DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

Abstract

Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model.

Authors:
 [1];  [2];  [1];  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. J.E. Purkinje Univ., Usti nad Labem (Czech Republic)
  3. J.E. Purkinje Univ., Usti nad Labem (Czech Republic); Inst. of Chemical Process Fundamental Academy of Sciences, Prague (Czech Republic)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1185892
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 119; Journal Issue: 15; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chialvo, Ariel A., Moucka, Filip, Vlcek, Lukas, and Nezbeda, Ivo. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization. United States: N. p., 2015. Web. doi:10.1021/acs.jpcb.5b00595.
Chialvo, Ariel A., Moucka, Filip, Vlcek, Lukas, & Nezbeda, Ivo. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization. United States. https://doi.org/10.1021/acs.jpcb.5b00595
Chialvo, Ariel A., Moucka, Filip, Vlcek, Lukas, and Nezbeda, Ivo. Tue . "Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization". United States. https://doi.org/10.1021/acs.jpcb.5b00595. https://www.osti.gov/servlets/purl/1185892.
@article{osti_1185892,
title = {Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization},
author = {Chialvo, Ariel A. and Moucka, Filip and Vlcek, Lukas and Nezbeda, Ivo},
abstractNote = {Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model.},
doi = {10.1021/acs.jpcb.5b00595},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 15,
volume = 119,
place = {United States},
year = {Tue Mar 24 00:00:00 EDT 2015},
month = {Tue Mar 24 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Limitations of the rigid planar nonpolarizable models of water
journal, February 2006

  • Baranyai, András; Bartók, Albert; Chialvo, Ariel A.
  • The Journal of Chemical Physics, Vol. 124, Issue 7
  • DOI: 10.1063/1.2151889

On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium
journal, October 2006


Simulating water with rigid non-polarizable models: a general perspective
journal, January 2011

  • Vega, Carlos; Abascal, Jose L. F.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22168j

Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P/ε
journal, January 2014

  • Fuentes-Azcatl, Raúl; Alejandre, José
  • The Journal of Physical Chemistry B, Vol. 118, Issue 5
  • DOI: 10.1021/jp410865y

Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model
journal, August 2014

  • Shi, L.; Ni, Y.; Drews, S. E. P.
  • The Journal of Chemical Physics, Vol. 141, Issue 8
  • DOI: 10.1063/1.4893792

Electronic Polarizability and the Effective Pair Potentials of Water
journal, September 2010

  • Leontyev, I. V.; Stuchebrukhov, A. A.
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 10
  • DOI: 10.1021/ct1002048

Improved SPC force field of water based on the dielectric constant: SPC/<mml:math altimg="si27.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>ε</mml:mi></mml:math>
journal, February 2015

  • Fuentes-Azcatl, Raúl; Mendoza, Noé; Alejandre, José
  • Physica A: Statistical Mechanics and its Applications, Vol. 420
  • DOI: 10.1016/j.physa.2014.10.072

Water from Ambient to Supercritical Conditions with the AMOEBA Model
journal, April 2013

  • Chipman, Daniel M.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 17
  • DOI: 10.1021/jp400750z

Current Status of the AMOEBA Polarizable Force Field
journal, March 2010

  • Ponder, Jay W.; Wu, Chuanjie; Ren, Pengyu
  • The Journal of Physical Chemistry B, Vol. 114, Issue 8
  • DOI: 10.1021/jp910674d

Systematic Improvement of a Classical Molecular Model of Water
journal, August 2013

  • Wang, Lee-Ping; Head-Gordon, Teresa; Ponder, Jay W.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 34
  • DOI: 10.1021/jp403802c

Polarizable Water Models from Mixed Computational and Empirical Optimization
journal, August 2013

  • Tröster, Philipp; Lorenzen, Konstantin; Schwörer, Magnus
  • The Journal of Physical Chemistry B, Vol. 117, Issue 32
  • DOI: 10.1021/jp404548k

A simple polarizable model of water based on classical Drude oscillators
journal, September 2003

  • Lamoureux, Guillaume; MacKerell, Alexander D.; Roux, Benoı̂t
  • The Journal of Chemical Physics, Vol. 119, Issue 10
  • DOI: 10.1063/1.1598191

Molecular dynamics study of water clusters, liquid, and liquid–vapor interface of water with many-body potentials
journal, May 1997

  • Dang, Liem X.; Chang, Tsun-Mei
  • The Journal of Chemical Physics, Vol. 106, Issue 19
  • DOI: 10.1063/1.473820

Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions
journal, November 1996

  • Chialvo, Ariel A.; Cummings, Peter T.
  • The Journal of Chemical Physics, Vol. 105, Issue 18
  • DOI: 10.1063/1.472718

A molecular dynamics study of polarizable water
journal, October 1989


Polarization behavior of water in extreme aqueous environments: A molecular dynamics study based on the Gaussian charge polarizable water model
journal, August 2010

  • Chialvo, Ariel A.; Horita, Juske
  • The Journal of Chemical Physics, Vol. 133, Issue 7
  • DOI: 10.1063/1.3469769

Molecular dynamics simulation of the orthobaric densities and surface tension of water
journal, March 1995

  • Alejandre, José; Tildesley, Dominic J.; Chapela, Gustavo A.
  • The Journal of Chemical Physics, Vol. 102, Issue 11
  • DOI: 10.1063/1.469505

Location of phase equilibria by temperature-quench molecular dynamics simulations
journal, December 2002


A Fixed Point Charge Model for Water Optimized to the Vapor−Liquid Coexistence Properties
journal, September 1998

  • Errington, Jeffrey R.; Panagiotopoulos, Athanassios Z.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 38
  • DOI: 10.1021/jp982068v

Molecular dynamics implementation of the Gibbs ensemble calculation
journal, December 1994

  • Palmer, Bruce J.; Lo, Chaomei
  • The Journal of Chemical Physics, Vol. 101, Issue 12
  • DOI: 10.1063/1.468440

Molecular dynamics study on the phase diagrams of linear and branched chain molecules
journal, February 2008


On the Molecular Dynamics Algorithm for Gibbs Ensemble Simulation
journal, March 1996


Gibbs ensemble Monte Carlo simulation of the properties of water with a fluctuating charges model
journal, August 1997

  • Medeiros, Milton; Costas, Marı́a Eugenia
  • The Journal of Chemical Physics, Vol. 107, Issue 6
  • DOI: 10.1063/1.474552

Monte Carlo algorithms for simulating systems with adiabatic separation of electronic and nuclear degrees of freedom
journal, December 1999

  • Chen, Bin; Siepmann, J. Ilja
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 103, Issue 2
  • DOI: 10.1007/s002140050519

Adiabatic Nuclear and Electronic Sampling Monte Carlo Simulations in the Gibbs Ensemble:  Application to Polarizable Force Fields for Water
journal, March 2000

  • Chen, Bin; Potoff, Jeffrey J.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 104, Issue 10
  • DOI: 10.1021/jp992459p

Pair approximation for polarization interaction: efficient method for Monte Carlo simulations of polarizable fluids
journal, February 2001


Pair approximation for polarization interaction and adiabatic nuclear and electronic sampling method for fluids with dipole polarizability
journal, August 2002

  • PŘEdota, Milan; Cummings, Peter T.; Chialvo, Ariel A.
  • Molecular Physics, Vol. 100, Issue 16
  • DOI: 10.1080/00268970210137284

Efficient multiparticle sampling in Monte Carlo simulations on fluids: Application to polarizable models
journal, June 2007

  • Moučka, Filip; Rouha, Michael; Nezbeda, Ivo
  • The Journal of Chemical Physics, Vol. 126, Issue 22
  • DOI: 10.1063/1.2745293

Multi-particle sampling in Monte Carlo simulations on fluids: efficiency and extended implementations
journal, July 2009


Computationally efficient Monte Carlo simulations for polarisable models: multi-particle move method for water and aqueous electrolytes
journal, December 2013


Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results
journal, September 2014

  • Chialvo, Ariel A.; Vlcek, Lukas
  • The Journal of Physical Chemistry B, Vol. 118, Issue 47
  • DOI: 10.1021/jp509074p

The Dielectric Polarization of Polar Liquids
journal, October 1939

  • Kirkwood, John G.
  • The Journal of Chemical Physics, Vol. 7, Issue 10
  • DOI: 10.1063/1.1750343

Electric Moments of Molecules in Liquids
journal, August 1936

  • Onsager, Lars
  • Journal of the American Chemical Society, Vol. 58, Issue 8
  • DOI: 10.1021/ja01299a050

Development of a simple, self-consistent polarizable model for liquid water
journal, January 2003

  • Yu, Haibo; Hansson, Tomas; van Gunsteren, Wilfred F.
  • The Journal of Chemical Physics, Vol. 118, Issue 1
  • DOI: 10.1063/1.1523915

Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm
journal, August 2003

  • Lamoureux, Guillaume; Roux, Benoı̂t
  • The Journal of Chemical Physics, Vol. 119, Issue 6
  • DOI: 10.1063/1.1589749

