = {Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study},
author = {Sampath, Sujatha and Yarger, Jeffery L.},
abstractNote = {Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of β-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-angle X-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.},
doi = {10.1039/C4RA13936D},
journal = {RSC Adv.},
number = (2) ; 2015,
volume = 5,
place = {United States},
year = {Thu Nov 27 00:00:00 EST 2014},
month = {Thu Nov 27 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Relationships between supercontraction and mechanical properties of spider silk
journal, November 2005

  • Liu, Yi; Shao, Zhengzhong; Vollrath, Fritz
  • Nature Materials, Vol. 4, Issue 12
  • DOI: 10.1038/nmat1534

Self-tightening of spider silk fibers induced by moisture
journal, September 2003


How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk
journal, June 2009

  • Blackledge, T. A.; Boutry, C.; Wong, S. -C.
  • Journal of Experimental Biology, Vol. 212, Issue 13
  • DOI: 10.1242/jeb.028944

Recovery in spider silk fibers: Recovery in Spider Silk Fibers
journal, March 2004

  • Elices, M.; Pérez-Rigueiro, J.; Plaza, G.
  • Journal of Applied Polymer Science, Vol. 92, Issue 6
  • DOI: 10.1002/app.20383

The hidden link between supercontraction and mechanical behavior of spider silks
journal, July 2011

  • Elices, Manuel; Plaza, Gustavo R.; Pérez-Rigueiro, José
  • Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, Issue 5
  • DOI: 10.1016/j.jmbbm.2010.09.008

Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers
journal, October 2010

  • Boutry, C.; Blackledge, T. A.
  • Journal of Experimental Biology, Vol. 213, Issue 20
  • DOI: 10.1242/jeb.046110

Spider Silk:  Ancient Ideas for New Biomaterials
journal, September 2006


Liquid crystalline spinning of spider silk
journal, March 2001

  • Vollrath, Fritz; Knight, David P.
  • Nature, Vol. 410, Issue 6828
  • DOI: 10.1038/35069000

Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins
journal, January 2010

  • Heim, Markus; Römer, Lin; Scheibel, Thomas
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B813273A

Decoding the secrets of spider silk
journal, March 2011


Tu(r)ning weakness to strength
journal, January 2010


Supercontraction and Backbone Dynamics in Spider Silk:  13 C and 2 H NMR Studies
journal, September 2000

  • Yang, Zhitong; Liivak, Oskar; Seidel, Andreas
  • Journal of the American Chemical Society, Vol. 122, Issue 37
  • DOI: 10.1021/ja0017099

Spider silk as rubber
journal, June 1984

  • Gosline, John M.; Denny, Mark W.; DeMont, M. Edwin
  • Nature, Vol. 309, Issue 5968
  • DOI: 10.1038/309551a0

Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk
journal, January 1996


Molecular Modeling of Spider Silk Elasticity
journal, December 1994


Molecular chain orientation in supercontracted and re-extended spider silk
journal, March 1999


Combined structural model of spider dragline silk
journal, January 2009

  • Ene, Roxana; Papadopoulos, Periklis; Kremer, Friedrich
  • Soft Matter, Vol. 5, Issue 22
  • DOI: 10.1039/b911159j

Spider silk: the unraveling of a mystery
journal, September 1992


Stretching of supercontracted fibers: a link between spinning and the variability of spider silk
journal, January 2005

  • Guinea, G. V.
  • Journal of Experimental Biology, Vol. 208, Issue 1
  • DOI: 10.1242/jeb.01344

Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae)
journal, August 2007

  • Bittencourt, D.; Souto, B. M.; Verza, N. C.
  • Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Vol. 147, Issue 4
  • DOI: 10.1016/j.cbpb.2007.03.013

Mechanical Behavior of Silk During the Evolution of Orb-Web Spinning Spiders
journal, July 2009

  • Elices, Manuel; Plaza, Gustavo R.; Arnedo, Miquel A.
  • Biomacromolecules, Vol. 10, Issue 7
  • DOI: 10.1021/bm900312c

Creep and low Strength of Spider Dragline Subjected to Constant Loads
journal, December 2003

  • Smith, Christopher; Ritchie, Joanne; Bell, Fraser I.
  • Journal of Arachnology, Vol. 31, Issue 3
  • DOI: 10.1636/H02-46

