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Abstract

A new method is introduced for real-time detection of transient change in
scenes observed by staring sensors that are subject to platform jitter, pixel
defects, variable focus, and other real-world challenges. The approach
uses flexible statistical models for the scene background and its
variability, which are continually updated to track gradual drift in the
sensor’s performance and the scene under observation. Two separate
models represent temporal and spatial variations in pixel intensity. For the
temporal model, each new frame is projected into a low-dimensional
subspace designed to capture the behavior of the frame data over a recent
observation window. Per-pixel temporal standard deviation estimates are
based on projection residuals. The second approach employs a simple
representation of jitter to generate pixelwise moment estimates from a
single frame. These estimates rely on spatial characteristics of the scene,
and are used gauge each pixel’s susceptibility to jitter. The temporal
model handles pixels that are naturally variable due to sensor noise or
moving scene elements, along with jitter displacements comparable to
those observed in the recent past. The spatial model captures jitter-induced
changes that may not have been seen previously. Change is declared in
pixels whose current values are inconsistent with both models.
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1 - INTRODUCTION

Staring remote sensors operate across a wide range of viewing geometries, wavelengths,
frame rates, pixel resolutions, and areas of application. Fixed, ground-based cameras can be used
for perimeter security and intrusion detection, traffic monitoring, military route surveillance, and
border protection. Airborne or space-based sensors might be employed for environmental land
use monitoring, weather prediction and storm tracking, and ballistic missile defense. The rapid
detection of new activity in a sensor’s field of view can be a critical processing step in each of
these scenarios. Change detection is thus an active area of research within the image science and
engineering community, and many authors have contributed methods and approaches to the basic
problem of identifying “interesting” changes to an imaged scene. The interest generated by
various types of change is generally application-specific: motion of a wind sock may be
considered “signal” when determining flight conditions along a runway, and “noise” for
perimeter security. For this reason, the various algorithms and approaches are usually designed

for (or tuned to) specific problem types.

The article by Radke et al. [20] provides a nice overview and taxonomy of the extensive
literature in the field of image change detection. The expression background modeling is often
used for problems like the one to be considered here, in which a sequence of frame-rate video
data is available, and the changes to be detected occur over a matter of seconds. Many authors
working on this type of problem assume that the frame sequence is perfectly registered [23, 26
30], so that intensity changes due to camera jitter are absent. For non-stationary cameras,
registration of the current frame to a previous frame, estimated background, or mosaic image is
often recommended [16, 24]. However, registration to a small fraction of a pixel may be required
to mitigate jitter effects [25], and this degree of precision is not always feasible, particularly at
higher sensor frame rates [22].

Comparatively few authors have addressed the problem of change detection when precise
frame registration is neither assumed nor achievable. Bruzzone and Cossu [3] develop a non-
parametric estimate of the “registration noise” distribution for a single frame, and determine that
change has occurred when pixels show intensity differences significantly larger than those



predicted by the estimated distribution. This computationally intensive approach is best suited to
offline analysis of selected frame pairs, rather than real-time change detection. Elgammal et al.
[8] apply kernel density estimation to a temporal frame history and compute pixel density
estimates that can incorporate both illumination and motion-induced changes in intensity.
Change is detected when a pixel’s current observed intensity is improbable according to the
historical model. By contrast, in [12] two separate probability density functions (PDFs) are
trained per pixel, from a single prior frame. The two PDFs are designed to account for both
uncorrelated mean-zero noise (a single Gaussian distribution), and jitter-induced noise that is
correlated both temporally and spatially (a mixture of Gaussians). Detection occurs when a
pixel’s observed intensity is statistically inconsistent with both models. Finally, Jodoin et al. [11]
perform change detection in high-jitter sequences by differencing average and observed pixel

activity maps that can be updated adaptively.

The method introduced in this paper is designed for staring sensors with a frame rate that
precludes precise registration, and for which real-time, causal change detection is required.
Sensor or platform jitter is expected, which may exhibit a non-stationary distribution featuring
sudden increases in jitter variance, as when a nearby motor is energized and induces additional
vibration of the sensor. The sensor’s pointing may slowly degrade, so that its field of view
gradually drifts away from the initial scene. The scene itself may be subject to natural change,
due to wind-driven vegetation or water surface motion at selected pixel locations. The target
changes to be detected may be quite dim in comparison to the scene gradients and the natural
scene variability. And finally, no a priori knowledge of the scene content (e.g. site model) is

available, other than a brief time history of frames used to initialize the detector.

The approach was originally designed for cases in which true change is rare (the majority
of frames do not contain “interesting” change) and small (the changes of interest impact a tiny
percentage of pixels, and are often not readily detectable by a human observer). Nonetheless, it
has proven quite effective in other scenarios, with appropriate modifications to the initialization
procedure. Our current implementation is limited to single-band (greyscale) data.

Similar to [12], our approach to designing a detector employs two separate models.

However, we estimate only the first two moments of each underlying distribution, and introduce



new techniques for generating and updating the moment estimates at sensor frame rates. The two
models are designed to capture both the temporal and spatial characteristics of each pixel’s
behavior. Together, they provide a change detection capability that is robust to pixels that are
inherently variable due to wind-induced motion of vegetation, water surface changes, or sensor
electronics; and pixels that are subject to correlated, jitter-induced changes in intensity, which
may or may not be observed during the initialization period.

The overall framework for detection is outlined in the next section. In Section 3, the
temporal approach to characterizing scene background is discussed, while a novel spatial method
for estimating pixel intensity means and variances is introduced in Section 4. The parameters
used to tune the general change detection approach to specific applications are described in
Section 5. Examples illustrating detection in several challenging scenarios are provided in

Section 6, and the paper concludes with a discussion of ongoing and future work.

2 - DETECTION FRAMEWORK

At each discrete frame time, t, we capture a new image of dimension NROW rows and
NCOL columns, where the total number of pixels per frame is N = NROWxNCOL. For each
pixel (k,h) in the frame corresponding to time t, our goal is to determine whether the intensity of
the pixel at time t is consistent with current spatial and temporal models. The determination is

made based on simple normalized differences:

X(K, h;t) = breyporar (Ki i)

z k,h;t) =
TEMPORAL ( ) éTEMPORAL (k,h;t-1)

, (1a)

X(K, 0;t) —Dgpamia (K, Dit)

Sspanar (K, it =1) (1b)

Zppna (K hit) =

Here, x(k,h;t) is the value observed in pixel (k,h) at time t, with brgmporaL and bspatiaL
representing the estimated background intensity levels for the temporal and spatial models,

respectively. The corresponding standard deviation estimates, based on data observed prior to



time t, are StemporaL @nd SspariaL. EStimation of these quantities is covered in Sections 3 and 4.

