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Component Evolution in General Random Intersection Graphs

Milan Bradonjié * Aric Hagberg | Nick Hengartner ! Allon G. Percus 5

Abstract

We analyze component evolution in general random intersection graphs (RIGs) and give conditions on
existence and unigueness of the giant component. Our techniques generalize the existing methods for analysis
on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent,
inhomogeneous Galton-Watson branching process on general R1Gs. Our analysis relies on bounding the
branching processes and inherits the fundamental concepts from the study on component evolution in ErdGs-
Rényi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of
offsprings follows a binomial distribution with a different number of nodes and different rate at each step
during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets.
Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs
as an important random structure which has already found applications in social networks, epidemic networks,
blog readership, or wireless sensor networks.

Keywords: Random graphs, branching processes, probabilistic methods, random generation of combinatorial
structures, stochastic processes in relation with random discrete structures.

1 Introduction

Bipartite graphs, consisting of two sets of nodes with edges only between nodes in opposite sets, are often the
natural representation for classification of objects where each objects has a set of properties [10]. Collaboration
graphs also are common examples of bipartite graphs where, for example, the sets of scientists and research
papers or actors and movies form the two sets [23, 15]. In general most social networks can be cast as bipartite
graphs since they are built from sets of individuals connected to sets of attributes such as membership of a club or
organization, work colleagues, or fans of the same sports team. For example, simulations of epidemic spread in
human populations are often performed on networks constructed from bipartite graphs of people and the locations
they visit during a typical day [11]. Social networks, however, are not the only networks with bipartite structure,
any set of relations between objects and properties form a bipartite graph. For example, the relation between
network nodes and keys in an implementation of a secure wireless network forms a bipartite network [5].

Modeling social networks or object classification networks remains a challenge. The well-studied Erd&s-Rényi
model, G, p, successfully used for average case analysis of algorithm performance, does not well represent many
randomly formed networks, such as social or collaboration networks. For example, G, ,, does not capture the
typical scale-free degree distribution of most real-world networks [3]. More realistic degree distributions can
be achieved by the configuration model [17] or expected degree model [7], but those still fail to capture other
common properties of social networks such as high number of triangles (or cliques) and strong degree-degree
correlation [16, 1]. Extension of the configuration model to specify the degree of both bipartite sets remedied
some of these problems [13].

“Theoretical Division, and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA, milan@lanl.gov,

"Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, hagberg@lanl.gov,

!Siatistical Sciences Group Los Alamos National Laboratory, NM 87545, USA, nickh@lanl.gov,

%School of Mathematical Sciences Claremont Graduate University, Claremont, CA 91711, USA, allon.percus@eqgu. edu.



Another closely related alternative set of models, are random intersection graphs which were first introduced
in [22, 14]. Any undirected graph can be represented as an intersection graph [9]. The simplest version is the
“uniform” RIG, G(n,m, p) where each of the n nodes in the graph are connected with the same probability p
to a random subset of m elements in the attribute set. Then, two nodes in the graph are connected, if and only
if they are connected to at least one element in the attribute set. A more general model, and the one which we
study in this work, is the general RIG, G(n,m, p), where the set of probabilities p, which connects nodes to
attributes, is not uniform, but rather has unique values for each attribute [19, 18]. This general model has only
recently been developed and only a few results, such as expander properties, cover time, and the existence and
efficient construction of large independent sets, have been studied [19, 18, 20].

In this paper we analyze the component evolution in general random intersection graphs which generalizes the
results for uniform random intersection graphs [4]. Two other special cases of the general random intersection
graph model, with a specific overlap threshold controlling the connectivity of the nodes, were analyzed in [5].
Our analysis also generalizes the component evolution methods used on G, 5 [2, 21]. Specifically, in order
to study the component evolution we analyze the branching processes (the behavior of a breath-first search
algorithm) when the number of offsprings follows a binomial distribution with a different number of nodes and
different rates at each step during the evolution. This approach is a generalization of the case when the number
of offsprings of the nodes at the same level of the branching tree follow the same distribution [6]. The main
challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial
distribution with a different number of nodes and different rate at each step during the evolution.

2 Model and previous work

In this paper we will use the notation for random intersection graphs introduced in [5].

Model. There are two sets: the set of nodes V' = {1,2,...,n} and the set of attributes W = {1,2,...,m}.
Every node v € V is assigned a random set of attributes S(v) € W. Then two nodes u,v € V are connected
if, and only if, |S(u) N S(v)| = s, for a given integer s > 1. We consider the general intersection graph
G(n,m,p), introduced in [19, 18], with p = {py }wew, where p,, € (0,1) !, and, forallv € V and w € W,
Plw € S(v)] = p,. We consider the general case when p,, are not necessarily the same and for simplicity we fix
s=1.

