T S
Laug. /OO %05

Approved for public release;
distribution is unlimited.

Title: | Integration Experiences and Performance Studies of A
COTS Parallel Archive System

Author(s): | Hsing-bung Chen, Gary Grider, Cody Scott, Milton Turley,
Aaron Torrez, Kathy Sanchez, John Bremer

HPC division

Los Alamos National Laboratory

Los Alamos, New Mexico 87545, USA

Intended for: | |EEE Cluster 2010 Conference

/A
) L?s Alamos

NATIONAL LABORATORY
EST.15943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Integration Experiences and Performance Studies of A COTS Parallel Archive
System

Hsing-bung Chen’, Gary Grider', Cody Scott’, Milton Turleyz, Aaron Torrez’,
Kathy Sanchez’, John Bremer?
HPC-DO', HPC-3%, HPC-5’
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA
hbchen(@lanl.cov

Abstract

Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in
metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting
changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-
shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of
magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the
need for speed and bandwidth, especially metadata searching speeds such as more caching and less robust
semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those
that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage
approach of using COTS components and innovative software technology can bring new capabilities into a
production environment for the HPC community much faster than the approach of creating and maintaining a
complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a
global parallel file system and a standard backup/archive product with a very small amount of additional code to
provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products
including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage
management, (¢) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content
management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have
successfully applied our working COTS Parallel Archive System to the current world’s first petaflop/s computing
system, LANL’s Roadrunner, and demonstrated its capability to address requirements of future archival storage
systems.

Keywords: Archive Storage System, Parallel File System, Storage Hierarchy, Parallel Data Movement. Hierarchical Storage
Management, Parallel Archive, Cluster Computing, Parallel 1/0

Integration Experiences and Performance Studies of A COTS Parallel Archive
System

Hsing-bung Chen’, Gary Grider', Cody Scott’, Milton Turley?®, Aaron Torrez’,
Kathy Sanchez’, John Bremer’
HPC-DO', HPC-3% HPC-5’
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA
hbchen(@lanl.gov

Abstract

Current and future Archive Storage Systems have been
asked to (a) scale to very high bandwidths, (b) scale in
metadata performance, (c) support policy-based hierarchical
storage management capability, (d) scale in supporting
changing needs of very large data sets, (e) support standard
interface, and (f) utilize commercial-off-the-shelf(COTS)
hardware. Parallel file systems have been asked to do the
same thing but at one or more orders of magnitude faster in
performance. Archive systems continue to move closer to
file systems in their design due to the need for speed and
bandwidth, especially metadata searching speeds such as
more caching and less robust semantics. Currently the
number of extreme highly scalable parallel archive solutions
is very small especially those that will move a single large
striped parallel disk file onto many tapes in parallel. We
believe that a hybrid storage approach of using COTS
components and innovative software technology can bring
new capabilities into a production environment for the HPC
community much faster than the approach of creating and
maintaining a complete end-to-end unique parallel archive
software solution. In this paper, we relay our experience of
integrating a global parallel file system and a standard
backup/archive product with a very small amount of
additional code to provide a scalable, parallel archive. Our
solution has a high degree of overlap with current parallel
archive products including (a) doing parallel movement
to/from tape for a single large parallel file, (b) hierarchical
storage management, (c) ILM features, (d) high volume
(non-single parallel file) archives for backup/archive/content
management, and (e) leveraging all free file movement tools
in Linux such as copy, move, Is, tar, etc. We have
successfully applied our working COTS Parallel Archive
System to the current world’s first petaflop/s computing
system, LANL’s Roadrunner, and demonstrated its
capability to address requirements of future archival storage
systems.

Keywords: Archive Storage System, Parallel File System,
Storage Hierarchy, Parallel Data Movement, Hierarchical Storage
Management, Parallel Archive, Cluster Computing, Parallel 1/O

1 Introduction

Modern high performance computing/data intensive
computing involves computing, organizing, moving,
visualizing, and analyzing massive amount of data from
various scientific application domains. The unbounded
increase in the computation and data requirements of
scientific applications has necessitated the use of widely
distributed compute and storage resources to meet the
demand. Efficient and reliable access to data sources and
archiving destinations in such an environment brings new
challenges [1][2][3][6].

The existing solution for HPC archive storage systems
(Figure-1) is far from catching up with the growing
requirements of archive I/0 bandwidth and archive system’s
scalability [1][3][6]]9].

Currently the number of extreme highly scalable
parallel archive solutions is very small especially those that
will move a single large highly striped parallel disk file to
many tapes in parallel [2]. We believe that a hybrid
approach of using commercial-off-the-shelf (COTS)
components and innovative software technology can bring
new usable capabilities to the HPC community much faster
than the approach of creating and maintaining a unique
software parallel archive solution [1][2].

Disk-based parallel file systems for clusters are
increasingly using multiple software "mover" components
to accomplish parallel data transfers [7][10]. These data
movers, most often, function by exporting access to unique,
independent data stores. Classic HSM methodologies also
employ multiple data movers, but curiously, usually to
support more connections, not parallel connections. HSM is
a data storage technique, which automatically moves data
between high-cost and low-cost storage media [6]. [LM is
the practice of applying certain policies to the effective
management of information throughout its useful life [6].
Lessons learned from recent file systems work could be
used to simplify the back-end data path in HSMs by using a
metadata service to maintain tape and location layout
information. Perhaps a realistic core set of requirements for
archive products for science use might be a stepping-off

point to an acceptable interface to HSM software with a
usable lifetime greater than a decade. The marriage of
modern parallel file system designs with a subset of classic
HSM software could yield a seamless infinite global parallel
file system solution, which could eliminate the need for a
separate parallel or serial archive capability.