Consistency with either model is judged by comparing the normalized absolute

difference, |z|, to a fixed threshold denoted Ty, which does not vary with k, h, or t. If one is

willing to assert that the distribution of normalized differences is Gaussian, then the threshold T,
may be associated with a specific false alarm rate, and the decision may be formulated as a two-
sided statistical hypothesis test. In some instances, it may be desirable to report only changes in
a single direction. For example, with a thermal infrared sensor, only increases in heat may be of
interest. When this is the case, z itself (or —z), rather than its absolute value, is compared to

threshold T;, and the significance level of the test is calculated using a one-sided measure.

Detection occurs at pixels whose observed intensities are judged to be inconsistent with

both the temporal and spatial models. That is, whenever:
Zy (K, 151) = Min{Zrcypona. (150, [2gpama (D> T, @)

If the targets of interest are expected to cover more than a single pixel, the false alarm rate may
be reduced by requiring detection across a minimum number, NEIGH, of connected pixels prior

to declaring that change has occurred. This condition can be tested quite efficiently [31].

3 — TEMPORAL MODELING

3.1 — Adaptive Subspace Projection

As its name implies, the temporal modeling approach relies on a running time history of
each pixel’s observed intensity. Subspace projection is used to capture the structure inherent in

the highly correlated frame history data in a reasonably compact manner.

Several authors [2, 10, 14] have recommended the use of subspace projection methods to
estimate (and then mitigate) the effects of line-of-sight (LOS) jitter on change detection. Barry

and Klop [2] show that, apart from measurement noise, pixel output vectors lie within a two-

10



dimensional subspace determined by the LOS displacement vectors. This subspace can be
estimated from a sequence of frames using the first two eigenvectors of the mean-centered data
covariance matrix. Kirk and Donofrio [14] demonstrate jitter suppression by projecting observed
frames into an estimated background subspace spanned by 16 basis vectors. And Diani et al. [7]
use subspace projection to model a background that is non-stationary in both space and time.
Most of these authors comment on the computational complexity of principal subspace

estimation, which has limited its application for real-time background suppression.

Over the last few years, tremendous advances have been made in the development of fast
and numerically stable techniques for adaptive principal subspace estimation. Many papers have
appeared in journals dedicated to applied mathematics [18], signal processing [19], and neural
networks [21]. Fortunately, a few authors [5, 6] include thorough literature reviews, which
summarize the key approaches and contributions. Adaptive subspace estimation has been
successfully applied to the detection of change in highly dynamic natural scenes [17]. For
application to jitter suppression, we considered several different techniques. In [6], algorithms
are classified by desired output (signal subspace or noise subspace), computational complexity,
the number of parameters to be tuned, and whether or not the computed basis vector estimates
are orthogonal at each iteration. Based on these criteria, we selected the Fast Approximate Power
Iteration (FAPI) algorithm [1]. This approach provides orthonormal basis vector estimates at
every iteration and is very efficient computationally, with complexity O(NR), where N is the

dimensionality of the data and R the size of the desired subspace.

For jitter suppression, we wish to estimate the dominant subspace spanned by the

covariance matrix, Cxx(t), of a sequence of N-dimensional data vectors, {X(t), t € Z }. Here, X(t)

is the Nx1 column vector obtained by vectorizing the NROWxNCOL image frame observed at
time t. If the data are windowed exponentially, the covariance matrix at time t, would be

estimated using:

Coe () = S A" X (W)X (U) . 3)
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From an initial estimate, Cxx could be recursively updated at time t > t; as follows:

Cxx (t):ﬂlcxx (t—l)+X(t)XT(t) . (4)

Note that the data vectors are not mean-centered, so that the first eigenvector of Cxx will
represent the mean frame. The tunable parameter £ lies in the range [0, 1] and governs the
relative weight applied to the current basis vectors with each update. In our implementation, we
have added one additional parameter, /., which slows the rate at which large apparent changes
are incorporated into the background estimate, and will be discussed shortly. FAPI provides an
efficient means to estimating the dominant subspace of the time-varying covariance matrix,
without the computational cost of explicitly computing and decomposing Cxx. At every iteration,
the R current basis vectors are stored in an NxR weighting matrix, denoted W(t), which contains
the estimates that are current once the observation at time t has been incorporated. The steps by
which W(t-1) is updated to produce W(t), with decay parameter £, are clearly set out in [1].

Badeau et al. [1] initialize the FAPI basis vector estimates with a weight matrix whose
first R rows contain the R-dimensional identity matrix, and whose remaining rows are filled with
zeroes. However, we achieve rapid convergence by initializing the columns of W with the
following set of orthonormal vectors, computed from the first R+7 frames of the image sequence

using a Gram-Schmidt process [28]:

8
V1:ZX(t);
t=1
EX(r+7)'V
V. =X(r+7)-) ——="=V, r=2...R;
r (r+ ) 5221: VSTVS s? r ! (5)
W, (R+7)=V,/V,|. r=1...R.

Thus, the first basis vector is initialized as the normalized mean of the first eight frames, and
each successive basis vector is initialized as the normalized residual between the next frame and

its projection onto the subspace spanned by the previously-obtained basis vectors.

For real-time background suppression, the projection residuals are computed before

12



updating the basis vector estimates at each new frame. The temporal estimate of the background
component in image frame X(t) is computed by projecting X(t) onto the space spanned by the
columns of W(t-1). That is:

BTEMPORAL (t) =W (t - 1)W ! (t _1) X (t) (6)

To determine whether the intensities observed at time t are consistent with the temporal model,
the residual vector X(t) — BremporaL(t) is normalized with appropriate pixelwise standard

deviation estimates (Section 3.2) and each element is compared to the threshold, T;.

To illustrate the effectiveness of subspace projection in jitter mitigation, a simple
example of its application is provided in Figures 1 and 2. The analysis employs the 60x60 block
of pixels that is highlighted in the full image of Figure 1. This block, which contains steep spatial
gradients in various orientations, is used in the generation of a synthetic jitter sequence. The
block is replicated 101 times, incorporating translational jitter via bicubic interpolation. The jitter
displacements are independent and identically distributed (11D) bivariate Gaussian, with mean
zero and standard deviation 0.25 pixels in the row and column dimensions. White Gaussian noise
is added to each jittered version, with a standard deviation set to 0.01 of the standard deviation of

the uncontaminated pixel intensities. That is, the clutter-to-noise ratio is equal to 100.

