DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results

Abstract

We present a detailed derivation of the complete set of expressions required for the implementation of an Ewald summation approach to handle the long-range electrostatic interactions of polar and ionic model systems involving Gaussian charges and induced dipole moments with a particular application to the isobaricisothermal molecular dynamics simulation of our Gaussian Charge Polarizable (GCP) water model and its extension to aqueous electrolytes solutions. The set comprises the individual components of the potential energy, electrostatic potential, electrostatic field and gradient, the electrostatic force and the corresponding virial. Moreover, we show how the derived expressions converge to known point-based electrostatic counterparts when the parameters, defining the Gaussian charge and induced-dipole distributions, are extrapolated to their limiting point values. Finally, we illustrate the Ewald implementation against the current reaction field approach by isothermal-isobaric molecular dynamics of ambient GCP water for which we compared the outcomes of the thermodynamic, microstructural, and polarization behavior.

Authors:
 [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1185662
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 118; Journal Issue: 47; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Ewald summation; reaction field; Gaussian distributions; induced-dipole interactions; GCP water model; extreme aqueous environments

Citation Formats

Chialvo, Ariel A., and Vlcek, Lukas. Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results. United States: N. p., 2014. Web. doi:10.1021/jp509074p.
Chialvo, Ariel A., & Vlcek, Lukas. Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results. United States. https://doi.org/10.1021/jp509074p
Chialvo, Ariel A., and Vlcek, Lukas. Sat . "Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results". United States. https://doi.org/10.1021/jp509074p. https://www.osti.gov/servlets/purl/1185662.
@article{osti_1185662,
title = {Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results},
author = {Chialvo, Ariel A. and Vlcek, Lukas},
abstractNote = {We present a detailed derivation of the complete set of expressions required for the implementation of an Ewald summation approach to handle the long-range electrostatic interactions of polar and ionic model systems involving Gaussian charges and induced dipole moments with a particular application to the isobaricisothermal molecular dynamics simulation of our Gaussian Charge Polarizable (GCP) water model and its extension to aqueous electrolytes solutions. The set comprises the individual components of the potential energy, electrostatic potential, electrostatic field and gradient, the electrostatic force and the corresponding virial. Moreover, we show how the derived expressions converge to known point-based electrostatic counterparts when the parameters, defining the Gaussian charge and induced-dipole distributions, are extrapolated to their limiting point values. Finally, we illustrate the Ewald implementation against the current reaction field approach by isothermal-isobaric molecular dynamics of ambient GCP water for which we compared the outcomes of the thermodynamic, microstructural, and polarization behavior.},
doi = {10.1021/jp509074p},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 47,
volume = 118,
place = {United States},
year = {Sat Nov 01 00:00:00 EDT 2014},
month = {Sat Nov 01 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Simulating water with rigid non-polarizable models: a general perspective
journal, January 2011

  • Vega, Carlos; Abascal, Jose L. F.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22168j

Specific Ion Effects at the Air/Water Interface
journal, April 2006

  • Jungwirth, Pavel; Tobias, Douglas J.
  • Chemical Reviews, Vol. 106, Issue 4
  • DOI: 10.1021/cr0403741

Recent Advances in Molecular Simulations of Ion Solvation at Liquid Interfaces
journal, April 2006

  • Chang, Tsun-Mei; Dang, Liem X.
  • Chemical Reviews, Vol. 106, Issue 4
  • DOI: 10.1021/cr0403640

The Water Dipole Moment in Water Clusters
journal, February 1997


Optimized Unlike-Pair Interactions for Water–Carbon Dioxide Mixtures Described by the SPC/E and EPM2 Models
journal, July 2011

  • Vlcek, Lukas; Chialvo, Ariel A.; Cole, David R.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 27
  • DOI: 10.1021/jp203241q

Polarizable point‐charge model for water: Results under normal and extreme conditions
journal, September 1996

  • Svishchev, Igor M.; Kusalik, Peter G.; Wang, Jian
  • The Journal of Chemical Physics, Vol. 105, Issue 11
  • DOI: 10.1063/1.472313

Development of a simple, self-consistent polarizable model for liquid water
journal, January 2003

