DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

Abstract

We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range ofmore » available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

Authors:
 [1];  [2];  [1];  [3];  [4];  [4];  [5];  [5];  [5];  [2];  [2];  [5]
  1. Boston College, Chestnut Hill, MA (United States); Aerodyne Research Inc., Billerica, MA (United States)
  2. Aerodyne Research Inc., Billerica, MA (United States)
  3. Pennsylvania State Univ., State College, PA (United States)
  4. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
  5. Boston College, Chestnut Hill, MA (United States)
Publication Date:
Research Org.:
Boston College, Chestnut Hill, MA (United States); Aerodyne Research Inc., Billerica, MA (United States); Pennsylvania State Univ., University Park, PA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF). Atmospheric Chemistry Program
OSTI Identifier:
1198408
Alternate Identifier(s):
OSTI ID: 1454913
Grant/Contract Number:  
SC0006980; SC0011935; FG02-05ER63995; AGS-1244918; ATM-0854916; AGS-1244999; AGS-0904292; AGS-1244995; AGS-1056225; AGS-1245011
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 15 Journal Issue: 6; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES

Citation Formats

Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings, M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and Davidovits, P. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Germany: N. p., 2015. Web. doi:10.5194/acp-15-3063-2015.
Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings, M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., & Davidovits, P. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Germany. https://doi.org/10.5194/acp-15-3063-2015
Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings, M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and Davidovits, P. Wed . "Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield". Germany. https://doi.org/10.5194/acp-15-3063-2015.
@article{osti_1198408,
title = {Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield},
author = {Lambe, A. T. and Chhabra, P. S. and Onasch, T. B. and Brune, W. H. and Hunter, J. F. and Kroll, J. H. and Cummings, M. J. and Brogan, J. F. and Parmar, Y. and Worsnop, D. R. and Kolb, C. E. and Davidovits, P.},
abstractNote = {We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.},
doi = {10.5194/acp-15-3063-2015},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 6,
volume = 15,
place = {Germany},
year = {Wed Mar 18 00:00:00 EDT 2015},
month = {Wed Mar 18 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-15-3063-2015

Citation Metrics:
Cited by: 134 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments
journal, January 2011

  • Hamilton, J. F.; Rami Alfarra, M.; Wyche, K. P.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 12
  • DOI: 10.5194/acp-11-5917-2011

Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene
journal, August 2007

  • Surratt, Jason D.; Lewandowski, Michael; Offenberg, John H.
  • Environmental Science & Technology, Vol. 41, Issue 15
  • DOI: 10.1021/es0704176

Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer
journal, January 2010

  • Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 9
  • DOI: 10.5194/acp-10-4111-2010

Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein
journal, January 2015

  • Brégonzio-Rozier, L.; Siekmann, F.; Giorio, C.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 6
  • DOI: 10.5194/acp-15-2953-2015

Thresholds of secondary organic aerosol formation by ozonolysis of monoterpenes measured in a laminar flow aerosol reactor
journal, January 2012


Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor
journal, September 2014

  • Tkacik, Daniel S.; Lambe, Andrew T.; Jathar, Shantanu
  • Environmental Science & Technology, Vol. 48, Issue 19
  • DOI: 10.1021/es502239v

Time Resolved Infrared Spectroscopy of Formation and Processing of Secondary Organic Aerosol
journal, August 2010

  • Ofner, J.; Krüger, H. -U.; Zetzsch, C.
  • Zeitschrift für Physikalische Chemie, Vol. 224, Issue 7-8
  • DOI: 10.1524/zpch.2010.6146

Molecular Transformations Accompanying the Aging of Laboratory Secondary Organic Aerosol
journal, February 2013

  • Hall, Wiley A.; Pennington, M. Ross; Johnston, Murray V.
  • Environmental Science & Technology, Vol. 47, Issue 5
  • DOI: 10.1021/es303891q

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry
journal, January 2010

  • Ng, N. L.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-4625-2010

Relationship between Oxidation Level and Optical Properties of Secondary Organic Aerosol
journal, May 2013

  • Lambe, Andrew T.; Cappa, Christopher D.; Massoli, Paola
  • Environmental Science & Technology, Vol. 47, Issue 12
  • DOI: 10.1021/es401043j

Elemental composition and oxidation of chamber organic aerosol
journal, January 2011

  • Chhabra, P. S.; Ng, N. L.; Canagaratna, M. R.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-8827-2011

Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles
journal, July 2000

  • Jayne, John T.; Leard, Danna C.; Zhang, Xuefeng
  • Aerosol Science and Technology, Vol. 33, Issue 1-2
  • DOI: 10.1080/027868200410840

Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons
journal, October 2009

  • Offenberg, John H.; Lewandowski, Michael; Edney, Edward O.
  • Environmental Science & Technology, Vol. 43, Issue 20
  • DOI: 10.1021/es901538e

Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements
journal, August 2010


Effect of acidic seed on biogenic secondary organic aerosol growth
journal, September 2003


Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest
journal, January 2011

  • Sihto, S. -L.; Mikkilä, J.; Vanhanen, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 24
  • DOI: 10.5194/acp-11-13269-2011

CCN activity of organic aerosols observed downwind of urban emissions during CARES
journal, January 2013


Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
journal, April 2014

  • Zhang, X.; Cappa, C. D.; Jathar, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1404727111

Time Scales for Gas-Particle Partitioning Equilibration of Secondary Organic Aerosol Formed from Alpha-Pinene Ozonolysis
journal, May 2013

  • Saleh, Rawad; Donahue, Neil M.; Robinson, Allen L.
  • Environmental Science & Technology, Vol. 47, Issue 11
  • DOI: 10.1021/es400078d

Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008
journal, January 2013


Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis
journal, January 2014

  • Fountoukis, C.; Megaritis, A. G.; Skyllakou, K.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 17
  • DOI: 10.5194/acp-14-9061-2014

Chemical aging of m -xylene secondary organic aerosol: laboratory chamber study
journal, January 2012

  • Loza, C. L.; Chhabra, P. S.; Yee, L. D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 1
  • DOI: 10.5194/acp-12-151-2012

Secondary Organic Aerosol Formation from Acyclic, Monocyclic, and Polycyclic Alkanes
journal, August 2014

  • Hunter, James F.; Carrasquillo, Anthony J.; Daumit, Kelly E.
  • Environmental Science & Technology, Vol. 48, Issue 17
  • DOI: 10.1021/es502674s

Investigation of α-Pinene + Ozone Secondary Organic Aerosol Formation at Low Total Aerosol Mass
journal, June 2006

  • Presto, Albert A.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 40, Issue 11
  • DOI: 10.1021/es052203z

Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

High formation of secondary organic aerosol from the photo-oxidation of toluene
journal, January 2009

  • Hildebrandt, L.; Donahue, N. M.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-2973-2009

Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer
journal, January 2006

  • Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5649-2006

Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3
journal, January 2013

  • Ortega, A. M.; Day, D. A.; Cubison, M. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11551-2013

A simplified description of the evolution of organic aerosol composition in the atmosphere: VAN KREVELEN DIAGRAM OF ORGANIC AEROSOL
journal, April 2010

  • Heald, C. L.; Kroll, J. H.; Jimenez, J. L.
  • Geophysical Research Letters, Vol. 37, Issue 8
  • DOI: 10.1029/2010GL042737

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol: SOLUBLE BROWN CARBON IN LA AND ATLANTA
journal, November 2011

  • Zhang, Xiaolu; Lin, Ying-Hsuan; Surratt, Jason D.
  • Geophysical Research Letters, Vol. 38, Issue 21
  • DOI: 10.1029/2011GL049385

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill
journal, March 2011


Particle Growth by Acid-Catalyzed Heterogeneous Reactions of Organic Carbonyls on Preexisting Aerosols
journal, September 2003

  • Jang, Myoseon; Carroll, Brian; Chandramouli, Bharadwaj
  • Environmental Science & Technology, Vol. 37, Issue 17
  • DOI: 10.1021/es021005u

Introducing the concept of Potential Aerosol Mass (PAM)
journal, January 2007

  • Kang, E.; Root, M. J.; Toohey, D. W.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 22
  • DOI: 10.5194/acp-7-5727-2007

α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO x environments
journal, January 2012

  • Eddingsaas, N. C.; Loza, C. L.; Yee, L. D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 16
  • DOI: 10.5194/acp-12-7413-2012

Organic aerosol and global climate modelling: a review
journal, January 2005

  • Kanakidou, M.; Seinfeld, J. H.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1053-2005

Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
journal, January 2011


Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes
journal, August 2012

  • Tkacik, Daniel S.; Presto, Albert A.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 46, Issue 16
  • DOI: 10.1021/es301112c

The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation: ICE NUCLEATION BY AMORPHOUS SOA
journal, August 2012

  • Wang, Bingbing; Lambe, Andrew T.; Massoli, Paola
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D16
  • DOI: 10.1029/2012JD018063

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies
journal, January 2011

  • Kang, E.; Toohey, D. W.; Brune, W. H.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 4
  • DOI: 10.5194/acp-11-1837-2011

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol
journal, January 2012

  • Bergström, R.; Denier van der Gon, H. A. C.; Prévôt, A. S. H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 18
  • DOI: 10.5194/acp-12-8499-2012