Computing Speed
Ao

Figure 1. The DOE

Advanced Strategic
Appication . Computing Initiative
108 Program published
this Kivial diagram
that shows parallel
file systems scaling
performance at an
order of magnitude
faster than parallel
archives

The integration of Archive/HSM (Hierarchical Storage
Management) / ILM (Information Lifecycle Management) /
Parallel File Systems functions is a possible solution to meet
the above requirements. HSM transparently handles the data
movement between storage hierarchies. ILM comprises the
policies, processes, practices, and tools used to align the
business value of information with the most appropriate and
cost effective IT infrastructure from the time information is
conceived through its final disposition. Parallel File Systems
provide a fast, efficient, and scalable 1/0 capability.

In this paper we try to integrate COTS global parallel
file systems and a standard backup/archive product with a
very small amount of additional user space code to provide
a scalable & parallel solution that overlaps highly with
current niche parallel archive product(s) including (a) doing
parallel movement to/from tape for s single file, (b)
hierarchical storage management, (¢) ILM features, (d) high
volume (non-single parallel file based) archives for
backup/archive/content management, and (e) leveraging all
free file movement/management tools in Linux such as
copy, move, ls, tar. etc.

The rest of this paper is organized as follows. Section 2
introduces some background information. We address
issues, motivation and leverage in Section 3. Our proposed
COTS Parallel Archive System is presented in Section 4. In
Section 5, we discuss performance data from the
Roadrunner Open Science projects. Then, we present
experience and observed issues of our COTS Parallel
Archive System on the current world’s second fastest
supercomputer, the Roadrunner cluster, in Section 6.
Finally, we conclude our contribution and future works in
Section 7.

2 Background

In order to understand parallel archive systems, it is
important to understand some basic concepts in the parallel

archive area. Parallel file systems are normally not used as
archives in HPC environments. Typically parallel file
systems are used as a fast storage place to stage data to and
from a supercomputer. Often parallel file systems are
considered to be scratched in nature meaning that this
storage is not intended for long-term storage, it is only used
as temporary staging and working storage. Parallel archives
are used typically as the long-term storage for an HPC site.
The largest of HPC sites need parallel archives as opposed
to non-parallel archives to allow for fast enough data
movement of large files to and from the archive. The
parallel archive is usually considered more stable and highly
dependable.

2.1 Parallel File Systems & Parallel 1/0

Parallel /0 means the operation of multiple file
read/write at the same time. It is the common feature of
modern Parallel File Systems. One particular instance is
parallel writing of data to disk; when file data is stored
across multiple disks, for example in a RAID array, one can
store multiple parts of the data at the same time, thereby
achieving higher write speeds than with a single device. The
functionality and capability of Parallel data /O movement is
proven to be the key factor for the success of high
performance computing systems [1][3][22].

2.2 HSM

Hierarchical Storage Management (HSM) is a data
storage technique which automatically moves data between
high-cost and low-cost storage media. HSM systems exist
because high-speed storage devices, such as hard disk drive
arrays, are more expensive (per byte stored) than slower
devices, such as optical discs and magnetic tape drives.
While it would be ideal to have all data available on high-
speed devices all the time, this is prohibitively expensive for
many organizations. Instead, HSM systems store the bulk of
the enterprise’s data on slower devices, and then copy data
to faster disk drives when needed. In effect, HSM turns the
fast disk drives into caches for the slower mass storage
devices. The HSM system monitors the way data is used
and makes choices based on specific criteria as to which
data can safely be moved to slower devices and which data
should stay on the fast devices [19].

2.3 ILM — Information Life cycle Management

Information life cycle management (ILM) is a
comprehensive approach to managing the flow of an
information system's data and associated metadata from
creation and initial storage to the time when it becomes
obsolete and is deleted. Unlike earlier approaches to data
storage management, ILM involves all aspects of dealing
with data, starting with user practices, rather than just
automating storage procedures, as a hierarchical storage
manager product like the one HSM does. Also in contrast to
older systems, ILM enables more complex criteria for

storage management than data age and frequency of access
[20]. ILM typically organizes data into separate tiers
according to specified policies, and automates data
migration from one tier to another based on those criteria.
As a rule, newer data, and data that must be accessed more
frequently, is stored on faster, but more expensive storage
media, while less critical data is stored on less expensive
and slower media. However, the ILM approach recognizes
that the importance of any data does not rely solely on its
age or how often it is accessed. Users can specify different
policies for data that declines in value at different rates or
that retains its value throughout its life span [20].

2.4 Non-Parallel vs. Parallel Archive Systems

Non-parallel hierarchical storage systems provide
parallelism for multiple files through the storage hierarchy,
but single files do not move in parallel. In parallel archives,
single files move in parallel all the way through the storage
hierarchy. The market for non-parallel archives is huge
with tens of thousands of sites using these solutions. The
market for parallel archives is extremely small with tens of
sites needing these solutions. The market for parallel file
systems is larger than the market for parallel archives by at
least one or two orders of magnitude. Due to the market
demands, the number of extreme highly scalable parallel
archive solutions is very small. The cost of maintaining
specialized highly scalable parallel archive is high due to the
very small market at least for those institutions that are
paying for doing this maintenance [2].

2.5 Parallel Archives That Do Not Leverage
Parallel File Systems as Their First Tier of Storage

All parallel archives and even non-parallel archives
utilize HSM as described above to store data and move it to
cheaper or more appropriate storage devices over time.
Some archive solutions utilize file systems and even parallel
file systems as their first tier of storage, others do not.
Access methods for utilizing these types of parallel archives
that do not use file systems as their first tier typically are
full file movement based and require custom interfaces or
utilize file transfer interfaces like “ftp” or “scp”.