The component evolution of the uniform model G(n, m, p) was analyzed by Behrisch in [4], for the case when
the scaling of nodes and attributes is m = n®, with o # 1 and p*m = ¢/n. Theorem 1 in [4] states thal the size
of the largest component N'(G(n,m, p)) in RIG satisfies (i) N'(G(n,m,p)) < _{ﬁ jlogn, fora > 1,¢ < 1,

(ii) N(G(n,m,p)) = (1 +o(1))(1 — o)n, for & > 1,¢ > 1, (iii) N(G(n,m,p)) < (;O":;)\/_logm for
a<le<1, (iv)N(CGn,mp)) = (1+0o(1))(1— p)y/emn, fora < 1,c > 1, where p is the solution in (0, 1)

of the equation p = exp(c(p — 1)).

The component evolution for the case s > 1 in the relation |S(u) N S(v)| > s is considered in [5], where the
following two RIG models are analyzed: (1) G5(n, m,d) model, where P[S(v) = A] = (7}) ~forall AC Won
d elements, for a given d; (2) G%(n, m, p) model, where P[S(v) = A] = plAl(1 - p)m 14l for all A C W. In light
of results of [4], it has been shown in [5], that for d = d(n), p = p(n),m = m(n),n = o(m), where s is a fixed
integer, and d?* ~ c¢m?®s!/n, the largest component in G5(n, m, d) satisfies: (i) N'(Gs(n, m,d)) < - )]ogn
for ¢ < 1, (i) N(Gs{n,m,d)) = (1 + o(1))(1 — p)n, for ¢ > 1, in the case when nlog" = o(m) For s=1
and n = o(m*(®s=1)) for s < 2. The same results for the giant component in Gs(n, m, p) still hold for the case
when p?* = ¢s!/m®n and n = o(m/(2s=1)) [5].

Both G(n, m,d) and G’,(n,m, p) are special cases of a more general class studied in [12], where the number

'We can eliminate the cases py, = 0 and p,, = 1, since either none or all of the nodes would have the attribute w and we are interested
in graphs without isolated nodes or completely connected nodes. Note that the py.'s do not sum up to 1.




of attributes of each node is assigned randomly as in the bipartite configuration model. That is, for a given
probability distribution (P, P, . .., Py,), we have P[|S(v)| = k] = P for all 0 < k < m, and moreover given
the size k, all of the sets S(v) are equally probable, that is for any A C W, P[S(v) = A : |S(v)| = k] =
(’}:)_1. That is, we see that Gs(n, m, d) is equivalent to the model of [12] with the delta-distribution, where the
probability of the d-th coordinate is 1, while G%(n,m, d) is equivalent to the model of [12] with the Bin(m, p)
distribution. Comparing G(n, m, p), the general RIG model, with the model of [12], it follows that general RIG
mode! does not perform a “uniform sampling”, as the model of [12], which we explain in (6), Section 3. To
complete the picture of previous work, it was shown that when n = m a of probabilities p = {py }wew can be
chosen to tune the degree and clustering coefficient of the graph [8].

3 Mathematical preliminaries

The edges in RIG are not independent. To see this, consider three distinct nodes u, v, w € V. Conditionally
on the set S(w), the random sets S(u) and S(v) are conditionally independent, since given S(w), the sets
S(u) N S(w) and S(v) N S{w) are mutually independent. The latter implies conditional independence of the
events {u ~ w | S(w)}, {v ~w | S(w)}, and hence

Plu ~w,v ~w| S(w)] = Plu~w| S(w)|Plv~w|Sw) (n
However, the latter does not imply imply independence of the events {u ~ w} and {v ~ w} since

Plu~wv~w = EPu~wv~w|Sw)
= E[Plu~w|Sw)Plv~w|Sw)]
# Plu~ w|Plv ~ w. (2)
Furthermore, the conditional pairwise independence (1) does not extend to three or more nodes. Indeed, condi-

tionally on the set S(w), the sets S(u) N S(v), S(u) N S(w), and S(v) N S(w) are not mutually independent, and
hence neither are the events {u ~ v}, {u ~ w}, and {v ~ w}, that is,

Plu ~ v,u ~ w,v ~w | S(w)] # Plu ~v | S(w)]Plu~ w | S(w)|Plv ~ w | S(w)]. (3)

We now provide two identities that we will use throughout this paper. For any w € W, let g, := 1 — p,,, and
define [[,cpga = 1.