The first 10 frames are used to initialize R = 3 basis vector estimates as in (5), and FAPI
is run through the remaining 90 frames, with decay rate f; set to 0.95. The FAPI-generated basis
vector estimates at time t = 100 are shown in panels 2a, 2b, and 2c. The first basis vector is
estimates the mean image, while the next two capture variability due to jitter in different
directions. Three sets of background suppressed versions of the final image, X(101), were
computed using three different approaches. The residual surface obtained by subtracting the
sample mean image is shown in panel 2d, the projection residual from the FAPI estimates is
shown in panel 2e, and the projection residual from the first three eigenvectors of covariance
matrix Cxx(100) is shown in panel 2f. All three sets of residuals are plotted on the same scale.
The superiority of the projection approach is immediately apparent, and the similarity of the

FAPI residuals to those obtained with a full covariance matrix decomposition is encouraging.
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Figure 1 — Image exhibiting steep intensity gradients

This 620x860-pixel image shows steep gradients along many orientations. The 60x60-pixel
area used to illustrate background suppression is highlighted.

Figure 2 — Basis vector decomposition

The three basis vectors computed using FAPI are shown in panels (2a-c). (2d) Residuals from
subtracting the mean frame. (2e) Residuals from projecting into the FAPI subspace. (2f)
Residuals from projecting into the subspace spanned by the first three eigenvectors of the 100-
sample covariance matrix.

The choice of an appropriate value for the decay rate f; depends on the application at
hand. Generally, we want to accommodate slow drift in the background, while preventing brief
transient changes from being immediately incorporated into the basis vectors (and thus no longer
detected). Suppose that a new object appears in the scene and then remains stationary, or that an
indicator light turns on and stays that way. At some point, we may want to stop reporting
“change” in the pixels containing the new object or event, so that it can be absorbed into the
background model and a return to the previous state (object absent, indicator off) will be
detected. To allow for application-specific tuning of the rate at which changes are incorporated
into the basis vectors, we introduce a new parameter, £, to the basic FAPI updating formula. At

time t, define the quantity x(k, h;t) as follows:

X (K, 0;t) = B,brewpora (K, Mt =1) + A= B,)x(K, h;1), i [z, (K, Hi1)[> T, ,
= x(k, h;t), otherwise.

(7)

When computing the updated weight matrix W(t), the vector X (t) with elements X (k, h; 1)

14



is used in place of the observed data vector, X(t). This directs the basis vector update away from
pixel values with large normalized residuals. Like the decay rate f;, parameter £, lies in the
range [0,1]. The threshold T, may be set equal to the detection threshold T, or to another value

appropriate to the application at hand. This feature is disabled by setting . equal to zero.

3.2 — Temporal Variances

The temporal standard deviation estimate for pixel (k,h), based on data prior to time t, is
denoted Eremporac(k,h;t-1). The estimates are initialized from the same R+7 frames used to start

the R basis vectors:

l R+7
§T2EMPORAL (R + 7) = R—-FGZ [X(k’ h’ u) - bTEMPORAL (k’ h’ R + 7)]2 . (8)
u=l

They are updated with each subsequent frame in the following manner:

%gTZEMPORAL (k,h;t) = 7§T2EMP0RAL (k,hit-1)+ (1~ }/)[X(k, h;t) —Brevporar (K, h;t)]z : 9)

The variance forgetting factor, y € [0,1], controls the update rate for each new observed
residual. As with background estimation, we allow for the use of two different rates, with the
slower rate selected for pixels with large normalized residuals. Specifically, we set ¥ = »; in
equation (9) if zwin(k,h;t) lies below threshold T, and ¥ = », otherwise. Due to the strong
influence that large squared residuals can have, we generally set », equal to 1.0, which prevents

any updating of the temporal variance estimate for a pixel with large normalized residual.

With a sufficient training sample, temporal estimates will capture the behavior of pixels
that are variable due to natural phenomena or sensor readout noise. As long as jitter is occurring
while the temporal estimates are initialized and updated, this will also be reflected in larger
estimated variances at pixels situated along high scene gradients. However, temporal variance
estimates cannot anticipate the large pixel intensity differences that may be observed if the
sensor platform is subject to sudden increases in the magnitude of the jitter. This is the
circumstance for which the spatial models are designed.

15



4 — SPATIAL MOMENT ESTIMATION

While temporal moment estimates are computed from a time history of pixel intensities,
the spatial estimates are computed from a single previous frame, or background estimate. The
approach to computing spatial moments is based on the realization that one does not need to
observe line-of-sight jitter over multiple frames to know which pixels may exhibit large intensity
changes in the presence of such jitter. Pixels located in regions of high scene intensity gradient
are obviously more susceptible than those lying in relatively homogeneous regions, and the
variability of each pixel’s intensity in the presence of jitter can be estimated from the pixel
values in its immediate neighborhood. This is accomplished using a grid of conditional
expectations in the vicinity of each pixel.

k+1
k Vy
k-1 —/
h-1 h h+1

Figure 3 — Grid of pixel values

Consider the example shown in Figure 3. The nodes represent pixel centers in an
arbitrary 3 x 3 sub-region of a larger image. At time t-1, the value at pixel (k, h) is equal to V;,
with values at nearby pixels given by V,, V3, and V.. Suppose it is known that the jitter
occurring between times t-1 and t will shift the sensor so that pixel (k, h) will be centered at the
position corresponding to (k+dr, h+dc) at time t. In this case, bilinear interpolation could be used

to predict the value observed at pixel (k, h) at time t in the following manner:

Rk, h;t) = V,+dr(V,— V,) + dc(V,— V,) + (dr)(de)(V, + V,— V,- V) . (10)

If the true shift (dr, dc) is unknown, as will generally be the case, its statistical
distribution can be used to estimate the mean and variance of each pixel at time t as a function of
the pixel values at time t-1. This is accomplished using a grid of conditional expectations in the

neighborhood of each pixel location. We begin by assuming that the statistical distribution of the

16



jitter is known. For example, suppose that the row and column shifts occurring between times t-1
and t are 11D Gaussian with mean zero and standard deviation . From this distribution, we can
compute the probability of the sensor jittering in such a manner that pixel (k, h) will be centered

in any of the “cells” in the vicinity of (k, h) at time t.