Supercontraction Stress in Spider Webs
journal, May 2004

  • Savage, Ken N.; Guerette, Paul A.; Gosline, John M.
  • Biomacromolecules, Vol. 5, Issue 3
  • DOI: 10.1021/bm034270w

Minor Ampullate Silks from Nephila and Argiope Spiders: Tensile Properties and Microstructural Characterization
journal, June 2012

  • Guinea, G. V.; Elices, M.; Plaza, G. R.
  • Biomacromolecules, Vol. 13, Issue 7
  • DOI: 10.1021/bm3004644

Structural studies of spider silk proteins in the fiber
journal, January 1997


Solid-State NMR Investigation of Major and Minor Ampullate Spider Silk in the Native and Hydrated States
journal, February 2008

  • Holland, Gregory P.; Jenkins, Janelle E.; Creager, Melinda S.
  • Biomacromolecules, Vol. 9, Issue 2
  • DOI: 10.1021/bm700950u

Fiber Morphology of Spider Silk:  The Effects of Tensile Deformation
journal, May 1997

  • Grubb, David T.; Jelinski, Lynn W.
  • Macromolecules, Vol. 30, Issue 10
  • DOI: 10.1021/ma961293c

Aspects of X-ray diffraction on single spider fibers
journal, March 1999


X-ray diffraction from single fibres of spider silk
journal, June 1997


In Situ X-ray Diffraction during Forced Silking of Spider Silk
journal, June 1999

  • Riekel, Christian; Müller, Martin; Vollrath, Fritz
  • Macromolecules, Vol. 32, Issue 13
  • DOI: 10.1021/ma990067a

X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks
journal, January 2012

  • Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.
  • Soft Matter, Vol. 8, Issue 25
  • DOI: 10.1039/c2sm25373a

Supercontraction stress in wet spider dragline
journal, March 2002

  • Bell, Fraser I.; McEwen, Iain J.; Viney, Christopher
  • Nature, Vol. 416, Issue 6876
  • DOI: 10.1038/416037a

Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual
journal, March 1999

  • Madsen, Bo; Shao, Zheng Zhong; Vollrath, Fritz
  • International Journal of Biological Macromolecules, Vol. 24, Issue 2-3
  • DOI: 10.1016/S0141-8130(98)00094-4

The effect of spinning conditions on the mechanics of a spider's dragline silk
journal, November 2001

  • Vollrath, Fritz; Madsen, Bo; Shao, Zhengzhong
  • Proceedings of the Royal Society of London. Series B: Biological Sciences, Vol. 268, Issue 1483
  • DOI: 10.1098/rspb.2001.1590

Accurate New Method for Molecular Orientation Quantification Using Polarized Raman Spectroscopy
journal, June 2013

  • Richard-Lacroix, Marie; Pellerin, Christian
  • Macromolecules, Vol. 46, Issue 14
  • DOI: 10.1021/ma400955u

High Mobility Field Effect Transistors Based on Macroscopically Oriented Regioregular Copolymers
journal, February 2012

  • Tseng, Hsin-Rong; Ying, Lei; Hsu, Ben B. Y.
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303612z

Molecular origins of anisotropy in the thermal conductivity of deformed polymer melts: stress versus orientation contributions
journal, January 2012

  • Schieber, Jay D.; Venerus, David C.; Gupta, Sahil
  • Soft Matter, Vol. 8, Issue 47
  • DOI: 10.1039/c2sm26788h

Shrinkage and chain folding in drawn poly(ethylene terephthalate) fibres
journal, May 1974


Oriented noncrystalline structure in PET fibers prepared with threadline modification process
journal, September 1996


Structure of heat-treated Nylon 6 and 6.6 fibers. I. The shrinkage mechanism
journal, April 1998


The effect of solvents on the contraction and mechanical properties of spider silk
journal, March 1999


Structure of a protein superfiber: spider dragline silk.
journal, September 1990

  • Xu, M.; Lewis, R. V.
  • Proceedings of the National Academy of Sciences, Vol. 87, Issue 18
  • DOI: 10.1073/pnas.87.18.7120

Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins
journal, March 1999

  • Hayashi, Cheryl Y.; Shipley, Nichola H.; Lewis, Randolph V.
  • International Journal of Biological Macromolecules, Vol. 24, Issue 2-3
  • DOI: 10.1016/S0141-8130(98)00089-0