  • Yu, Haibo; Hansson, Tomas; van Gunsteren, Wilfred F.
  • The Journal of Chemical Physics, Vol. 118, Issue 1
  • DOI: 10.1063/1.1523915

A simple polarizable model of water based on classical Drude oscillators
journal, September 2003

  • Lamoureux, Guillaume; MacKerell, Alexander D.; Roux, Benoı̂t
  • The Journal of Chemical Physics, Vol. 119, Issue 10
  • DOI: 10.1063/1.1598191

Development of a Nonlinear Classical Polarization Model for Liquid Water and Aqueous Solutions: COS/D
journal, October 2009

  • Kunz, Anna-Pitschna E.; van Gunsteren, Wilfred F.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 43
  • DOI: 10.1021/jp903164s

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Dynamical fluctuating charge force fields: Application to liquid water
journal, October 1994

  • Rick, Steven W.; Stuart, Steven J.; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468398

Development of Polarizable Water Force Fields for Phase Equilibrium Calculations
journal, March 2000

  • Chen, Bin; Xing, Jianhua; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 104, Issue 10
  • DOI: 10.1021/jp993687m

Accounting for polarization in molecular simulation
journal, November 2005


Many-body effects and simulations of potassium channels
journal, March 2009

  • Illingworth, Christopher J.; Domene, Carmen
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 465, Issue 2106
  • DOI: 10.1098/rspa.2009.0014

Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications
journal, August 2009

  • Lopes, Pedro E. M.; Roux, Benoit; MacKerell, Alexander D.
  • Theoretical Chemistry Accounts, Vol. 124, Issue 1-2
  • DOI: 10.1007/s00214-009-0617-x

The use of a point polarizable dipole in intermolecular potentials for water
journal, August 1998


Key Role of the Polarization Anisotropy of Water in Modeling Classical Polarizable Force Fields
journal, August 2007

  • Piquemal, Jean-Philip; Chelli, Riccardo; Procacci, Piero
  • The Journal of Physical Chemistry A, Vol. 111, Issue 33
  • DOI: 10.1021/jp072687g

Accuracy of typical approximations in classical models of intermolecular polarization
journal, January 2008

  • Söderhjelm, Pär; Öhrn, Anders; Ryde, Ulf
  • The Journal of Chemical Physics, Vol. 128, Issue 1
  • DOI: 10.1063/1.2814240

Molecular polarizabilities calculated with a modified dipole interaction
journal, August 1981


An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields
journal, April 1994

  • Bernardo, Dan N.; Ding, Yanbo; Krogh-Jespersen, Karsten
  • The Journal of Physical Chemistry, Vol. 98, Issue 15
  • DOI: 10.1021/j100066a043

A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle
journal, November 2002

  • Chelli, Riccardo; Procacci, Piero
  • The Journal of Chemical Physics, Vol. 117, Issue 20
  • DOI: 10.1063/1.1515773

From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model
journal, June 2005

  • Paricaud, Patrice; Předota, Milan; Chialvo, Ariel A.
  • The Journal of Chemical Physics, Vol. 122, Issue 24
  • DOI: 10.1063/1.1940033

A transferable classical potential for the water molecule
journal, October 2010

  • Baranyai, András; Kiss, Péter T.
  • The Journal of Chemical Physics, Vol. 133, Issue 14
  • DOI: 10.1063/1.3490660

Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation
journal, May 2003

  • Ren, Pengyu; Ponder, Jay W.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 24
  • DOI: 10.1021/jp027815+

On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation
journal, October 2005

  • Masia, Marco; Probst, Michael; Rey, Rossend
  • The Journal of Chemical Physics, Vol. 123, Issue 16
  • DOI: 10.1063/1.2075107

A polarizable model for water using distributed charge sites
journal, December 1988

  • Sprik, Michiel; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 89, Issue 12
  • DOI: 10.1063/1.455722

A new flexible/polarizable water model
journal, August 1991

  • Zhu, Sheng‐Bai; Singh, Surjit; Robinson, G. Wilse
  • The Journal of Chemical Physics, Vol. 95, Issue 4
  • DOI: 10.1063/1.460930