Figure 4 — Grid of cell probabilities
Cells in the vicinity of pixel (k, h) are shown.

Let Ajj(t) represent the event that the jitter occurring between time t-1 and t has a row
displacement between i and i+1 and a column displacement between j and j+1. The probability
of event Ajj(t) is denoted P(i, j). Note that the probability does not depend on the time t, as the
jitter distribution is assumed (for now) to be stationary. Nor does P(i, j) depend on the location
(k, h) of the particular pixel whose value we are predicting, as jitter is assumed to manifest itself
as a rigid translation over the entire image. Thus, for any arbitrary pixel (k, h), the quantity P(i, j)
represents the probability that jitter will re-center pixel (k, h) to a row position between k+i and
k+i+1, and a column position between h+j and h+j+1. The grid of probabilities in the vicinity of
pixel (k, h) is depicted in Figure 4.

The actual probabilities can be computed in a straightforward manner from the assumed

bivariate Gaussian distribution of row and column displacements. In particular:

o[ B w
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where @ represents the probability distribution function of a standard (zero mean, unit variance)
Gaussian random variable. Probabilities computed using (11) will be concentrated in a small

block of cells centered at node (k, h). For any value of o specified, a box size can be calculated
such that the probability of jittering to a location within a BOX x BOX region centered on (k, h)

exceeds 99%. To find the appropriate box size, compute the quantity Y as follows:
Y = —UCD_l(l_— 2099) = 28060 . (12)

Here, @ is the inverse standard Gaussian distribution function. Numerical evaluation
gives 2.806 as the Gaussian quantile corresponding to probability (1— \/0.99)/2. It follows that

the minimum box size required to ensure a 99% coverage probability has dimension equal to
twice the smallest integer that exceeds 2.806 o. Thus, if o = 1/4 pixel, we see that Y=0.702 and
a 2 x 2 cell region centered on (k, h) has at least a 99% chance of containing the position jittered
to at time t. For o = 1/2 pixel, a 4 x 4 cell region like the one depicted in Figure 4 has at least a
99% coverage probability, while a 6 x 6 cell region will suffice for o = 1. Cells lying outside of
the centered region calculated for a given value of o have very low probability and thus minimal
impact on the spatial variance estimates. Omitting such outlying cells from the calculations that

follow provides a substantial improvement in computational run-time.

Once an appropriate box size has been identified, expression (11) is used to compute the
probability of each cell within the box. These probabilities are normalized by the total
probability of the centered BOX x BOX region. The normalizing factor, Pror, is calculated by
inverting (12):

20

Pror = {1—2®(ﬂﬂ . (13)

The normalized probability estimate for the cell bounded by rows k+i and k+i+1, and columns

h+j and h+j+1 is denoted P(i, j) and is given by:

18



P(i, j) = P(i, j)/ Pror - (14)

Normalization ensures that the sum of the cell probabilities equals unity. Because Pror is defined
to lie between 0.99 and 1.0, the adjustments made in (14) are always minor.

The next step in spatial moment estimation is calculating the conditional expected value
of pixel (k, h) at time t, given the that its center has jittered into a specific cell, and assuming the
bilinear model (10). This quantity depends on the exact row and column shifts (dr and dc) within
the cell to which the pixel has jittered, and the values of the four pixels bordering the cell at time
t-1. Of these six quantities, only dr and dc are unknown at time t-1. The intensity estimate (10) is
a simple function of the two unknowns, so its mean and mean-square can be computed in a

straightforward manner. Begin by defining the following quantities for algebraic convenience:

D1=Vl

D2:V3_V1 (15)
D3 :VZ—Vl

D4 :V1+V4—V2—V3 .

As in Figure 3, V; represents the pixel value at time t-1 in the lower left-hand corner of the cell
into which jitter has occurred, while V5, V3, and V4 are the lower right, upper left and upper right
corners, respectively. All of these quantities are known at time t-1. From (10), it follows that the

conditional expected values are given by:

E[x(k,hit) | A; ()] = D,+ D, E[dr | A; (t)]+ D, E[dc | A; ()] +

(16a)
D, E[dr | A; ()]E[dc | A; ()]
E[X*(k, h;t) | A; (t)]= Di +2D,D,E[dr | A; (t)]+2D,D,E[dc | A; (1)] +
2(D,D,+D,D,)E[dr | A; ()]E[dc| A; (t)]+ DIE[r* | Ay ()] + (16b)

D2E[dc? | A, (t)]+2D,D,E[dr? | A, ()]E[dc | A (0] +
2D,D,E[dr | A, (®)]E[dc? | A, (t)]+ DZE[dr? | A, ®]E[dc? | A, (t)] -

19



We see in (16a) and (16b) that the mean and variance of the pixel value estimates
obtained using bilinear interpolation are functions of the conditional expected values of the row
and column displacements and their squares, given jitter into a specific cell. These conditional

expectations are calculated using the truncated Gaussian distribution [13]. In particular:

E[dr | A; ()] = @(Mj_@(i] o-i, (17a)
(2 (o2
i0'¢(ij— (i-Do ¢(I+lj
E[dr? | A, ()] =0 +i% - g /. (17b)

ERa

Note that ¢ represents the density function of the standard Gaussian distribution.
Conditional expectations for the column displacements E[dc|Aj;(t)] and their squares are

calculated for each column j in the same manner.

Substituting the quantities (17a) and (17b), and their equivalents for column
displacement, into (16a) and (16b) gives expressions for the expected value and mean-square in
pixel (k, h) at time t, given jitter into the cell bounded by rows k+i and k+i+1, and columns h+j
and h+j+1. The Law of Total Probability is then invoked to estimate the unconditional
expectations:

b (K, it) = ELX(K, i )] = 3 3 ELR(K,hit) | A, (]G3, J) (182)
ELR (k,hit)] = X 3 ELR* (k,hit) | A, (0BG J). (18b)

The double sums in (18) each run from a lower limit of —-BOX/2 to an upper limit of BOX/2 —1.