Claim 1 For any node v € V and fixed set A C W,

PIS(w)nA=0=J](1-pa) = [] ¢a €5
acA oEA
Proof Write
P[S(w)NA=0=PNVacAag¢ S =[[Pla¢sw)=[]0-r)= ][] ¢
aEA acA a€A

which is the desired expression. B

Claim 2 For any node v € V, and fixed sets A, B C W,

PS) N A=0,SwnB#0=(T]a)(t~ IT ) =TT~ ] 4

agA aEB\A acA peB



Proof The sets A and B\ A are disjoint. The result follows from (4). B

It follows from (4) that for any node u,v € V, Plu ~ v|S(v)] =1 — [],c5(,) 9o- Taking the expectation over

S(u) yields
Pu~vol= D PIS@)(1- [T ) =1- [T -4 )

S(u)Cw asS(v) weW
To explain non-uniform sampling of the general RIG model, it in general follows that for a given set of probabil-
ities {pw }wew:

PIS() = 4] 1S@)| = k] = 2oL = A5 =K Dgatn ol :

Pl|S(v)| = k; . ZAQW,[AJ:J; [locaPa H,ﬁ@A(l —Pg) @

(6)

4 Branching process on random intersection graphs

Our analysis for the emergence of a giant component is inspired by the approach described in [2]. The idea is to
define an auxiliary process related to a breath-first search (BFS) algorithm starting at an arbitrary node vy € V,
whose stopping time is the size of the component containing vg. To define this process, we label al each time
t the nodes in V' as alive, neutral, or dead. Specifically, we initialize the process at time ¢ = 0 by labeling all
the nodes in V' as neutral. Then we pick one node vg at random among the neutral node, and label all the nodes
connected to vy as alive. Finally, label vy as dead. At each subsequent times ¢ > 1, pick one node v, uniformly
at random from the alive nodes and label all the neutral nodes connected to v, as alive, and v, as dead.

We describe this process in terms of the random variables (N,, Y}, Z;): N, the number of remaining neutral
nodes at the end of iteration ¢, ¥; the number of alive nodes at the end of iteration ¢, and Z; the number of neutral
nodes that become alive in the course of iteration t. These random variables satisfy Yy = 1, Np = n — 1 and the
recursion relation

YE = Yg_1+Z,;—1, fOl‘t?l, {7)
l
N n—l—ZZﬂ fort > 1. (8)
=l
Moreover
L
V,-Yy = ZZT_t, fort > 1, (9
=1
Ny = n—t-Y,, fort >0. (10)
Define the stopping time
T(vp) = inf{t > 0:Y; =0}. (rn

By construction of the process {Y;}, the size of the connected component C'(vgy) containing vg is T'(vg). Note
that the previously defined process on a graph stops at the first t for which Y; = 0. However, we can formally
consider the set of the previous equations, for any ¢, that is even when Y; < 0. This set of equations, we may
later call “BFS” equations.

4.1 The probability of exposing neutral nodes during the branching process

As in [5], we denote the cumulative feature set associated to the sequence of nodes vg,...,v; from the BES

algorithm by
Sy = U5 S(vs)- (12)



Furthermore we define the history of the BFS at time ¢ to be
He = {v0, V15 -+ -» Vs Sjo) Spaps - - Sy }- (13)

In light of Claim 2, the conditional probability r; of exposing a given neutral node u given the history H; is

re = Plu~uv,ud vy, ud v, uk vp|Hy
= P[S(u) N S(w) # 0,S(u) N Spy—1) = OH,]
= P[S(u) N S(w) # 0, S(w) NSy = 0]S(w), Sji—y)]
= J] - ]]
€S|y BESy;
= 1 — ¢y, (14

where we set ¢ 1= I-[ue.ﬁ‘l,] qa, and define S_j; = @, ¢_1 = 1. Observe that this probability is the same for all
neutral nodes. Hence the number of neutral nodes becoming alive at time ¢ is, conditionally on the history H;, a
Binomial distributed random variable with parameters /Ny and r,. Formally,

A NBiﬂ(N{_,T;). (15)

This allows us to describe the distributions of NV, and Y; in the next lemma.

Lemma 3 For timest > 1, the number of neutral and alive nodes satisfies

=1
Ny Hi-y ~B'm(n— I,H(l—rT)), (16)
=0
and el
YgI'Hg_,wBin(n—l,l—H(l—n))—t+l‘ a7
7=0

The proof of this lemma requires us to establish the following resull first.

Lemma 4 Let random variables Ay, Aq satisfy: A1 ~ Bin(m,v1). Aggiven Ay ~ Bin(Ay,v2). Then
marginally Ay ~ Bin(m, vive) and Ay — Ay ~ Bin(m, v1(1 — v2)).

