DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

Abstract

Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurementsmore » with nitrate (NO3) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.« less

Authors:
; ; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ;
Publication Date:
Research Org.:
Boston College, Chestnut Hill, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1365443
Alternate Identifier(s):
OSTI ID: 1425615
Grant/Contract Number:  
SC0006980; SC0011935; AGS-1536939; AGS-1537446; AGS-1537009
Resource Type:
Published Article
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online) Journal Volume: 10 Journal Issue: 6; Journal ID: ISSN 1867-8548
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lambe, Andrew, Massoli, Paola, Zhang, Xuan, Canagaratna, Manjula, Nowak, John, Daube, Conner, Yan, Chao, Nie, Wei, Onasch, Timothy, Jayne, John, Kolb, Charles, Davidovits, Paul, Worsnop, Douglas, and Brune, William. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies. Germany: N. p., 2017. Web. doi:10.5194/amt-10-2283-2017.
Lambe, Andrew, Massoli, Paola, Zhang, Xuan, Canagaratna, Manjula, Nowak, John, Daube, Conner, Yan, Chao, Nie, Wei, Onasch, Timothy, Jayne, John, Kolb, Charles, Davidovits, Paul, Worsnop, Douglas, & Brune, William. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies. Germany. https://doi.org/10.5194/amt-10-2283-2017
Lambe, Andrew, Massoli, Paola, Zhang, Xuan, Canagaratna, Manjula, Nowak, John, Daube, Conner, Yan, Chao, Nie, Wei, Onasch, Timothy, Jayne, John, Kolb, Charles, Davidovits, Paul, Worsnop, Douglas, and Brune, William. Thu . "Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies". Germany. https://doi.org/10.5194/amt-10-2283-2017.
@article{osti_1365443,
title = {Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies},
author = {Lambe, Andrew and Massoli, Paola and Zhang, Xuan and Canagaratna, Manjula and Nowak, John and Daube, Conner and Yan, Chao and Nie, Wei and Onasch, Timothy and Jayne, John and Kolb, Charles and Davidovits, Paul and Worsnop, Douglas and Brune, William},
abstractNote = {Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3−) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.},
doi = {10.5194/amt-10-2283-2017},
journal = {Atmospheric Measurement Techniques (Online)},
number = 6,
volume = 10,
place = {Germany},
year = {Thu Jun 22 00:00:00 EDT 2017},
month = {Thu Jun 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/amt-10-2283-2017

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measurements of OH during PEM-Tropics A
journal, March 1999

  • Mauldin, R. L.; Tanner, D. J.; Eisele, F. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D5
  • DOI: 10.1029/98JD02305

Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method
journal, December 2007


Impact of nucleation on global CCN
journal, January 2009

  • Merikanto, J.; Spracklen, D. V.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 21
  • DOI: 10.5194/acp-9-8601-2009

In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor
journal, January 2016

  • Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-2943-2016

Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation
journal, July 2015

  • Krechmer, Jordan E.; Coggon, Matthew M.; Massoli, Paola
  • Environmental Science & Technology, Vol. 49, Issue 17
  • DOI: 10.1021/acs.est.5b02031

Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor
journal, September 2014

  • Tkacik, Daniel S.; Lambe, Andrew T.; Jathar, Shantanu
  • Environmental Science & Technology, Vol. 48, Issue 19
  • DOI: 10.1021/es502239v

Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields
journal, January 2009

  • Rollins, A. W.; Kiendler-Scharr, A.; Fry, J. L.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 18
  • DOI: 10.5194/acp-9-6685-2009

Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry
journal, January 2010

  • Ng, N. L.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-4625-2010

Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley
journal, January 2012

  • Pierce, J. R.; Leaitch, W. R.; Liggio, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 7
  • DOI: 10.5194/acp-12-3147-2012

Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign
journal, January 2013

  • Shilling, J. E.; Zaveri, R. A.; Fast, J. D.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-2091-2013

How do organic vapors contribute to new-particle formation?
journal, January 2013

  • Donahue, Neil M.; Ortega, Ismael K.; Chuang, Wayne
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00046j

Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling
journal, January 2016

  • Peng, Zhe; Day, Douglas A.; Ortega, Amber M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 7
  • DOI: 10.5194/acp-16-4283-2016

Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway
journal, September 2016

  • Liu, Jiumeng; D’Ambro, Emma L.; Lee, Ben H.
  • Environmental Science & Technology, Vol. 50, Issue 18
  • DOI: 10.1021/acs.est.6b01872