2.6 Parallel Archives That Leverage Parallel File
Systems as Their First Tier of Storage

There are parallel archives and even non-parallel
archives that utilize file systems and parallel file systems as
their first tier of storage in their HSM. Due to the fact that
the top tier of storage is a file system, most sites utilize this
fact to use the very nice file system interface as their
interface to the archive. This is unlike non file system
leveraging archives where access methods are typically data
transfer programs like “ftp” and “scp.” NFS is utilized to
export the archive interface to client machines in the parallel
file-system paradigm. This makes for a very rich user
interface to the archive which is nice for users but comes

with its own set of issues for managing the archive. The
typical problem this rich interface presents the archive is
that it makes it simple for users to use tools like “grep”,
which scans files for strings, which would be very difficult
to do for data that is on removable media.

3 Issues, Motivation, and Leverage of using
COTS Parallel Archive System

3.1 Issues When Using a Parallel File System as the
First Tier in a Parallel Archive Storage System

There are several issues when we use a parallel file
system as the first tier in a parallel archive storage system.
We have itemized those issues as follows [1] [2] [3] [4][5]
(61081 [11] [12](13][14] [17] (18] [19] [20]:

1) Due to NFS access you have “the grep from &*&(*&”,

2) No way to get immense file from HSM disk to parallel
tapes and back (single stream of tapes),

3) No parallel copy/tree walker to copy scratch file system
to/from archive storage system,

4) Due to NFS. no way to query target storage pools for
archive placement,

5) Due to NFS, no way to do efficient ordered retrieval from
many tape files when copying back from archive to scratch,

6) Need ILM/storage pool management/policy on archive
parallel file system (multiple copies, smart placement etc.),

7) Need powerful 1LM/storage pool management/policy on
tape back end system (multiple copies, remote copies,
smart placement),

8) Need data parallelism on tape back end system (data cannot
flow through single HSM server etc),

9) Need excellent metadata handling on tape back end system,

10) Need excellent scalable parallel file system data/metadata
for archive,

11) Need good integration between archive parallel file system
and backend tape storage system,

12) Eliminate garbage collection etc. to avoid having to sync
archive tape back end and archive parallel file system
metadata,

13) Need robust HSM (file system and backend) metadata
backup system, and

14) Need ability to handle massive amounts of small, millions
of medium, and few enormous files.

Those classical issues mentioned above post a new
challenge for designing and developing a parallel archive
storage system.

3.2 Motivation

As was mentioned above in the introduction, parallel
archives and parallel file systems are being asked to scale in
similar ways but parallel file systems have been forced to
scale to one or more orders of magnitude faster
performance. Additionally, file systems and archives are
growing together in design due to the scalability needs,
especially in metadata management, integrity, and loosened
metadata semantics. These facts combined with marketing

and cost realities such as the high cost of maintaining a
parallel archive capability for an extremely small market
compared to a similar cost for parallel file systems for a
much larger market, gives us cause to wonder if more
leverage of parallel file systems to provide parallel archive
is possible and makes sense. Ultimately, the question we
are trying to answer in this pilot project is: can we leverage
parallel file system and non parallel archive COTS solutions
that are highly leveragable to build a highly leveraged
parallel archive with very little unique code needed to
provide the parallel archive service. If this can be done, a
large savings in providing this service could possibly be
realized.

3.3 Leveraging

Our premise is that the parallel archive systems can
benefit from leveraging the functions and capabilities of the
parallel file-systems and appeal to a broader market. The
following is a list of possible technologies and economic
facts that could be utilized in our pursuit to build a more
leveraged parallel archive:

1) Disk is becoming more competitive with tape over time for a
larger portion of archival data [7][10][14],

2) Moderate and growing volume Global Parallel File Systems
market,
a, Scalable bandwidth and metadata
b. Growing use of Global Parallel File Systems for moderate scale

HPC

3) HSM and ILM features in file systems and archives (driven
by huge industry mandates like HIPPA/S-0x etc.),

4) High volume (non single parallel file) archives for
backup/archive/content mgmt, and

5) Leverage al free file movement/management tools in Linux,
copy. move, ls, tar, etc.
a. awell known file management environment
b. get scp, sfip, and web/gui file management for free ete.

4 Proposed COTS Parallel Archive System

Over the last five years, the DOE’s Advanced
Simulation Computing (ASC) Program at LANL has
wanted to run a pilot program to demonstrate and study the
viability of a high performance commodity based parallel
archive. In order to test the new parallel archive at the scale
of HPC environments, the new parallel archive project was
tested with LANL’s Roadrunner cluster [22] while the
cluster was in the initial testing phase. We chose IBM
GPFS for the parallel file system because of the new ILM
features. We chose Tivoli Storage Manager (TSM) because
we were already using it in house and liked the existing
functionality with GPFS. The following features were
designed, developed, and integrated into the COTS Parallel
Archive System (Figure 2):

1) Build a parallel tree walker and copy user space utility,

2) Add storage pool (stgpool) [17][18][19] support (using file
system API),

3) Create an efficient ordered file retrieval utility (using dmapi
API and back end tape system query).

4) Add support for ILM stgpool features,

5) Add support for ILM stgpool and co-location features in the
archive back-end, and

6) Use FUSE to break up enormous files into pieces that can be
migrated and recalled in parallel to/from the back end tape
system[15][23]

Our proposed COTS Parallel Archive System consists
of the frontend system and the backend system.

Scrutch Global
Paralle] File System

I

Scalable FTA (File transfer agent) Cluster:)
= Mounis site Glohal File System and oiber |
i
i

ilobal Paralicl
File System

|

'

1

: site shared file svaem

1 ¢ Ruos commercial ILM cnabled Parallel

1 File System

1+ Ruosoae or maltiple copies of commertial
1 backup archive

!« Russ HSM

: * Submits job 10 FTA closter for data

' optimized data movement tofrom archive

Figure-2: The proposed COTS Parallel Archive System

4.1 Frontend System

Although the archive's base COTS components provide
a lot of functionality out of the box, extra tools were
necessary to combine GPFS with TSM to create a fully
functional high performance parallel archive. A utility to
copy data in parallel was introduced to the new parallel
archive. In addition, the new parallel archive also needs to
be tape aware. It should not treat tapes like it does disk, as
this could cause unnecessary tape mounting and seeking.