Introduction of the shell model of ionic polarizability into molecular dynamics calculations
journal, November 1974


The refractive index and electronic gap of water and ice increase with increasing pressure
journal, May 2014

  • Pan, Ding; Wan, Quan; Galli, Giulia
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4919

Microscopic structure of water at elevated pressures and temperatures
journal, March 2013

  • Sahle, C. J.; Sternemann, C.; Schmidt, C.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 16
  • DOI: 10.1073/pnas.1220301110

A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
journal, January 2004

  • Oostenbrink, Chris; Villa, Alessandra; Mark, Alan E.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20090

Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

CHARMM: The biomolecular simulation program
journal, July 2009

  • Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.
  • Journal of Computational Chemistry, Vol. 30, Issue 10
  • DOI: 10.1002/jcc.21287

DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism
journal, January 2006

  • Todorov, Ilian T.; Smith, William; Trachenko, Kostya
  • Journal of Materials Chemistry, Vol. 16, Issue 20, p. 1911-1918
  • DOI: 10.1039/b517931a

A transferable classical potential for the water molecule
journal, October 2010

  • Baranyai, András; Kiss, Péter T.
  • The Journal of Chemical Physics, Vol. 133, Issue 14
  • DOI: 10.1063/1.3490660

Efficient Handling of Gaussian Charge Distributions: An Application to Polarizable Molecular Models
journal, November 2014

  • Kiss, Péter T.; Sega, Marcello; Baranyai, András
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 12
  • DOI: 10.1021/ct5009069

From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model
journal, June 2005

  • Paricaud, Patrice; Předota, Milan; Chialvo, Ariel A.
  • The Journal of Chemical Physics, Vol. 122, Issue 24
  • DOI: 10.1063/1.1940033

Liquid-vapor equilibrium isotopic fractionation of water: How well can classical water models predict it?
journal, March 2009

  • Chialvo, Ariel A.; Horita, Juske
  • The Journal of Chemical Physics, Vol. 130, Issue 9
  • DOI: 10.1063/1.3082401

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Singularity free algorithm for molecular dynamics simulation of rigid polyatomics
journal, August 1977


Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules
journal, January 2003

  • Kolafa, Ji?�
  • Journal of Computational Chemistry, Vol. 25, Issue 3
  • DOI: 10.1002/jcc.10385

On the pressure calculation for polarizable models in computer simulation
journal, March 2012

  • Kiss, Péter T.; Baranyai, András
  • The Journal of Chemical Physics, Vol. 136, Issue 10
  • DOI: 10.1063/1.3692733

The Structure of the First Coordination Shell in Liquid Water
journal, May 2004


Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field
journal, January 2010

  • Yu, Haibo; Whitfield, Troy W.; Harder, Edward
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 3
  • DOI: 10.1021/ct900576a

The use of a point polarizable dipole in intermolecular potentials for water
journal, August 1998


Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry
journal, January 2015

  • Vlcek, Lukas; Uhlik, Filip; Moucka, Filip
  • The Journal of Physical Chemistry A, Vol. 119, Issue 3
  • DOI: 10.1021/jp509401d

Molecular Simulation of Aqueous Electrolyte Solubility. 2. Osmotic Ensemble Monte Carlo Methodology for Free Energy and Solubility Calculations and Application to NaCl
journal, June 2011

  • Moučka, Filip; Lísal, Martin; Škvor, Jiří
  • The Journal of Physical Chemistry B, Vol. 115, Issue 24
  • DOI: 10.1021/jp202054d

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Works referencing / citing this record:

Rigorous force field optimization principles based on statistical distance minimization
journal, October 2015

  • Vlcek, Lukas; Chialvo, Ariel A.
  • The Journal of Chemical Physics, Vol. 143, Issue 14
  • DOI: 10.1063/1.4932360

Mapping the Drude polarizable force field onto a multipole and induced dipole model
journal, October 2017

  • Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.
  • The Journal of Chemical Physics, Vol. 147, Issue 16
  • DOI: 10.1063/1.4984113

Thermodynamics of supersaturated steam: Molecular simulation results
journal, December 2016

  • Moučka, Filip; Nezbeda, Ivo
  • The Journal of Chemical Physics, Vol. 145, Issue 24
  • DOI: 10.1063/1.4972411

On the behavior of the osmotic second virial coefficients of gases in aqueous solutions: Rigorous results, accurate approximations, and experimental evidence
journal, March 2019

  • Chialvo, Ariel A.; Crisalle, Oscar D.
  • The Journal of Chemical Physics, Vol. 150, Issue 12
  • DOI: 10.1063/1.5047525