The contribution of organics to atmospheric nanoparticle growth
journal, June 2012

  • Riipinen, Ilona; Yli-Juuti, Taina; Pierce, Jeffrey R.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1499

Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
journal, April 2014

  • Zhang, X.; Cappa, C. D.; Jathar, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1404727111

Measurement of the gas phase concentration of H 2 SO 4 and methane sulfonic acid and estimates of H 2 SO 4 production and loss in the atmosphere
journal, May 1993

  • Eisele, F. L.; Tanner, D. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 98, Issue D5
  • DOI: 10.1029/93JD00031

Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States
journal, December 2014

  • Xu, Lu; Guo, Hongyu; Boyd, Christopher M.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1417609112

Identification of Organic Nitrates in the NO 3 Radical Initiated Oxidation of α-Pinene by Atmospheric Pressure Chemical Ionization Mass Spectrometry
journal, August 2010

  • Perraud, Véronique; Bruns, Emily A.; Ezell, Michael J.
  • Environmental Science & Technology, Vol. 44, Issue 15
  • DOI: 10.1021/es1005658

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
journal, May 2014


Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area
journal, January 2016

  • Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 11
  • DOI: 10.5194/acp-16-7411-2016

A field-deployable, chemical ionization time-of-flight mass spectrometer
journal, January 2011

  • Bertram, T. H.; Kimmel, J. R.; Crisp, T. A.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 7
  • DOI: 10.5194/amt-4-1471-2011

The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis
journal, January 2015


Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

Kinetics and Mechanisms of the Gas‐Phase Reactions of the NO 3 Radical with Organic Compounds
journal, May 1991

  • Atkinson, Roger
  • Journal of Physical and Chemical Reference Data, Vol. 20, Issue 3
  • DOI: 10.1063/1.555887

A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution
journal, January 2012

  • Donahue, N. M.; Kroll, J. H.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-615-2012

Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols
journal, January 2006


Introducing the concept of Potential Aerosol Mass (PAM)
journal, January 2007

  • Kang, E.; Root, M. J.; Toohey, D. W.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 22
  • DOI: 10.5194/acp-7-5727-2007

Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH
journal, September 2015

  • St. Clair, Jason M.; Rivera-Rios, Jean C.; Crounse, John D.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 9
  • DOI: 10.1021/acs.jpca.5b06532

The effect of H 2 SO 4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid
journal, January 2011

  • Kurtén, T.; Petäjä, T.; Smith, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 6
  • DOI: 10.5194/acp-11-3007-2011

Reactive intermediates revealed in secondary organic aerosol formation from isoprene
journal, December 2009

  • Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911114107

HO x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling
journal, January 2015

  • Peng, Z.; Day, D. A.; Stark, H.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 11
  • DOI: 10.5194/amt-8-4863-2015

Composition and temporal behavior of ambient ions in the boreal forest
journal, January 2010

  • Ehn, M.; Junninen, H.; Petäjä, T.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 17
  • DOI: 10.5194/acp-10-8513-2010

Characterization of primary and secondary wood combustion products generated under different burner loads
journal, January 2015

  • Bruns, E. A.; Krapf, M.; Orasche, J.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 5
  • DOI: 10.5194/acp-15-2825-2015

Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation
journal, December 2015

  • Nah, Theodora; Sanchez, Javier; Boyd, Christopher M.
  • Environmental Science & Technology, Vol. 50, Issue 1
  • DOI: 10.1021/acs.est.5b04594

Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air
journal, January 2012


A new technique for the direct detection of HO 2 radicals using bromide chemical ionization mass spectrometry (Br-CIMS): initial characterization
journal, January 2016

  • Sanchez, Javier; Tanner, David J.; Chen, Dexian
  • Atmospheric Measurement Techniques, Vol. 9, Issue 8
  • DOI: 10.5194/amt-9-3851-2016

Mechanism of the OH-initiated oxidation of methacrolein
journal, July 1999

  • Orlando, John J.; Tyndall, Geoffrey S.; Paulson, Suzanne E.
  • Geophysical Research Letters, Vol. 26, Issue 14
  • DOI: 10.1029/1999GL900453

Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization
journal, May 2015

  • Hyttinen, Noora; Kupiainen-Määttä, Oona; Rissanen, Matti P.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 24
  • DOI: 10.1021/acs.jpca.5b01818

The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study
journal, January 2013

  • Pfaffenberger, L.; Barmet, P.; Slowik, J. G.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 13
  • DOI: 10.5194/acp-13-6493-2013