Finally, the spatial estimate of the variance of pixel (k, h) at time t, denoted &2, (K, h;t), is
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calculated from first principles:
Sopamar (K, ;1) = var[R(k, h;t)] = E[X° (k, h; )] - E*[X(k, h;t)]. (19)

With this approach, spatial moment estimates for every pixel (k, h) and time t are
computed based only on the pixel values in frame t-1 and the assumed jitter model. An example
of a spatial standard deviation map is depicted in Figure 5. The 60 x 60 block highlighted in
Figure 1 is shown in panel 5a, while panel 5b is the spatial standard deviation map computed for

jitter standard deviation o = 0.5 pixel.
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Figure 5 — Image block and spatial standard deviation map
(5a) 60 x 60 block of pixels. (5b) Spatial standard deviation map for ¢ = 0.50 pixel.

Figure 6 — Effect of jitter standard deviation setting

Scatterplots show the relationship between spatial standard deviations calculated with different
values of the jitter standard deviation. (a) 0 =0.10vs. 0 = 0.25. (b) 0 =0.10vs. 6 =0.50. (c) 0 =
0.10vs.0=0.75.(b) 6 =0.25vs. 0 =0.50. (b) 0 =0.25 vs. 0 = 0.75. (b) 0 = 0.50 vs. 0 = 0.75.

Spatial moment estimates are surprisingly robust to misspecification of the jitter standard
deviation. For example, experience has shown that two sets of spatial standard deviation
estimates computed using (11) - (19), but using different values of o, differ approximately by a
constant of proportionality, as long as the jitter standard deviations are of the same order of
magnitude. The relationship can be seen in Figure 6, which shows pairwise comparisons between

spatial standard deviations computed with ¢ = 0.10, 0.25, 0.50, and 0.75 pixels. In all cases, the
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correlation coefficient exceeds 0.95, indicating a strong linear relationship between the various
sets of estimates. This leads us to develop a strategy for calculating frame-specific scale factors

that can be applied to compensate for the actual level of jitter that has occurred.

The reasoning is as follows. Suppose that we have computed spatial standard deviations
EspatiaL(k,h;t) for each pixel (k, h) at time t, using the frame observed at time t-1 and o = 0.5
pixels. Suppose further that the actual jitter occurring between times t-1 and t results in a row
displacement of 0.01 pixel and a column displacement of 0.05 pixel, far lower than expected
under the model. If jitter is the primary source of pixel intensity differences, we expect that raw
spatial differences normalized by the spatial standard deviations &spariaL(k,h;t) will tend to be
small in absolute value, particularly along scene gradients. Conversely, if the displacement at
time t is unusually large, normalized differences will tend to be large in absolute value along the
scene gradients. To compensate for this effect, we re-scale the spatial standard deviation
estimates on a frame-by-frame basis, using a scale factor that is calculated exclusively from
pixels that show relatively strong spatial gradients, and do not have unusually large initial

residuals. This is achieved as follows:
1. Compute initial normalized differences zspaiaL(k,h;t) as in (1b).

2. ldentify candidate outlier pixels as in Tukey [27]: Sort the normalized residuals,
and define the interquartile range (IQR) to be the difference between the 75"
percentile and the 25™ percentile of the values. Pixels with normalized residuals 1.5 x
IQR lower than the 25" percentile or 1.5 x IQR higher than the 75" percentile are
considered outliers. These are potential scene changes, which should be excluded

from jitter normalization.

3. ldentify the pixels that are most likely to be dominated by jitter noise: those with
strong spatial gradients. Define the set Q, of size N, to contain all non-outlier pixels
(k,h) such that &spamiaL(k,h;t) is above the 80% percentile of all spatial standard
deviation estimates at time t. Over the set Q, calculate the following:
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m(t) :NLZZSPATIAL(k’h;t)v S(t) = (N 1_1)Z[ZSPATIAL (k,h;t) -m(k,h;t)]*  (21)

4. Finally, multiply the spatial standard deviation estimate at every pixel by S(t):

Eepane (K1) = S(O)Egparia (K, D3E) (22)

Note that the upper and lower outlier thresholds (step 2) and the 80" percentile of the spatial
standard deviations (step 3) are unlikely to undergo large changes quickly. Thus, for real-time
applications they do need not be updated with every frame. The scale factor S(t) compensates for
differences between the actual jitter displacement at time t, and the model specified in computing
spatial standard deviations. This is achieved without direct estimation of the actual jitter

displacements (i.e., frame registration).

To keep target changes from contaminating the spatial moment estimates at time t, the
moments can be calculated using an estimated background frame prior to time t, rather than a
single prior frame (which may contain targets). In particular, we can obtain the pixel values V1,
V2, V3, and V4 for use in (10) — (18) from a temporal background estimate Bremporal(t - S)
computed as in Equation (6) from a prior frame, X(t —s), where s > 1. If the sensor is subject to
drift in pointing or focus, it may be necessary to update spatial moments with every frame. If the
sensor, and thus the background, is expected to remain fairly stable aside from jitter effects, then

a lower update rate may be preferable. Examples illustrating both cases are included in Section 6.

5 — IMPLEMENTATION

The ten parameters used to tune the change detection algorithm are summarized in Table
1. All have been introduced previously with the exception of T3, which is employed to prevent
false alarms due to very small intensity changes in low-variance pixels. T3 is applied as follows.
For pixel (k, h) at time t, if the numerators of (1a) and (1b) (the raw temporal and spatial
deviations about background) each lie below T in absolute value, then neither detection nor
background suppression occurs, regardless of the magnitudes of the normalized differences.
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Table 1 — Parameters of the change detection algorithm

Parameter: Description:
R Number of basis vectors used in temporal background estimation.
f1 Decay rate applied in FAPI basis vector updates.
2 Decay rate for target suppression in FAPI basis vector updates.
71 Default forgetting factor for temporal variance estimation.
V2 Forgetting factor for temporal variance estimation, with target
suppression.
o Jitter standard deviation for spatial moment estimation.
T, Minimum normalized difference threshold for target detection.
T, Minimum normalized difference threshold for target suppression.
Ts Minimum raw difference threshold for target detection.
NEIGH Minimum number of pixels in a contiguous cluster of detections.

The number of basis vectors, R, is set to 3 in all of our applications. Selecting a larger
number sometimes produces cleaner looking residual surfaces. However, experience has shown
that detector performance may suffer due to an increase in false alarms in unstructured parts of
the scene, which may not be well represented in a model subspace that is dominated by strong
spatial gradients. The decay parameter £; should be large enough to prevent small transient
changes from being immediately incorporated into the background estimate, but small enough to
track gradual change. Values of S, between 0.90 and 0.99 are suitable for most problem types.
Suppression of target changes from the background subspace is accomplished using parameter
S2, which we generally set at or above 0.99, depending on whether we wish to allow gradual
incorporation of persistent change. The forgetting factors y; and y, control the rate at which
temporal variance estimates are updated with each new frame. We recommend setting y; = 0.99

as a default, with y, fixed at 1.0 for robustness to real change or anomalous readings.