There can also be problems if users use standard file-
system utilities that indiscriminately access files without
being tape aware. Deleting files can lead to issues since part
of a file is on the file system and another part is on tape.
Finally, we have to expect that a user will eventually want
to archive extremely large files and we must be able to
support to archive those files in parallel. To fulfill all these
needs, we have designed and implemented a parallel
file/archive software tool as the front-end system.

The frontend system is made of components from
PFTool (Parallel File software Tool) software and PFTool
runtime environment.

4.1.1 PFTool Software System

The PFTool software system diagram is illustrated in
Figure- 3. PFTool is built upon MPI and consisted of one
Manager process, one OutPutProc process, at least one

ReadDir processes, one WatchDog process, at least one
Worker process, and some TapeRestore processes (only for

restoring direction). The total number of MPI processes
used in PFTool is dynamically adjustable during runtime.
The function of each MPI processes is :

Manager — The conductor £
- Coordinates parallel tree walk . | T T T | s,
- Manage various qucues operations Message

Arsranges copy jobs o workers ’ Queues
- Issues ouput/display request

. CopQ
= Generates final statistics repon

v

b4 A\ S

MEL esgee Passing 2
B T

Wy
Dt PurFres RradDis Proes Warkers = file srar, file Tupe Proes Wik,
upy, tape Al restare

D

2)

3)

4)

5)

Figure 3: PFTool Software System Diagram

Manager process: The Manager is the conductor of PFTool
run-time activities: it (a) starts the parallel tree walk, (b) puts
exposed directories in the directory queue (DirQQ) and assigns
a directory traversal job to an available ReadDir process, (c)
receives file stat request from Worker processes, (d) puts
source files for stating in the name queue (NameQ) and
assigns them to available Worker processes for stating, (e)
receives stated file information from Worker processes. (f)
puts stated file/tape file information into the copy queue
{CopyQ) or the tape copy queues (TapeCQ). (g) arranges and
lines up the tape restore file information into TapeCQs for
tape restoring optimization, (h) assigns regular file copy jobs
from CopyQ to available Worker processes, (i) sends tape
restoring file copy request to TapeProc processes, (j) receives
additional restored tape file copy request from TapeProc
processes and assigns them to Workers for further copying
from archival parallel file system to scratch parallel file
system, (k) asks the OutPutProc to display status and results
of PFTool operations, (1) periodically updates PFTool runtime
status with the WatchDog, and (m) finalizes parallel
archive/restore operations by killing all running MPI
processes.

OutPutProc process: The OutPutProc handles the output of
PFTool operation status and results. Both operations of on-
screen display and re-direction to the file are supported.
WatchDog process: The WatchDog is a run-time PFTool
progress indicator that runs periodically. The WatchDog (a)
records the current and historical statistics of PFTool such as
total number of files copied, number of files copied in the past
“T” minutes, total number of bytes moved, number of bytes
copied in the past “T” minutes, (b) indicates the data
movement status, and (c) forces the termination of PFTool
runtime activities if the “data copy”™ is stalled without any
further progress for a specific amount of time

ReadDir process: The ReadDir (a) receives requests from the
Manager, (b) exposes directory information, (c) collects
exposed directory information, and (d) sends collected
file/dub-directory information back to the Manger for further
stat processing.

TapeProc process: The TapeProc (a) receives requests from
the Manager, (b) restores migrated files from tapes to the

archival GPFS parallel file system, and (c) sends additional
restored tape file copy request to the Manager.

6) Worker process: The Worker (a) receives copy-request jobs
from the Manager, (b) moves data to and from the COTS
Parallel archive system, (c) sends copy status and results back
to the Manager.

All available processes except the Manager keep
sending request messages to the Manager and ask for more
works. The Manager finalizes the archive/restore operations
when there are no jobs in the queues and all processors
become available. A performance report is generated after
finishing each parallel archive job.

4.1.2 PFTool Runtime Environment

N TapeProvs, € unkiter, StursgePusd Info, Fuse fa- 1 copy nts 8 Nw rapies for srallng and
perfarmisnce inprovement

r PFTOOL - RuaTime
© Envirgscmnt i
!.‘“'-'" © L 1 Mamager MP1

Chankiee, Copy Sar,

-
RuonTime Tunning parsmeters - Sumbroes.] [ArehiveFUSE Rl sirtem = Comvert o vary leree flie 5]

process
© L 1 OwPuiProc MPI
PFTool process
© L a ReadDirProc MPL
process(s)
4. b Waorker MPL
process(s)
% & TapeProc MPI
1 process{s)
6. 1 WalchDog MPI
Process
NumProc(MPI machine
- fist) = Sum(All MP1
T processey)
Note: e=0), whea in
wrehive process, giving
more worker for copyiog

Figure 4: PFTool runtime environment] e

LPFSUSWILWMSG
L. Qurey Serviee - Rus

thme Dhata mdgratiun and
rrviuring stetn

The PFTool runtime Environment consists of

1) LoadManager — The LoadManager runs periodically for (a)
collecting FTA scalable cluster machine CPU workload status,
(b) sorting available MPI machine list in ascending order
based on current machine CPU workload, and (c) generating a
timely MPI machine list.