Handling Electrostatic Interactions in Molecular Simulations: A Systematic Study
journal, January 2008

  • Kolafa, Jiří; Moučka, Filip; Nezbeda, Ivo
  • Collection of Czechoslovak Chemical Communications, Vol. 73, Issue 4
  • DOI: 10.1135/cccc20080481

The computer simulation of polar liquids
journal, August 1979


Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation
journal, May 1999

  • Wolf, D.; Keblinski, P.; Phillpot, S. R.
  • The Journal of Chemical Physics, Vol. 110, Issue 17
  • DOI: 10.1063/1.478738

Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics
journal, June 2006

  • Fennell, Christopher J.; Gezelter, J. Daniel
  • The Journal of Chemical Physics, Vol. 124, Issue 23
  • DOI: 10.1063/1.2206581

Taming the Ewald sum in the computer simulation of charged systems
journal, September 1987


Reaction field simulation of water
journal, February 1982


Computation of the water density distribution at the ice-water interface using the potentials-of-mean-force expansion
journal, January 1994


Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants
journal, October 1980

  • de Leeuw, S. W.; Perram, J. W.; Smith, E. R.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 1752
  • DOI: 10.1098/rspa.1980.0135

Extension and Simple Proof of Lekner's Summation Formula for Coulomb Forces
journal, September 1994


Electroneutrality in the Lekner–Sperb method
journal, March 2005


Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions
journal, November 1996

  • Chialvo, Ariel A.; Cummings, Peter T.
  • The Journal of Chemical Physics, Vol. 105, Issue 18
  • DOI: 10.1063/1.472718

Water above its boiling point: Study of the temperature and density dependence of the partial pair correlation functions. I. Neutron diffraction experiment
journal, September 1994

  • Postorino, P.; Ricci, M. A.; Soper, A. K.
  • The Journal of Chemical Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.467462

Neutron diffraction studies of H 2 O/D 2 O at supercritical temperatures. A direct determination of g HH ( r ), g OH ( r ), and g OO ( r )
journal, October 1994

  • Tromp, R. H.; Postorino, P.; Neilson, G. W.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468403

Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data
journal, January 1997

  • Soper, A. K.; Bruni, F.; Ricci, M. A.
  • The Journal of Chemical Physics, Vol. 106, Issue 1
  • DOI: 10.1063/1.473030

Virial Coefficients of Polarizable Water:  Applications to Thermodynamic Properties and Molecular Clustering
journal, November 2007

  • Benjamin, Kenneth M.; Schultz, Andrew J.; Kofke, David A.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 43
  • DOI: 10.1021/jp0743166

Fourth and Fifth Virial Coefficients of Polarizable Water
journal, June 2009

  • Benjamin, Kenneth M.; Schultz, Andrew J.; Kofke, David A.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 22
  • DOI: 10.1021/jp901232m

Clusters of classical water models
journal, November 2009

  • Kiss, Péter T.; Baranyai, András
  • The Journal of Chemical Physics, Vol. 131, Issue 20
  • DOI: 10.1063/1.3266838

Polarizable contributions to the surface tension of liquid water
journal, September 2006

  • Rivera, Jose L.; Starr, Francis W.; Paricaud, Patrice
  • The Journal of Chemical Physics, Vol. 125, Issue 9
  • DOI: 10.1063/1.2345063

Polarization behavior of water in extreme aqueous environments: A molecular dynamics study based on the Gaussian charge polarizable water model
journal, August 2010

  • Chialvo, Ariel A.; Horita, Juske
  • The Journal of Chemical Physics, Vol. 133, Issue 7
  • DOI: 10.1063/1.3469769

Liquid-vapor equilibrium isotopic fractionation of water: How well can classical water models predict it?
journal, March 2009

  • Chialvo, Ariel A.; Horita, Juske
  • The Journal of Chemical Physics, Vol. 130, Issue 9
  • DOI: 10.1063/1.3082401

A molecular dynamics study of polarizable water
journal, October 1989


Towards a polarizable force field for molecular liquids
journal, April 2002


N-particle dynamics of polarizable Stockmayer-type molecules
journal, August 1977