The remaining five parameters (jitter standard deviation o, thresholds Ty, T, and Ts, and
number of connected detection pixels NEIGH) are application-specific. Setting o conservatively,
based on the worst jitter anticipated, is a reasonable strategy in most cases. Appropriate values of
thresholds Ty, T,, and T3 will depend on the characteristics of the noise environment and the
expected strength of the target change signals. Finally, NEIGH may be adjusted to the size
(spatial extent) of the changes to be detected. In the examples that follow, which represent two
very different change detection scenarios, the first five parameters are held fixed throughout,

while the final five are tuned to the specific data sets.
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6 — ILLUSTRATIVE EXAMPLES

In this section, the application of our change detection algorithm is illustrated in two
distinct problem domains. The first case uses a natural scene with an extremely dynamic
background, and target changes that are small and rare. By contrast, the second scenario involves

a highly structured, man-made scene, with target changes that are large, frequent, and persistent.

6.1 — Natural Scene

Several frames of a video sequence downloaded from the on-line Bear Camera at the
Woodland Park Zoo in Seattle are shown in Figure 7. To provide scene context, panel 7a is
displayed in color, although all of our detection work is conducted in single-band greyscale, as
seen in panels 7b and 7c. To appreciate the challenge associated with this dynamic scene, the
interested reader is encouraged to view live video via the Zoo’s website [29]. A shallow stream
runs through the middle of scene, then flows over a log and into a pool at the bottom of the
frame. The intensity of the stream pixels is highly variable, due to water motion, along with
surface shimmer in the pool. The resolution and focus of the camera are moderate, and the

platform is stable, with little observable jitter.

To test our change detection algorithms, we induced jitter of varying magnitudes on a
sequence of 300 frames, sampled from the video at 10 Hz. The data were first converted to
greyscale, and then each frame was randomly jittered according to a specific distribution
(discussed shortly) using bicubic interpolation. The jittered frames were cropped to 200 x 380
pixels, both to remove any edge artifacts from the interpolation and to prevent false detections on

changes in the digital time stamp. Two jittered, truncated frames are shown in panels 7b and 7c.
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Figure 7 — Bearcam sequence

(a) Frame 1 of the Bearcam 0 sequence, shown in color to provide context. (b) A small black
bird (red circle) flies into the scene at frame 213. (c) In frame 223, the bird (yellow circle) lands
at the edge of the stream. It is difficult to pick out these changes without proper background
suppression. The pixel whose history is plotted in Figure 8 lies at the center of the green circle.

The original sequence is referred to as Bearcam 0, and three separate jittered frame
sequences were generated from it, as summarized in Table 2. The first jittered sequence,
Bearcam 1, used a bivariate Gaussian distribution, with independent row and column translations
each having mean x = 0 and standard deviation z = 0.50 pixels. The sequence is stationary,
meaning that each frame is offset from its own initial position, rather than the shift applied to the
previous frame. The Bearcam 2 sequence is also stationary, but here row and column translations
were generated from a 5% Wild, or “scale contaminated Gaussian” distribution [9]. At each
frame, the row and column shifts had a 95% chance of being drawn from a zero-mean Gaussian
with 7 = 0.25, and a 5% chance of coming from a zero-mean Gaussian with z = 1.0. The final
sequence, Bearcam 3, is non-stationary. Incremental row and column shifts were independently
generated for each frame from a zero-mean Gaussian with t = 0.25, and then added to the

cumulative sum of all previous shifts. This allowed for a gradual drift in pointing, as may occur
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with a sensor placed on a slowly moving platform. Over the 300 frames that we analyzed, the
row and column positions for the non-stationary sequence drifted by 4.4 and 8.9 pixels,
respectively.

Table 2 — Jitter characteristics for the Bearcam sequences

Sequence  Jitter Distribution
Bearcam 0 | Control sequence, no induced jitter
Bearcam 1 | Bivariate 11D Gaussian: mean x =0, stdev z = 0.50;
stationary
Bearcam 2 | Bivariate 11D 5% Wild: 95% =0, z = 0.25; stationary
5% u =0, 7= 2.5; stationary
Bearcam 3 | Bivariate 11D Gaussian: x# =0, z = 0. 25; non-stationary

Change detection for the Bearcam sequences proceeded in the following manner. The
first ten frames were used to initialize three basis vectors as in (5), and pixelwise temporal
variances as in (8). An additional 90 frames were then run through FAPI, with basis vector and
temporal variance estimates updated at each iteration. Detection was not run on these first 100
frames, so candidate targets were not suppressed from the moment estimates; this is equivalent to
setting the parameters £, = 0 and y, = y; during the training period. The initial spatial moment
estimates were generated from FAPI background frame B(100), and full detection (with target
suppression) commenced with frame 101. Spatial moment estimates were re-calculated for every
frame, using pixel values from the temporal background estimate at the immediate previous

frame. The parameter settings, identical for each test run, are listed in Table 3.

Table 3 — Parameter settings for the Bearcam and Sidewalk sequences

PARAMETER: Bearcam Sidewalk
Settings Settings
R|3 3
P, F2 | 0.975,0.999 0.975, 0.999
1, 72 | 0.99,1.0 0.99,1.0
o | 0.50 4.0
Ty, T, T2 | 8.0,8.0,10.0 | 4.0,3.0,10.0
NEIGH | 3 8
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To illustrate the effectiveness of subspace projection in suppressing jitter effects, the
temporal history of a single pixel through 100 frames of each Bearcam sequence is shown in
Figure 8. The pixel’s location (circled in panel 7c) lies near a significant spatial gradient.
Accordingly, while its intensity is nearly constant in the control sequence, it varies considerably
in each of the jittered sequences. When the jitter distribution is stationary, the FAPI subspace
does an excellent job of modeling background, resulting in small projection residuals at each
frame. For the drifting sequence, Bearcam 3, reducing decay parameter £; from 0.975 to 0.925

allows FAPI to better incorporate gradual scene change into the background subspace.
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Figure 8 — A single pixel’s history through 100 frames

The history of pixel (155, 245) through 100 frames in each of the four Bearcam sequences is
shown. The location of this pixel is highlighted in Figure 7. (a) Control sequence, Bearcam 0.
The red line is the running background estimate obtained by subspace projection. (b) Sequence
Bearcam 1. (c) Sequence Bearcam 2. (d) Sequence Bearcam 3. Red line: $1=0.975. Green
line: $1=0.925.