2) Tape optimization — When files are concurrently archived to
multiple tape drives, one of the most important performance
problem is how to line up the file and tape resources such that
unnecessary tape mounting and un-mounting overhead is
minimized. This is a “tape drive thrashing problem.”™ That is
the dominant factor of degrading tape restoring performance.
When hundreds or thousands files are restored from many
tapes concurrently, we try to arrange tape files based on their
tape sequential numbers and unique Tape-IDs. The tape files
with the same Tape ID are put into a corresponding TapeCQ
based on their ascending tape sequential number. We then
assign them to any available TapeProc so we can drastically
reduce tape drive thrashing overhead and enforce sequential
tape read when we are restoring many midsize files.

3) A single large file parallel copy — The size of a single large file
is in the range of 10GBs to 100 GBs. We divide a single large
file into “N" equal-size sub-chunks and assign them to
available Workers such that we can utilize concurrent
read/write capabilities of the parallel file system and speedup
data movement. Each Worker is copying one chunk of a single
large file and N workers copy data in parallel. This is a typical
parallel N-to-1 data copy.

4)Very large file parallel copies — A file of size greater than 100
GB is considered a very large file. When archiving very large

files in parallel on many tapes, we encounter problems of (a)
N-to-1 parallel [/O overhead [23] and (b) performance impact
from tape sequential write operation. To overcome these
problems, we built an ArchiveFUSE file system on top of the
GPFS file system, and can successfully transfer very large files
broken down in to N equal size chunk files and assign them to
M workers for parallel write operation. We have successfully
converted an N-to-1 parallel /O operation into an N-to-N
parallel I/O operation.

5)Runtime tunable parameters for adjusting PFTool commands
runtime performance — We manipulate a list of runtime tunable
parameters when issuing each PFTool command. Tunable
parameters are (a) number of processcs created, (b) number of
tape drives used. (c) basic file copy size, (d) storage pool
information, (e) Fuse file chunk size used, and (f) tape
restoring optimization flag.

4.1.3 Parallel Archive commands supported in
PFTool

PFTOOL supports three parallel archive commands.
They are

o pfls — using parallel file tree walker and list files in parallel

e pfep — using parallel file tree walker and copy files in
parallel, and

e pfem — using parallel file tree walker and compare source
and destination files in terms of byte content comparison.
Users use it to verify data integrity of files afier data copy.

4.2 Backend System

4.2.1 GPFS — General Parallel File System

GPFS is a fast, scalable, and parallel file system from
IBM that runs on commodity hardware and the Linux
operating system. Based on performance testing in our
environment, GPFS can scan one million inodes in ten
minutes. This indicates that GPFS scales well under a heavy
load in production environments and is a good fit in a
parallel archive. GPFS can be configured to use storage
pools. A storage pool can be thought of as a class of service
where data can be stored. For example, all fast fiber channel
disks can be in one storage pool. In our archive, we have a
fast fiber channel disk storage pool where all files are
initially written and a “slow” disk pool used to store small
files. In addition to these, GPFS version 3.2 introduced the
idea of external storage pools, which extends the GPFS pool
metaphor to offline media. The external storage pool was
necessary to merge the GPFS file system with tape software
to construct the archive [17][18].

4.2.2 TSM - Tivoli Storage Manager

TSM is a backup/archive product from IBM that can
move data to and from tape while maintaining a database of
all objects that it manages. Like GPFS, TSM has excellent
metadata handling capabilities and has been tested on
hundreds of millions of files. Another important addition to
TSM is Hierarchical Storage Management (HSM). GPFS
supports HSM through the Data Management API

(DMAPI). HSM is a TSM tool that manages moving files
between the file system disk and the TSM tape system.
HSM breaks any file that is passed to it into metadata and
data. The metadata is stored on file system disk while the
data is moved to tape (Figure 5). LM external storage pools
allow a GPFS policy to generate and pass HSM a list of
files. HSM then processes every file in the list. This tiered
storage is transparent to the user, and he or she are unaware
as to whether a file is stored locally on disk or if it has been
migrated to tape [19][20].

In addition to simple migration of data from disk to
tape, we need a way to make movement parallel across the
various machines. For standard TSM operations, all data is
passed to a central server via the network, making the TSM
server’s network connection the bottleneck for transferring
data. Fortunately, TSM has a feature called LAN-free that
can move data directly from a client machine to a tape drive
via the SAN. Metadata is still sent to the TSM server via the
network. If you have multiple machines running LAN-free,
they can read and write to different tapes independently of
each other. This allows for parallel data movement to and
from tape (Figure 6). HSM can use this LAN-free feature
across multiple machines to migrate files to tape and recall
files from tape in parallel.

Mackines

Disk:

Tape Drives

Figure 5 Figure 6: Parallel data movement

4.2.3 Controlling User Commands

If the archive is left as a standard UNIX environment,
user can make use of any tool available on the UNIX
platform. This becomes a dangerous problem when some
files may be on tape. A simple example of this would be
“grep” looking for a pattern across a set of files. In order to
do so, the archive must recall any files to be searched from
tape. This recall has no order and can result in a tape
rewinding and seeking repeatedly to find files. This
becomes especially problematic when we consider “grep”
commands across machines. The machines may try to
access files scattered across a single tape causing the tape to
be mounted and dismounted repeatedly. While this is not a
problem on a standard disk, tape complicates things because
of its sequential nature.

One solution to this problem is to restrict the commands
available to users by creating a unique environment using
the UNIX “chroot™ utility. “chroot” prevents users from
seeing outside a specific subset of directories and lets
administrators restrict available commands. While avoiding
dangerous uses of commands like “grep,” we encourage the

use of PFTool, which executes in parallel and is tape aware,
for copying files.

4.2.4 Parallel Migrator

Although the GPFS policy engine supports parallel
execution of migration policies, the migration does not take
into account load balancing regarding file size or the
number of GPFS machines. One process may be responsible
for all of the large files in the list while another has nothing
but small files. Additionally, although the GPFS policy
engine may start multiple migrations to tape, all of these
processes may be created on a single machine despite
multiple machines being available.