Secondary Organic Aerosol Formation from Isoprene Photooxidation
journal, March 2006

  • Kroll, Jesse H.; Ng, Nga L.; Murphy, Shane M.
  • Environmental Science & Technology, Vol. 40, Issue 6
  • DOI: 10.1021/es0524301

Secondary Organic Aerosol Production from Terpene Ozonolysis. 2. Effect of NO x Concentration
journal, September 2005

  • Presto, Albert A.; Huff Hartz, Kara E.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 39, Issue 18
  • DOI: 10.1021/es050400s

CCN Spectra, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Deepwater Horizon Oil Spill
journal, March 2012

  • Moore, Richard H.; Raatikainen, Tomi; Langridge, Justin M.
  • Environmental Science & Technology, Vol. 46, Issue 6
  • DOI: 10.1021/es203362w

Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study
journal, January 2013

  • Pfaffenberger, L.; Barmet, P.; Slowik, J. G.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 13
  • DOI: 10.5194/acp-13-6493-2013

Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors
journal, May 2012

  • Lambe, Andrew T.; Onasch, Timothy B.; Croasdale, David R.
  • Environmental Science & Technology, Vol. 46, Issue 10
  • DOI: 10.1021/es300274t

Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber
journal, January 2013

  • Chen, S.; Brune, W. H.; Lambe, A. T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 9
  • DOI: 10.5194/acp-13-5017-2013

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Effect of NO<sub>x</sub> level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
journal, January 2007

  • Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5159-2007

Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach
journal, January 2011

  • Shrivastava, M.; Fast, J.; Easter, R.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6639-2011

Photochemical Aging of α-Pinene Secondary Organic Aerosol: Effects of OH Radical Sources and Photolysis
journal, February 2012

  • Henry, Kaytlin M.; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp210288s

Secondary Organic Aerosol Formation from Acetylene (C 2 H 2 ): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase
journal, January 2009

  • Volkamer, R.; Ziemann, P. J.; Molina, M. J.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 6
  • DOI: 10.5194/acp-9-1907-2009

Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation
journal, November 2014

  • Li, Rui; Palm, Brett B.; Ortega, Amber M.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp509534k

Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity: OXIDATION OF AMBIENT SOA AND CCN ACTIVITY
journal, November 2011

  • Wong, J. P. S.; Lee, A. K. Y.; Slowik, J. G.
  • Geophysical Research Letters, Vol. 38, Issue 22
  • DOI: 10.1029/2011GL049351

Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado
journal, January 2014

  • Levin, E. J. T.; Prenni, A. J.; Palm, B. B.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2657-2014

A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment
journal, July 2005

  • Drewnick, Frank; Hings, Silke S.; DeCarlo, Peter
  • Aerosol Science and Technology, Vol. 39, Issue 7
  • DOI: 10.1080/02786820500182040

Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol
journal, January 2012

  • Slowik, J. G.; Wong, J. P. S.; Abbatt, J. P. D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9775-2012

Secondary organic aerosol yields of 12-carbon alkanes
journal, January 2014

  • Loza, C. L.; Craven, J. S.; Yee, L. D.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 3
  • DOI: 10.5194/acp-14-1423-2014

SO 2 oxidation via the hydroxyl radical: Atmospheric fate of HSOx radicals
journal, February 1979

  • Davis, D. D.; Ravishankara, A. R.; Fischer, S.
  • Geophysical Research Letters, Vol. 6, Issue 2
  • DOI: 10.1029/GL006i002p00113

Cluster Analysis of Data from the Particle Analysis by Laser Mass Spectrometry (PALMS) Instrument
journal, April 2003

  • Murphy, D. M.; Middlebrook, A. M.; Warshawsky, M.
  • Aerosol Science and Technology, Vol. 37, Issue 4
  • DOI: 10.1080/02786820300971

Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol
journal, January 2012


Mass Spectral Analysis of Organic Aerosol Formed Downwind of the Deepwater Horizon Oil Spill: Field Studies and Laboratory Confirmations
journal, July 2012

  • Bahreini, R.; Middlebrook, A. M.; Brock, C. A.
  • Environmental Science & Technology, Vol. 46, Issue 15
  • DOI: 10.1021/es301691k

Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry
journal, July 2005

  • Zhang, Qi; Alfarra, M. Rami; Worsnop, Douglas R.
  • Environmental Science & Technology, Vol. 39, Issue 13
  • DOI: 10.1021/es048568l

Effects of chemical aging on global secondary organic aerosol using the volatility basis set approach
journal, December 2013


Airborne measurement of OH reactivity during INTEX-B
journal, January 2009

  • Mao, J.; Ren, X.; Brune, W. H.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 1
  • DOI: 10.5194/acp-9-163-2009