skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

Technical Report ·
DOI:https://doi.org/10.2172/6513150· OSTI ID:6513150

The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

Research Organization:
Westinghouse Electric Corp., Pittsburgh, PA (United States)
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
6513150
Report Number(s):
ANL/OEPM-80-17
Country of Publication:
United States
Language:
English