Rather than use a GPFS migration policy, we use a list
policy to generate lists of candidate files to migrate to tape.
We combine, sort, and distribute the candidate files by file
size evenly across machines. This allows the migrations to
tape to complete at the same time across machines and can
greatly speed up the process of migrating to tape in parallel.
After migrating the data to tape in parallel, we also need a
parallel way to recall it back to disk.

4.2.5 Parallel Recall from Tape

We strongly encourage users to use PFTool so we can
optimize operations for tape archive/restore processing such
as file recall ordering. PFTool can place the files being
recalled in the order they are stored on tape. This means the
tape can be read front to back without rewinding, but it also
means we need a way of figuring out what tape and where
on the tape (the sequence ID) a given file is.

It is difficult to query TSM directly for the tape and
sequence ID for a given file. TSM version 5.5 and below
make use of a proprietary database. The fields in question
are not indexed, and we are unable to add our own indices.
To solve this we export the necessary parts of the TSM
database to a MySQL database, which we can then index.
PFTool queries this database to get tape and sequence 1D for
files that are migrated to tape. It can then sort the files in
tape order for efficient recall. It can also execute recalls in
parallel across multiple tapes. In the course of transferring
data to and from tape, we need to guard against data
becoming stale on tape.

4.2.6 Synchronous Delete

When a migrated file is deleted from GPFS, the data on
tape is orphaned because the delete from the file system
only deletes the metadata. Traditionally, reconciliation is
used to clean up these orphans on tape. The reconcile agent
compares the file system and the tape system to make sure
that they are synchronized. Unfortunately, the reconcile
agent does a directory tree-walk and compares each file one
by one rather than take advantage of the GPFS metadata
system. For an archive with tens to hundreds of millions of
files, the overhead is unacceptable.

To avoid reconciliation, we can synchronously delete
the file from disk and tape. The process to do this is to first
query GPFS for the file 1D, a unique identifier generated by
GPFS for each file. Then the MySQL database is queried to
get the TSM object ID, a different unique file identifier
created by TSM for the same file. Once the GPFS file ID
and TSM object ID are known for a given file, the process
can issue a delete to the file system and TSM at the same
time. Unfortunately, only an administrator may do the GPFS
file ID lookup and the TSM delete. Thus, we need a way to
track files that users delete so that an administrative process
can issue synchronous deletes. A trashcan is our solution.

4.2.7 Trashcan

From a user’s perspective, the trashcan is identical to
the Windows Recycle Bin. In our case, we use the GPFS
policy engine to generate lists of all files located in the
trashcans of various users based on age or size. These lists
are passed to the synchronous deleter, thereby deleting data
without leaving orphans on tape or requiring a costly
reconciliation process. Before this policy is run, we can also
un-delete in case a user accidentally deletes a file. Both the
movement of data to and from tape, as well as the deletion
of that data becomes more difficult when files become very
large [21].

4.3 Integration of backend and frontend

4.3.1 Archive Setup

Our COTS archive consists of fifteen x64 machines: 10
nodes for data movement and 5 nodes with internal disk
arrays totaling 100 TB (Figure 7). There is also an IBM
pSeries machine for the TSM server. Each of these
machines has a fiber channel card (FC4) for SAN
connectivity and a 10-gigabit Ethernet card for network. We
also have 100 TB of fast FC4 disk and twenty-four LTO-4
tape drives connected to the SAN. Software consists of Red
Hat Enterprise Linux 5.2, GPFS 3.2, and TSM 5.5.

We integrate the archive paralle] file system and the
back end tape to eliminate garbage collection etc. to avoid
having to sync archive tape back end and archive parallel
file system metadata:

* The “chroot” jail environment setup allows us to
implement our own delete function via a trash can
which allows us to implement a delayed synchronous
delete from the file system and archive

+ The Fuse layer allows us to implement truncate/unlink
any way we want in conjunction with the back end
(synchronously or asynchronously), and

+ We have learned over time that tight two way
integration of file system and back end name spaces is
difficult with and leads to poor performance, so
asynchronous garbage collection is nice — but we
cannot afford to walk both file systems and compare
(reconcile).

One PetaFlop/s

l RoadRunner Cluster

Multiple 10GIGE
Switches

10 GPFS nodes
| run PFTOOL
L

$ AN
T 10GHes lnks
S
4

| FC switch (FC~4)
o -
=
THM LTOM £ 24 Tapw
Server 5=y

g schive Cven 4 Pllyis

Figure 7: RoadRunner Open Science Parallel Archive setup
4.4 Handling various file sizes

Very small files can be backed up but medium sized
files (millions of them) may need to be migrated. Need
aggregation capability for medium sized file migration.
Enormous files broken up by using FUSE.

4.5 Restart-able File Transfer

Occasionally, a network or other problem will stop a
file transfer from file system to archive. Since we are
transferring very large files, we needed a way to restart file
transfer from the point the process last left off. Multiple
single files can be restarted by using the date on the
destination archive file when it is equal to or more than the
source file. What about restarting a 40 Terabyte file, we
don’t want to start it from the beginning. To get around this,
we mark regular file chunks or FUSE file chunks as good or
bad so that we don’t have to re-send known good chunks.
This is a unique incremental parallel archive feature that can
reduce unnecessary data copy and increase performance.

5 Performance studies on LANL’s
Roadrunner Open Science Projects

Ten science projects were chosen as the Open Science
Projects to run on “Roadrunner”, the world's first petaflop/s
computer. These projects were completed within a six-
month period following the installation of Roadrunner
at LANL. This resulted in significant breakthroughs in
materials, astronomy, and laser plasma science [21].