The “target” change for detector performance analysis is a small black bird that flies into
the scene in frame number 213 (panel 7b), lands on the ground in frame 223 (panel 7c), and stays
in the vicinity of this position for the remainder of the frames. For each sequence, detector
performance on frames 201 — 300 is measured by counting the number of frames (the maximum
possible is 88) in which the bird is detected, along with the number of frames in which at least
one false alarm (detected change not due to the bird) occurs. Results are summarized in Table 4.
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Table 4 — Detection results for the Bearcam sequences

Sequence: Target Detection False Alarm
Frames (of 88) Frames (of 100)
Bearcam 0 84 5
Bearcam 1 20 2
Bearcam 2 20 4
Bearcam 3 7 7

As should be expected, performance was best in the control case, Bearcam 0. Here, the
bird was detected in 84 of the 88 frames in which it was present. Target detection dropped for the
jittered sequences, largely due to the bird fading into the noisy background after remaining in
place for an extended time. The last detection of the bird on any of the jittered sequences
occurred in frame number 247, 24 frames after landing. In the control sequence, detection

continued to the final frame, number 300.
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Figure 9 — Maps of threshold exceedance for the Bearcam 2 sequence

Combined results from frames 201 — 300 are shown. Pixels shown in red had normalized
differences with absolute value above the detection threshold T1 for at least one of these 100
frames. (a) Temporal exceedances. (b) Spatial exceedances. (c) Pixels flagged as detections
using the minimum ratio test of Equation (2). Detections within the yellow box are due to the
target bird.

Maps showing threshold exceedances for the 5% Wild sequence, Bearcam 2, are shown
in Figure 9. Pixel locations where the absolute value of the normalized temporal difference (1a)
exceeded the detection threshold of T, in at least one frame of the 100-frame test sequence are
highlighted in panel 9a. Pixels with absolute normalized spatial difference (1b) above T; in at
least one frame are shown in panel 9b, and those with minimum absolute normalized difference
(2) above the threshold are highlighted in panel 9c. Detections within the yellow box of panel 9¢
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are due to the bird or its shadow, and are considered true change signals. The remaining four

detections are single-frame false alarms occurring in high-variance water pixels.

The advantage of the dual-model approach to handling jitter in dynamic scenes is
obvious. Sudden changes in jitter magnitude may not map well into a subspace that was
generated from previous low-jitter observations, resulting in large temporal deviations. This is
evident in panel 9a, where many exceedances are observed, generally lying along scene
gradients. By contrast, the purely spatial approach cannot adequately model pixels whose
primary source of variability is not jitter-induced. This is seen in panel 9b, showing a large
number of spatial exceedances on moving water pixels. Selecting the minimum of the two
normalized ratios as a final measure of consistency allows us to take full advantage of benefits of

each model. The combination of the two provides a powerful capability to discriminate true
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Figure 10 — Jitter displacements and spatial standard deviation estimates
The relationship between estimated spatial standard deviation scale factors and actual jitter
displacements is shown, for 200 test frames in the Bearcam 1 sequence.

Recall that spatial standard deviation estimates are scaled (Equation 22) on a per-frame
basis. Our assertion that the scale factors compensate for jitter without requiring knowledge or
direct estimation of the actual displacements is well supported by Figure 10. For the test frames
of the Bearcam 1 sequence, panel 10a shows the estimated scale factor as function of the L,
distance between the true displacement in the frame used to estimate spatial moments (t-1), and
the tested frame (t). Panel 10b shows the scale factor as a function of the absolute row
displacement only. Because most gradients in the Bearcam scene are horizontal, the scale factors
are more highly correlated with the absolute row displacements than with the L, distances. Even
for this dynamic scene, it is clear that the scale factors are largely determined by the (simulated)

jitter.
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When the fence and 80™ percentile values (Steps 1-2, Section 4) used in computing scale
factors were updated with every frame, a processing rate of 13 frames per second (FPS) was
achieved for the Bearcam sequences on a Sun server with eight dual-core 2.15 GHz processors.
When fence and percentile values were computed for the first test frame only, a rate of 30 FPS

was achieved on the same hardware, with no meaningful difference in detection performance.
6.2 - Man-Made Scene

The second example relies on 300 frames from a video sequence first published by
Jodoin et al. [11]. The “Sidewalk” scene, shown in Figure 11, is highly structured with strong
gradients in various orientations. The camera used to collect the frames has good focus and
resolution, but is located close to ventilation fans on the building to which it is mounted. Motion
of the fans induces substantial jitter at the camera’s position, resulting in multiple-pixel
displacements in the video stream. Numerous pedestrians move across the scene during the time
period covering the training and test frames. These people and their shadows will be considered
“target” changes. There is little natural variability in the area, so that most pixel intensity
changes are caused by jitter, pedestrian motion, or camera noise. Parameter settings for the
Sidewalk sequence are listed in Table 3. Due to the low noise level of the Sidewalk environment,
the detection and suppression thresholds T; and T, are smaller than was appropriate for the
noisier Bearcam sequences. The target changes occupy a large number of pixels, allowing us to
increase the value of parameter NEIGH to 8 pixels. Finally, the camera displacements are
substantial, requiring the increase of jitter standard deviation o to 4.0 pixels for generation of

spatial moments.

Because no target-free frames are available from which to start off the temporal and
spatial moment estimates, a modified initialization scheme was developed based on [11]. The
background subspace basis vectors were initialized from the first 10 frames as in (5). For frames
11 - 50, FAPI was used to update the basis vectors, without detection or target suppression
enabled. Denote by Bremporar(50) the background estimate following frame 50. The starting
temporal variance estimates were computed as the median squared deviations about
BremporaL(50), computed over the frames 1 — 50. While several pedestrians are present in the

scene during this training period, few (if any) pixels are occupied for more than half of the
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frames. Thus, the median squared differences are fairly robust to the intermittent presence of
targets. The initial spatial moment estimates are computed directly from BremporaL(50). Because
target suppression was not applied for the first 50 frames, Bremporai(50) does contain some
target energy from two pedestrians, as seen in Figure 11, panel 11b. To improve on the initial
spatial estimates, training continues for another 50 frames, with target suppression. For frames
51 through 100, the temporal moment estimates were updated with every frame, but the spatial
moments were held constant. Pixels whose minimum normalized differences exceeded the
threshold T, were suppressed from the temporal background and standard deviation updates, via

fade factors S, and y», respectively.