Effect of Electrostatic Force Truncation on Interfacial and Transport Properties of Water
journal, January 1996

  • Feller, Scott E.; Pastor, Richard W.; Rojnuckarin, Atipat
  • The Journal of Physical Chemistry, Vol. 100, Issue 42
  • DOI: 10.1021/jp9614658

Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions
journal, October 1997

  • Spohr, E.
  • The Journal of Chemical Physics, Vol. 107, Issue 16
  • DOI: 10.1063/1.474295

Classical Electrostatics for Biomolecular Simulations
journal, August 2013

  • Cisneros, G. Andrés; Karttunen, Mikko; Ren, Pengyu
  • Chemical Reviews, Vol. 114, Issue 1
  • DOI: 10.1021/cr300461d

Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system
journal, February 1950

  • Boys, S. F.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 200, Issue 1063, p. 542-554
  • DOI: 10.1098/rspa.1950.0036

Molecular Electronic-Structure Theory
book, August 2000


Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities
journal, April 2000

  • Nymand, Thomas M.; Linse, Per
  • The Journal of Chemical Physics, Vol. 112, Issue 14
  • DOI: 10.1063/1.481216

An improved Polarflex water model
journal, January 2003

  • Jeon, Jonggu; Lefohn, Aaron E.; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 118, Issue 16
  • DOI: 10.1063/1.1560934

Ewald summation of electrostatic multipole interactions up to the quadrupolar level
journal, October 2003

  • Aguado, Andrés; Madden, Paul A.
  • The Journal of Chemical Physics, Vol. 119, Issue 14
  • DOI: 10.1063/1.1605941

Some comments and corrections regarding the calculation of electrostatic potential derivatives using the Ewald summation technique
journal, June 2011

  • Stenhammar, Joakim; Trulsson, Martin; Linse, Per
  • The Journal of Chemical Physics, Vol. 134, Issue 22
  • DOI: 10.1063/1.3599045

Molecular dynamics simulations at constant pressure and/or temperature
journal, February 1980

  • Andersen, Hans C.
  • The Journal of Chemical Physics, Vol. 72, Issue 4
  • DOI: 10.1063/1.439486

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Equation of state, refractive index and polarizability of compressed water to 7 GPa and 673 K
journal, February 2013

  • Sanchez-Valle, Carmen; Mantegazzi, Davide; Bass, Jay D.
  • The Journal of Chemical Physics, Vol. 138, Issue 5
  • DOI: 10.1063/1.4789359

Singularity free algorithm for molecular dynamics simulation of rigid polyatomics
journal, August 1977


Error estimates on averages of correlated data
journal, July 1989

  • Flyvbjerg, H.; Petersen, H. G.
  • The Journal of Chemical Physics, Vol. 91, Issue 1
  • DOI: 10.1063/1.457480

Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules
journal, January 2003

  • Kolafa, Ji?�
  • Journal of Computational Chemistry, Vol. 25, Issue 3
  • DOI: 10.1002/jcc.10385

Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q -range
journal, February 2013

  • Skinner, Lawrie B.; Huang, Congcong; Schlesinger, Daniel
  • The Journal of Chemical Physics, Vol. 138, Issue 7
  • DOI: 10.1063/1.4790861

Dipole moment fluctuation formulas in computer simulations of polar systems
journal, November 1983


Molecular dynamics studies of solvated polypeptides: Why the cut-off scheme does not work
journal, December 1992


Molecular dynamics simulations of liquid water using various long-range electrostatics techniques
journal, July 2005


Probing the Hydration Structure of Polarizable Halides: A Multiedge XAFS and Molecular Dynamics Study of the Iodide Anion
journal, October 2010

  • Fulton, John L.; Schenter, Gregory K.; Baer, Marcel D.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 40
  • DOI: 10.1021/jp106378p

The polarizable point dipoles method with electrostatic damping: Implementation on a model system
journal, December 2010

  • Sala, Jonàs; Guàrdia, Elvira; Masia, Marco
  • The Journal of Chemical Physics, Vol. 133, Issue 23
  • DOI: 10.1063/1.3511713

Polarization damping in halide–water dimers
journal, March 2006