5.1 COTS Parallel Archive System Deployment on
LANL’s Roadrunner Cluster

We setup the proposed COTS Parallel Archive System
with the Roadrunner cluster (Figure 7). Two |0-Gigabit
Ethernet links were used for moving data between the
scratch parallel global file system, Panasas, and the archive
paralle] file system(GPFS). PFTool software and utilities
were running on ten FTA cluster nodes. The PANFS, GPFS,
and ArchiveFuse file systems were mounted on each FTA

node. Users use MOAB both interactively and in batch
modes to launch parallel archive commands such as “pfls”,
“pfep”, and “pfem.” Over four peta bytes of data were
archived within a six months period from the seven Open
Science Projects.

5.2 LANL’s Open Science Project — COTS
Parallel Archive experience and performance
data

PFTool runtime performance data was collected over a
continuous eighteen operation day periods from LANL
Open Science projects in summer 2009. We recorded 62
parallel archive jobs during this monitoring period.

Figure 8 shows the number of files archived per job
(using log,o base). The range is from 1 file/job to 2920088
file/job. The average number of file per job is 167491
file/job. This demonstrates the scaling capability of our
PETOOL software system,

Figure 9 shows amount of data archived per job (using
logo base). The range is from 4GB/job to 32593GB/job.
The average data archived per job is 2442GB.

Figure 10 shows the data rate (MB/sec) recorded per
job. The variety of performance is dependent on the file
size, number file archived, and overall system run-time
status (bandwidth sharing and machine sharing among
multiple users). The range is from 73 MB/sec to
1868MB/sec. It shows that we can reach almost ~75%
bandwidth utilization from two 10Gigabit Ethernet trunk.
The average data rate is about 575 MB/sec which is a very
good performance number compared to non-parallel archive
storage systems with about 70MB”sec archival bandwidth.

Figure || shows the average file size archived per job.
The range is from 4"KB/file to 4,220 MB/file. The average
file size per job is 596MB/file. The diversity of the LANL
Open Science projects can be seen by the various size of
files created and archives. This is a valuable observation of
data characteristics from different scientific computing
problems.

Number of files archived/job

10000 -
1000
100
10

0.1
0.01
0.001

Num files using a log10 scale

62 Paralle archive events from 18 operation days

Figure 8: Number of files copied per job over 18 operation days

Number of MB bytes copy/job

100000
10000
1000

g

-
o

-

o
HA

a
=]
=]

ks b § S g

. ; '
| _ i
i 0] ! .. !
!]
i g
0.001
bs from 18 operation days

Num files using a log10 scale

62 Paralle archive jo

Figure 9: Number of data copied per job over 18 operation days

Datarate MB/sec per job

2000

1500 I

1000

MB/sec

500

5000 o
Average File Size MB/fileperjob
4000 ,
i
3000
@ e —_-_‘_‘_'_‘—-—-
& 2000 |
5] - .
= 1000 il ==
e
0 ik “‘T

62 parallel Archive jobs over from 18 operation da\rs

Figure 11: Archived job size over 18 operation days

6 Experience and observed issues of our COTS
Parallel Archive System

6.1 Small File Tape Performance

For HSM tape operation, one file is one transaction.
This results in poor performance for small files because the
tape drive stops writing after each file. In one local case, a
user copied millions of 8 MB files to GPFS disk. Migrating
these files to tape was an order of magnitude slower than
migrating large files at a rate of 4 MB/s instead of 100
MB/s, the rated performance of LTO-4 tapes. As a result, it
took an entire weekend to migrate those files off of disk
using 24 tape drives. One solution to this problem is

aggregation, which consists of bundling these small files
into larger aggregates better suited to getting the tape drive
up to full speed, and then writing the aggregate to tape.
Interestingly, the TSM backup client does this now, but
currently we have no solution for migration.

6.2 Tape Optimization/Smart Recall

An HSM recall daemon runs on every machine in the
cluster. When a request to recall a file from tape comes in, it
is assigned to a machine. When a list of files to recall from
tape is passed to HSM, even if we put that list in tape order,
there is no guarantee the same machine will be responsible
for all of the recalls for a given tape.

When the TSM server is reading from a tape, this is not
a problem because it is the only machine to do so and does
not need to rewind and seek or recheck the tape label. Since
we use LAN-free, this does not hold true for our
environment. The result is that HSM will send the recalls to
different machines in the cluster that then causes the tape to
rewind and verify its label every time the tape is passed
between machines. This causes a massive performance hit
even though the tape is not physically dismounted. A way to
ensure that all files in a recall request are handled by the
same machine, at least in a LAN-free environment, would
correct this issue.

6.3 Limitations of the Synchronous Deleter

The synchronous deleter correctly handles users
deleting files (unlink). However, it cannot detect when users
overwrite files (truncate), and this behavior still requires a
reconcile process to clean up. This is not the case when
using our FUSE plug-in to correctly handles this by
intercepting overwrite requests and move chunks into a
trashcan that can be synchronously deleted before creating
new chunks. However, having a built-in synchronous delete
function between GPFS and TSM would catch all delete
events and go further to avoiding reconciliation between file
system and tape.

6.4 Single TSM Server

Having a single TSM server creates a single point of a
failure in a generally redundant system. It also creates a
limitation when we need to scale beyond what a single TSM
server can provide. In our current archive, scalability is not
an issue, but could be in future archives that have more than
hundreds of millions of files. By leveraging the remote file
system feature of GPFS, it might be possible to tether
multiple archive file systems together thus allowing for
multiple TSM servers. However, native support for multiple
TSM servers would be beneficial to maintain a single
namespace.

7 Summary and Future Works

We have proposed and built a hybrid Parallel Archive
Storage System approach of using COTS components and

innovative software technology. We used the same solution
as many others, but we have proved that our COTS Parallel
Archive System can bring new capabilities into a production
environment for the HPC community much faster than the
approach of creating and maintaining a complete end to end
unique parallel archive software solution.

