DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis

Abstract

Hydrogenotrophic methanogenic Archaea require reduced ferredoxin as an anaplerotic source of electrons for methanogenesis. H2 oxidation by the hydrogenase Eha provides these electrons, consistent with an H2 requirement for growth. Here we report the identification of alternative pathways of ferredoxin reduction in Methanococcus maripaludis that operate independently of Eha to stimulate methanogenesis. A suppressor mutation that increased expression of the glycolytic enzyme glyceraldehyde-3-phosphate:ferredoxin oxidoreductase resulted in a strain capable of H2-independent ferredoxin reduction and growth with formate as the sole electron donor. In this background, it was possible to eliminate all seven hydrogenases of M. maripaludis. Alternatively, carbon monoxide oxidation by carbon monoxide dehydrogenase could also generate reduced ferredoxin that feeds into methanogenesis. In either case, the reduced ferredoxin generated was inefficient at stimulating methanogenesis, resulting in a slow growth phenotype. As methanogenesis is limited by the availability of reduced ferredoxin under these conditions, other electron donors, such as reduced coenzyme F420, should be abundant. Indeed, when F420-reducing hydrogenase was reintroduced into the hydrogenase-free mutant, the equilibrium of H2 production via an F420-dependent formate:H2 lyase activity shifted markedly toward H2 compared to the wild type.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Washington, Seattle, WA (United States). Dept. of Microbiology
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1626081
Grant/Contract Number:  
FG02-05ER15709
Resource Type:
Accepted Manuscript
Journal Name:
mBio (Online)
Additional Journal Information:
Journal Name: mBio (Online); Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2150-7511
Publisher:
American Society for Microbiology (ASM)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Microbiology

Citation Formats

Costa, Kyle C., Lie, Thomas J., Jacobs, Michael A., and Leigh, John A. H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis. United States: N. p., 2013. Web. doi:10.1128/mbio.00062-13.
Costa, Kyle C., Lie, Thomas J., Jacobs, Michael A., & Leigh, John A. H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis. United States. https://doi.org/10.1128/mbio.00062-13
Costa, Kyle C., Lie, Thomas J., Jacobs, Michael A., and Leigh, John A. Tue . "H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis". United States. https://doi.org/10.1128/mbio.00062-13. https://www.osti.gov/servlets/purl/1626081.
@article{osti_1626081,
title = {H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis},
author = {Costa, Kyle C. and Lie, Thomas J. and Jacobs, Michael A. and Leigh, John A.},
abstractNote = {Hydrogenotrophic methanogenic Archaea require reduced ferredoxin as an anaplerotic source of electrons for methanogenesis. H2 oxidation by the hydrogenase Eha provides these electrons, consistent with an H2 requirement for growth. Here we report the identification of alternative pathways of ferredoxin reduction in Methanococcus maripaludis that operate independently of Eha to stimulate methanogenesis. A suppressor mutation that increased expression of the glycolytic enzyme glyceraldehyde-3-phosphate:ferredoxin oxidoreductase resulted in a strain capable of H2-independent ferredoxin reduction and growth with formate as the sole electron donor. In this background, it was possible to eliminate all seven hydrogenases of M. maripaludis. Alternatively, carbon monoxide oxidation by carbon monoxide dehydrogenase could also generate reduced ferredoxin that feeds into methanogenesis. In either case, the reduced ferredoxin generated was inefficient at stimulating methanogenesis, resulting in a slow growth phenotype. As methanogenesis is limited by the availability of reduced ferredoxin under these conditions, other electron donors, such as reduced coenzyme F420, should be abundant. Indeed, when F420-reducing hydrogenase was reintroduced into the hydrogenase-free mutant, the equilibrium of H2 production via an F420-dependent formate:H2 lyase activity shifted markedly toward H2 compared to the wild type.},
doi = {10.1128/mbio.00062-13},
journal = {mBio (Online)},
number = 2,
volume = 4,
place = {United States},
year = {Tue Feb 26 00:00:00 EST 2013},
month = {Tue Feb 26 00:00:00 EST 2013}
}

Works referenced in this record:

Carbon Monoxide Oxidation by Methanogenic Bacteria
journal, January 1977


Evolution of Burkholderia pseudomallei in Recurrent Melioidosis
journal, May 2012


Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase
journal, June 2006

  • Dodsworth, J. A.; Leigh, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 26
  • DOI: 10.1073/pnas.0602278103

Activation of formylmethanofuran synthesis in cell extracts of Methanobacterium thermoautotrophicum.
journal, January 1989


Structure and Organization of Genes
book, January 1993


Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: An FTIR and EPR spectroscopic study
journal, February 2010

  • Pandelia, Maria-Eirini; Ogata, Hideaki; Currell, Leslie J.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1797, Issue 2
  • DOI: 10.1016/j.bbabio.2009.11.002

Autotrophic carbon fixation in archaea
journal, May 2010

  • Berg, Ivan A.; Kockelkorn, Daniel; Ramos-Vera, W. Hugo
  • Nature Reviews Microbiology, Vol. 8, Issue 6, p. 447-460
  • DOI: 10.1038/nrmicro2365

The Inhibition of Hydrogenase by Carbon Monoxide and the Reversal of this Inhibition by Light *
journal, March 1962

  • Purec, Ljerka; Krasna, Alvin I.; Rittenberg, D.
  • Biochemistry, Vol. 1, Issue 2
  • DOI: 10.1021/bi00908a013

An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics
journal, November 2006

  • Lessner, D. J.; Li, L.; Li, Q.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 47
  • DOI: 10.1073/pnas.0608833103

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase
journal, June 2010

  • Costa, K. C.; Wong, P. M.; Wang, T.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 24
  • DOI: 10.1073/pnas.1003653107

Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum
journal, January 1985


Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis
journal, August 2012

  • Lie, T. J.; Costa, K. C.; Lupa, B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 38
  • DOI: 10.1073/pnas.1208779109

Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria
journal, October 1987


Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea
journal, May 2007

  • Hendrickson, E. L.; Haydock, A. K.; Moore, B. C.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 21
  • DOI: 10.1073/pnas.0701157104

Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis
journal, October 2004


Glyceraldehyde-3-Phosphate Ferredoxin Oxidoreductase from Methanococcus maripaludis
journal, August 2007

  • Park, M. -O.; Mizutani, T.; Jones, P. R.
  • Journal of Bacteriology, Vol. 189, Issue 20
  • DOI: 10.1128/JB.00828-07

The Ferredoxin-dependent Conversion of Glyceraldehyde-3-phosphate in the Hyperthermophilic Archaeon Pyrococcus furiosus Represents a Novel Site of Glycolytic Regulation
journal, October 1998

  • van der Oost, John; Schut, Gerti; Kengen, ServéW. M.
  • Journal of Biological Chemistry, Vol. 273, Issue 43
  • DOI: 10.1074/jbc.273.43.28149

Ferredoxin-linked reduction of metronidazole in Clostridium pasteurianum.
journal, November 1984

  • Lockerby, D. L.; Rabin, H. R.; Bryan, L. E.
  • Antimicrobial Agents and Chemotherapy, Vol. 26, Issue 5
  • DOI: 10.1128/AAC.26.5.665

Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
journal, January 1979


Growth of Methanogens Under Defined Hydrogen Conditions
book, March 2011


The Wolfe cycle comes full circle
journal, September 2012


Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon
journal, November 2004

  • Rother, M.; Metcalf, W. W.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 48
  • DOI: 10.1073/pnas.0407486101

Disruption of the Operon Encoding Ehb Hydrogenase Limits Anabolic CO2 Assimilation in the Archaeon Methanococcus maripaludis
journal, February 2006


Methanogenic archaea: ecologically relevant differences in energy conservation
journal, June 2008

  • Thauer, Rudolf K.; Kaster, Anne-Kristin; Seedorf, Henning
  • Nature Reviews Microbiology, Vol. 6, Issue 8
  • DOI: 10.1038/nrmicro1931

Isolation and characterization of 22 mesophilic methanococci
journal, May 1986

  • Whitman, William B.; Shieh, Jersong; Sohn, Seehyang
  • Systematic and Applied Microbiology, Vol. 7, Issue 2-3, p. 235-240
  • DOI: 10.1016/S0723-2020(86)80012-1

Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
journal, January 2011

  • Kaster, A. -K.; Moll, J.; Parey, K.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 7
  • DOI: 10.1073/pnas.1016761108

Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga
journal, November 1996

  • Selig, Martina; Xavier, Karina B.; Santos, Helena
  • Archives of Microbiology, Vol. 167, Issue 4
  • DOI: 10.1007/bf03356097

Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium
journal, June 1977


The Inhibition of Hydrogenase by Carbon Monoxide and the Reversal of this Inhibition by Light *
journal, March 1962

  • Purec, Ljerka; Krasna, Alvin I.; Rittenberg, D.
  • Biochemistry, Vol. 1, Issue 2
  • DOI: 10.1021/bi00908a013

Methanogenic archaea: ecologically relevant differences in energy conservation
journal, June 2008

  • Thauer, Rudolf K.; Kaster, Anne-Kristin; Seedorf, Henning
  • Nature Reviews Microbiology, Vol. 6, Issue 8
  • DOI: 10.1038/nrmicro1931

Autotrophic carbon fixation in archaea
journal, May 2010

  • Berg, Ivan A.; Kockelkorn, Daniel; Ramos-Vera, W. Hugo
  • Nature Reviews Microbiology, Vol. 8, Issue 6, p. 447-460
  • DOI: 10.1038/nrmicro2365

Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon
journal, November 2004

  • Rother, M.; Metcalf, W. W.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 48
  • DOI: 10.1073/pnas.0407486101

Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
journal, January 2011

  • Kaster, A. -K.; Moll, J.; Parey, K.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 7
  • DOI: 10.1073/pnas.1016761108

Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis
journal, August 2012

  • Lie, T. J.; Costa, K. C.; Lupa, B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 38
  • DOI: 10.1073/pnas.1208779109

The Wolfe cycle comes full circle
journal, September 2012


The Ferredoxin-dependent Conversion of Glyceraldehyde-3-phosphate in the Hyperthermophilic Archaeon Pyrococcus furiosus Represents a Novel Site of Glycolytic Regulation
journal, October 1998

  • van der Oost, John; Schut, Gerti; Kengen, ServéW. M.
  • Journal of Biological Chemistry, Vol. 273, Issue 43
  • DOI: 10.1074/jbc.273.43.28149

Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum
journal, January 1985


Formate-Dependent H2 Production by the Mesophilic Methanogen Methanococcus maripaludis
journal, September 2008

  • Lupa, B.; Hendrickson, E. L.; Leigh, J. A.
  • Applied and Environmental Microbiology, Vol. 74, Issue 21
  • DOI: 10.1128/aem.01455-08

Carbon Monoxide Oxidation by Methanogenic Bacteria
journal, January 1977


Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
journal, January 1979


Evolution of Burkholderia pseudomallei in Recurrent Melioidosis
journal, May 2012


Works referencing / citing this record:

Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
journal, May 2014

  • Lohner, Svenja T.; Deutzmann, Jörg S.; Logan, Bruce E.
  • The ISME Journal, Vol. 8, Issue 8
  • DOI: 10.1038/ismej.2014.82

Enhanced microbial electrosynthesis by using defined co-cultures
journal, November 2016


Metabolic processes of Methanococcus maripaludis and potential applications
journal, June 2016


Biogeochemical Cycling by a Low-Diversity Microbial Community in Deep Groundwater
journal, September 2018


A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen
journal, October 2013

  • Yoon, Sung Ho; Turkarslan, Serdar; Reiss, David J.
  • Genome Research, Vol. 23, Issue 11
  • DOI: 10.1101/gr.153916.112

Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens
journal, February 2019

  • Berghuis, Bojk A.; Yu, Feiqiao Brian; Schulz, Frederik
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 11
  • DOI: 10.1073/pnas.1815631116

Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis
journal, October 2016

  • Richards, Matthew A.; Lie, Thomas J.; Zhang, Juan
  • Journal of Bacteriology, Vol. 198, Issue 24
  • DOI: 10.1128/jb.00571-16