Quantitative Correlation between the Protein Primary Sequences and Secondary Structures in Spider Dragline Silks
journal, January 2010

  • Jenkins, Janelle E.; Creager, Melinda S.; Lewis, Randolph V.
  • Biomacromolecules, Vol. 11, Issue 1
  • DOI: 10.1021/bm9010672

2H–13C HETCOR MAS NMR for indirect detection of 2H quadrupole patterns and spin–lattice relaxation rates
journal, January 2013

  • Shi, Xiangyan; Yarger, Jeffery L.; Holland, Gregory P.
  • Journal of Magnetic Resonance, Vol. 226
  • DOI: 10.1016/j.jmr.2012.10.013

Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775)
journal, July 2006

  • Blackledge, T. A.
  • Journal of Experimental Biology, Vol. 209, Issue 13
  • DOI: 10.1242/jeb.02275

An Investigation of the Divergence of Major Ampullate Silk Fibers from Nephila clavipes and Argiope aurantia
journal, November 2005

  • Brooks, Amanda E.; Steinkraus, Holly B.; Nelson, Shane R.
  • Biomacromolecules, Vol. 6, Issue 6
  • DOI: 10.1021/bm050421e

Proline and Processing of Spider Silks
journal, January 2008

  • Liu, Yi; Sponner, Alexander; Porter, David
  • Biomacromolecules, Vol. 9, Issue 1
  • DOI: 10.1021/bm700877g

Elucidating proline dynamics in spider dragline silk fibre using 2 H– 13 C HETCOR MAS NMR
journal, January 2014

  • Shi, Xiangyan; Yarger, Jeffery L.; Holland, Gregory P.
  • Chem. Commun., Vol. 50, Issue 37
  • DOI: 10.1039/C4CC00971A

The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties
journal, June 2008

  • Savage, K. N.; Gosline, J. M.
  • Journal of Experimental Biology, Vol. 211, Issue 12
  • DOI: 10.1242/jeb.014217

Two Mechanisms for Supercontraction in Nephila Spider Dragline Silk
journal, November 2011

  • Guan, Juan; Vollrath, Fritz; Porter, David
  • Biomacromolecules, Vol. 12, Issue 11
  • DOI: 10.1021/bm201032v

Protein Composition Correlates with the Mechanical Properties of Spider (Argiope trifasciata) Dragline Silk
journal, December 2013

  • Marhabaie, Mohammad; Leeper, Thomas C.; Blackledge, Todd A.
  • Biomacromolecules, Vol. 15, Issue 1
  • DOI: 10.1021/bm401110b

Supercontraction of dragline silk spun by lynx spiders (Oxyopidae)
journal, June 2010

  • Pérez-Rigueiro, J.; Plaza, G. R.; Torres, F. G.
  • International Journal of Biological Macromolecules, Vol. 46, Issue 5
  • DOI: 10.1016/j.ijbiomac.2010.03.013

Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR and X-ray Diffraction
journal, September 2013

  • Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily
  • Biomacromolecules, Vol. 14, Issue 10
  • DOI: 10.1021/bm400791u

Works referencing / citing this record:

Experimental Methods for Characterizing the Secondary Structure and Thermal Properties of Silk Proteins
journal, August 2018

  • McGill, Meghan; Holland, Gregory P.; Kaplan, David L.
  • Macromolecular Rapid Communications, Vol. 40, Issue 1
  • DOI: 10.1002/marc.201800390

Phase transitions as intermediate steps in the formation of molecularly engineered protein fibers
journal, July 2018

  • Mohammadi, Pezhman; Aranko, A. Sesilja; Lemetti, Laura
  • Communications Biology, Vol. 1, Issue 1
  • DOI: 10.1038/s42003-018-0090-y

The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
journal, July 2019

  • Garb, Jessica E.; Haney, Robert A.; Schwager, Evelyn E.
  • Communications Biology, Vol. 2, Issue 1
  • DOI: 10.1038/s42003-019-0496-1

Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks
journal, January 2020

  • Dong, Qinglin; Fang, Guangqiang; Huang, Yufang
  • Journal of Materials Chemistry B, Vol. 8, Issue 1
  • DOI: 10.1039/c9tb02032b

Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers
journal, April 2018