Figure 11 — Sidewalk sequence

Camera frames, FAPI background estimates, and spatial standard deviation maps are shown.
(a) Frame 50. (b) Background estimate BremporaL(50), computed without target suppression and
showing significant jitter-induced structure, along with two pedestrians. (c) Initial spatial
standard deviation map computed from BremporaL(50). (d) Frame 100. (e) Background estimate
Bremporal(100). (f) Final spatial standard deviation map, computed from Bremporar(100).

Frame 100 is shown in panel 11d, with associated background estimate Bremporar (100) in
panel 11e. Target suppression eliminates most pedestrian-induced structure in the background
estimate for pixels on the relatively uniform sidewalk. However, target pixels overlapping with
the crosswalk are neither detected nor suppressed, due to the large temporal and spatial standard
deviations in this highly structured part of the scene. As a result, some target energy, mostly
from the legs of two pedestrians, does make it into the final spatial moment estimates (panel
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11f). Note that spatial moments are unavailable in a 12-pixel band around the edge of the frames,

due to the large size of the box over which the moments are calculated.

The computational cost of updating spatial moments in a very high jitter environment is
prohibitive. Setting o = 4.0 pixels for the Sidewalk sequence results in a box size (Equation 12)
of 24 x 24 pixels. Accordingly, the spatial moment estimates are held fixed at the values
calculated following frame 100 for the remainder of the frame sequence, while temporal
estimates are updated after every frame, with target suppression. In the case of a gradually
drifting camera, a modified scheme could be implemented with spatial updates every K frames,

where integer K > 1 is chosen to enable acceptable run-time performance.

Figure 12 — Detection results for Sidewalk frame 228

(a) Camera frame 228. (b) Threshold exceedence map for normalized temporal differences. (c)
Threshold exceedence map for normalized spatial differences. (d) Change detection map,
based on minimum absolute normalized differences. Targets cannot be detected within 12
pixels of the edge of the frame, due to the unavailability of spatial moments.

The background subspace computed for the Sidewalk sequence successfully captures
most of the effects of camera jitter on the frame data. For the vast majority of frames, the
absolute normalized temporal differences were below detection threshold T; = 4.0 for all non-
target pixels. However, unusually large jitter displacements did sometimes occur, for which
spatial moments were required to mitigate false alarms. One such example, frame 228, is shown

in Figure 12. Here, temporal false alarms occurred at many pixels lying along scene edges. These
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jitter-induced exceedances were all rejected by the spatial model, which properly down-
weighted pixels whose intensities were most susceptible to jitter effects. In the change detection
map of panel 12d, all five pedestrians are readily detected, and there are no false alarms.

Figure 13 — Detection results for Sidewalk frame 292

(a) Camera frame 292. (b) Threshold exceedence map for normalized temporal differences. (c)
Threshold exceedence map for normalized spatial differences. (d) Change detection map,
based on minimum normalized differences. Detection fails for one of the six pedestrians present
in this frame.

Over the 200-frame sequence (frames 101 — 300) that we analyzed for change, two
frames had a combined total of three false alarms, and every pedestrian present was detected in
89% of the frames. Pedestrians were sometimes missed as they passed through pixels with high
spatial variance. A typical case is shown in Figure 13, where one of the six pedestrians occupies
pixels with steep intensity gradients due to the crosswalk, curb, and an oil stain at the edge of the
road. Detection of this individual, whose clothing is about the same grey tone as the street, is
intermittent until he steps across the curb and onto the darker and more uniform sidewalk.

7 — DISCUSSION

In this report, we have introduced a new method for real-time change detection in high-

jitter environments. The method utilizes two separate statistical models for pixel intensity. The
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first model relies on a temporal history of frame data, and attempts to capture the correlated
structure of jitter-induced effects in a low dimensional background subspace. Temporal standard
deviations are estimated from subspace projection residuals, and incorporate variability due to
both camera jitter and natural scene elements. The second model employs spatial moments
calculated from a single frame or background image. These estimates anticipate the effects of
jitter on pixel intensities, and perform well for sudden increases in jitter magnitude not seen in
the sequence of frames used for model initialization and training. The approach was originally
designed for scenarios like the Bearcam sequences, in which the changes to be detected are small
in both intensity and spatial extent. However, with suitable adjustment to the initialization
process and a few of the tunable parameters, strong performance was also achieved for the

challenging Sidewalk sequence.

Topics for continued research include extension of the basic technique to multiband data,
application-specific parameter adjustment, and the development of improved methods for
initialization. Adapting the current approach to RGB color or multispectral data has the potential
to provide strong change detection capability across a broad range of sensors and applications,

and is presently under investigation.

Selection of reasonable values for the various tunable estimation and detection
parameters and thresholds requires some experience with the specific change detection problem
at hand. For example, with stable background scenes decay parameter £; can be set to a larger
value than would be appropriate for scenes (or sensors) that are subject to gradual drifts in
illumination, pointing, or focus. If the changes to be detected are expected to be spatially
extensive, increasing detection cluster size NEIGH can help to mitigate potential false alarms.
Approximate knowledge of the jitter distribution assists the user in specifying a suitable value of
the jitter standard deviation o. If continuing detection of persistent change is desired, the target
update rate f#, can be increased to unity, while it can be reduced to zero if no target suppression

is needed.

Rapid initialization of temporal and spatial moments in the presence of target energy is
challenging, particularly when target changes occur close to scene gradients. Excellent results

were obtained for the Sidewalk sequence with a two-step approach, in which initial moment

35



estimates computed without target suppression were used to suppress later targets when
calculating a second set of estimates. An alternative strategy might be to reduce the target
suppression threshold steadily throughout the training period, akin to an annealing schedule,

gradually removing target change energy from the moment estimates.

The change detection algorithm presented in this paper has demonstrated real-time
performance, along with robustness to naturally variable pixels, gradual scene change, and
varying levels of camera jitter. With appropriate initialization and tuning of the estimation and

detection parameters, it can be applied across a wide range of image types and problem domains.
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