We have successfully integrated a COTS global parallel
file system and a standard backup/archive product with a
very small amount of additional user space code to provide
a scalable and parallel solution that overlaps highly in
functions with current niche parallel archive products
including (a) doing parallel movement to/from tape for a
single large parallel file, (b) hierarchical storage
management, (¢) ILM features , (d) high volume (non-single
parallel file) archives for backup / archive / content
management, and (e) leveraging all free file
movement/management tools in Linux such as copy, move,
compare, ls, tar, etc.

We have some unique solutions to some of the
shortcomings of HSMs for archives others could borrow

* Extremely small amount of code to maintain, extremely
low development costs (maybe 1.5 man years
compared to 100+ man years for non COTS solution)

* Highly leveraged use of COTS parallel file system with
ILM features, COTS archive/backup products with
LLAN free movement and ILLM features, ILM features
will only get richer and add functionality

+ Leverages Linux/Unix data management tools, a
familiar environment with GUI’s etc. (all for free)

* Why is now a good time to take another look at using
HSM as an archive?

We plan to enhance the proposed COTS Parallel
Archive System with the multi-dimensional metadata
searching capabilities and provide an efficient solution for
archiving vary large number of small files in parallel (i.e.
very large number grass files parallel copy problem). We
also plan to have a code development schedule to
accommodate most of current COTS parallel file systems
such as Lustre, PVFSv2, pNFS, cloud file systems, and
cluster based file systems into the PFTool software system.

8 Acknowledgements

We would like to thank the NNSA ASC program,
LANL’s Institutional Computing, IBM GPFS and TSM
teams, and everyone at LANL that helped throughout this
COTS paralle] archive project.

9 Reference

I. P.L Bradshaw, K.W. Brannon, T Clark, K. Dahman, S.
Doraiswamy, L. Duyanovich, B.L. Hillsberg, W. Hineman, M,
Kaczmarski, B.J. Klingenberg, X. Ma, R. Rees, “Archive storage

o

18.
19,

20.

21,

22.

23,

system design for long-term storage of massive amounts of data, IBM
J Research and Development, Vol 52, No, 45, July/Septerber 2008
Gary grider, “COTS Parallel Archive Integration Experiences, LANL
LAUR XXXX-2009

Dingshan He, Xianbo Zhang, David H.C Du, Gray Grider,
“Coordinating Parallel Hierarchical Storage management in Object-
based Cluster File System™, 2006 IEEE MSST Conference on Mass
Storage Systems and technologies

L.L. You, K.T. Pollack, D. Long, “Deep Store: An Archival Storage
System Architecture, Proceedings of the 21" International Conference
on Data Engineering (ICDE 2005)

M. Roschke, B. Parliman, D. Cook, D. Sherril, “Parallel Processing of
Data, Metadata, and Aggregrates Within an Archival Storage System
User Interface Toward Archiving a Million Files and A million
Megabytes per Minutes), 2008 [EEE MSST Conference on Mass
Storage Systems and technologies

Gary Gnider, J. Nunez, R. Ross,). Bent, L. Ward, S. Poole, E. Felix,
E. Salmon, M, Bancroft, “Coordinating Government Funding of File
System and I/O Research through the High End Computing
University Research Activity, ACM SIGOPS Operating Systems
Review Volume 43 | Issue | (January 2009)

M.W. Storer. K.M. Greenan, E.L. Miller, K. Voruganti, “Pergamum:
Replacing Tape with Energy Efficient, Reliable, Disk-based Archival
Storage, “2008 USENIX, FAST - File And Storage Technologies
Conference

M. Factor, D. Naor, S. Rabinovici-Cohen, L. Ramati, O. Reshef, J.
Satran, “The Nced for Preservation Aware Storage,

John McKnight, “Digital Archiving, End-User Survey & Markel
Forecast 2006-2010, * ESG- Enterprise Strategy Group, Research
report, January 2006

J, Gray, W. Chong, T. Barclay, A Szalay, J. Vandenberg, “TeraScale
SncakerNet: Using Inexpensive Disks for backup, Archiving, and
Data Exchange” Microsoft Research, Technical Report MS-TR-02-
54

R. Haynes, W.R. Johnson, “The Data Service Archive”, 2004 IEEE
MSST Conference on Mass Storage Systems and technologies
Technology Brief, “Archiving Beyond File System: Object Storage
EMC Centera And Disk Archival”, The TANEJA Group, Inc., 2009
Sun Micro, “The Right Data, in the Right place, at the Right Time”,
Technical Brief, Sun Micro System, 2009

Z. Ali, Q. Malluhi, “Performance Analysis of Distributed Parallel
Archive Data Retrieval with Reliable Data Delivery”, 2004 DASD
Conference.

Sumit Singh, “Develop your own file systems with FUSE”, IBM
online developer works library information.

Technical Brief, “The New Metrics of Disk-based Data Protection”,
www.sresearch.com

“An Introduction to GPES”, IBM High Performance Computing, July
2006

“A GPFS Primer”, IBM online document, Oct. 2005

“User Guide for Tivoli Storage manager for Space management for
UNIX and Linux”, Versiion 6.1, IBM

“Managing the Life of your Data — The Role IBM Tivoli Storage
manager plays in the ILM model”, Stephen Firmes, IBM System
Magazine, May/June 2005 Issue

LIBNTRASH — A Trash Can for GNU/Linux, Free Software written
by Manuel Arriaga

http://pages stern nyu.edu/~marriaga/software/libtrash/
RoadRunner’s Open Science - LANL’s Open Science Project on
RoadRunner, http://www.lanl.gov/orgs/hpe/roadrunner

John Bent, garth Gibson, Gary Grider, Ben McClelland, Paul
Nowoczynski, James Nunez, Milo Polte, Meghan Wingate, “PLFS —
A Checkpoint File system for Parallel Applications”, Proceedings of
the 2009 Supercomputing conference, Portland, Oregan