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios
journal, April 2016

  • Kurtén, Theo; Tiusanen, Kirsi; Roldin, Pontus
  • The Journal of Physical Chemistry A, Vol. 120, Issue 16
  • DOI: 10.1021/acs.jpca.6b02196

Effect of NO<sub>x</sub> level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
journal, January 2007

  • Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5159-2007

Autoxidation of Organic Compounds in the Atmosphere
journal, September 2013

  • Crounse, John D.; Nielsen, Lasse B.; Jørgensen, Solvejg
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz4019207

Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation
journal, November 2014

  • Li, Rui; Palm, Brett B.; Ortega, Amber M.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp509534k

Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism
journal, July 2014

  • Peeters, Jozef; Müller, Jean-François; Stavrakou, Trissevgeni
  • The Journal of Physical Chemistry A, Vol. 118, Issue 38
  • DOI: 10.1021/jp5033146

A Practical Alternative to Chemiluminescence-Based Detection of Nitrogen Dioxide: Cavity Attenuated Phase Shift Spectroscopy
journal, August 2008

  • Kebabian, Paul L.; Wood, Ezra C.; Herndon, Scott C.
  • Environmental Science & Technology, Vol. 42, Issue 16
  • DOI: 10.1021/es703204j

Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene
journal, August 2006

  • Surratt, Jason D.; Murphy, Shane M.; Kroll, Jesse H.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 31
  • DOI: 10.1021/jp061734m

Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield
journal, January 2015

  • Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 6
  • DOI: 10.5194/acp-15-3063-2015

Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets
journal, January 2016

  • Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 6
  • DOI: 10.1073/pnas.1508108113

Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization
journal, January 2016


Loading-dependent elemental composition of α-pinene SOA particles
journal, January 2009

  • Shilling, J. E.; Chen, Q.; King, S. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 3
  • DOI: 10.5194/acp-9-771-2009

Fragmentation vs. functionalization: chemical aging and organic aerosol formation
journal, January 2011


Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons
journal, October 2014

  • Fry, Juliane L.; Draper, Danielle C.; Barsanti, Kelley C.
  • Environmental Science & Technology, Vol. 48, Issue 20
  • DOI: 10.1021/es502204x

The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene
journal, October 2014

  • Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko
  • Journal of the American Chemical Society, Vol. 136, Issue 44
  • DOI: 10.1021/ja507146s

The Southeastern Aerosol Research and Characterization Study: Part 1—Overview
journal, December 2003

  • Hansen, D. Alan; Edgerton, Eric S.; Hartsell, Benjamin E.
  • Journal of the Air & Waste Management Association, Vol. 53, Issue 12
  • DOI: 10.1080/10473289.2003.10466318

Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007
journal, January 2009

  • LaFranchi, B. W.; Wolfe, G. M.; Thornton, J. A.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 19
  • DOI: 10.5194/acp-9-7623-2009

Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m -xylene
journal, January 2015

  • Liu, P. F.; Abdelmalki, N.; Hung, H. -M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 3
  • DOI: 10.5194/acp-15-1435-2015

Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO x
journal, January 2015


The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest
journal, January 2011

  • Pugh, T. A. M.; MacKenzie, A. R.; Langford, B.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 9
  • DOI: 10.5194/acp-11-4121-2011

Airborne measurement of OH reactivity during INTEX-B
journal, January 2009

  • Mao, J.; Ren, X.; Brune, W. H.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 1
  • DOI: 10.5194/acp-9-163-2009

α-pinene photooxidation under controlled chemical conditions – Part 1: Gas-phase composition in low- and high-NO x environments
journal, January 2012

  • Eddingsaas, N. C.; Loza, C. L.; Yee, L. D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 14
  • DOI: 10.5194/acp-12-6489-2012

To What Extent Can Biogenic SOA be Controlled?
journal, May 2010

  • Carlton, Annmarie G.; Pinder, Robert W.; Bhave, Prakash V.
  • Environmental Science & Technology, Vol. 44, Issue 9
  • DOI: 10.1021/es903506b

Isoprene NO 3 Oxidation Products from the RO 2 + HO 2 Pathway
journal, September 2015

  • Schwantes, Rebecca H.; Teng, Alexander P.; Nguyen, Tran B.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 40
  • DOI: 10.1021/acs.jpca.5b06355

Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
journal, May 2015

  • Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 23
  • DOI: 10.1073/pnas.1423977112