Proof LetU,...,U, and Vi, ..., V;, be iid. Uniform(0, 1) random variables. Writing

m
Ay S IU; €v) and  Ag|A, 4 > I(Vi < w),

j=1 kU <1y
we have that
P d -
A2 £ 3 WUk < i)I(Vie < 1) £ 3 WUk < 1),
k=1 Al

from which the conclusion follows. B

Proof (Proof of Lemma 3) We prove the Lemma by induction in t. For t = 0, we have Ny = n — 1, and
Zy ~ Bin(Ny, o), thatis, Z; ~ Bin(n — 1,7p). Using (8), it follows that N; =n — 1 — Z; ~ Bin(n — 1, 7).
Thus the Lemma is true for t = 0. Assume that the Lemma is true for some t > 1,
=1
Ne|Hy—1 ~Bin(n—1, J] (1 = 74)). (18)
=0



From (15), we know that Z,;|H; ~ Bin(N,, ;) and (10) implies N1, = N, — Z,4,. Now from Lemma 4, it
follows

t
New|Hy ~ Bin(n — 1, [ (1 = 7). (19)
=0
Hence, by mathematical induction, the Lemma holds forany ¢ > 0. &

4.2 Expectation of ¢,

We now focus on describing the distribution of ¢, = Haeg,“ go- Given any sequence vg, vy, V2, ..., Un—1
enumerating the nodes in V and w € W, let T, denote the first time that a node in that sequence connects 0 w.
We set I, = oo if none of the vertices in V connect to w. ThatisT'y, = kif w & S(v) U S(v1)U -+ US(vg—1)
and w € S(vy). Since each node is attached independently to w with the same probability py, it follows that

k+1 _
| s k=0,....,n-1
IP[I‘-w>k]—{ g Py
This distribution does not depend on the order v, v1, v2,...,vp—1. Fort > 0, we have
] t
d i =1
o=l w=11 TII a=IIII ™= I a&m™=, (20)
a€Sy) J=0acs(v;)\S[j-1] J=0weW weW

Using the fact that for a B ~ Bernoulli(r), the expectation E[a®] = 1 — (1 — a)r, we can easily calculate the
expectation of ¢

Elgd = B[] o™= = T (1- (1~ qu)P[Cu < 1))
weW weW
=TI (1- =g -d). @n
wew

The concentration of ¢g will be or crucial for the analysis of the supercritical regime, Subsection 5.2. Hence, we
here provide E[co] and E[¢3]. From (21) it follows

Elgo] = JT(1-p2)=1- D pi+o()_ F). 2)
wew weW weW

Moreover, from (20) it follows

Elg8) = E[[] &= = [T (1- 1 -2)eiru =0)) = I] (1-(1-c2)nu)

weWw weW weWw
H(1~2p?u+pi)=1-2Zpi+ S +o( Y 20 —pl) 23)
weW weW we W weW

5 Giant component

With the process (Y}, V) defined in the previous section, we analyze both the subcritical and supercritical regime
of our random intersection graph by adapting the percolation based techniques to analyze Erdés-Rényi random

graphs [2].

The technical difficulty in analyzing that stopping time rests in the fact the distribution of ¥; depends on the
history of the process. In the next two subsections, we will give conditions on {p,, : w € W} ensuring that
P[|C(v)| > K logn| < n~1%) (subcritical regime) and P[|C(v)| < Kn] < X X XX (supercritical regime).




5.1 Subcritical regime

Theorem 5 Let
Z P?u = O(l/nz) and py, = O(1/n) for all w.
weW

For any positive constant ¢ < 1, if Ewcw pﬁ, < ¢/n, then all components in a random intersection graph are of
order O(log n), with high probability.

Proof We generalize the techniques used in the proof for the sub-critical case in Gy, , presented in [2]. Let
T'(vg) be the stopping time define in (11), for the process starting at node vy and note that T'(uvp) = |C(uo)|. We
will bound the size of the largest component, and prove that under the conditions of the theorem, all components
are of order O(logn), with high probability.

Forallt > 0,
-1
P[T(vo) > t] < P[¥; > 0] = P[Bin(n — 1,1 - [ (1 - r4)) > 4. (24)
=0
Bounding from above, which can easily be proven by induction in t for . € [0,1/, we have

t—1

&=l t—1
1-JIa=r) <Y e =D (br1—6r) =1 — 11 (25)
=0 =0

=0
Further, by using stochastic ordering of the Binomial distribution (both in n and in ) 7;), it follows
t—1
P[T >t] < P[Bin(n,» r,) >t =PBin(n,1—¢,_1) >1]

=0

= P[Bin(n,1 = ¢i—1) 2t |1 - ¢—1 <t/n]P[l — ¢—1 < t/n]

+ P[Bin(n,1 — ¢y—1) 2t | 1 — ¢p—1 > t/n|P{l — g1 > t/n]
< PBin(n,1—¢-1) 2t |1 =1 <t/n| + Pl —¢_1 >1t/n]. (26)

Fort = Kplogn, where Kj is large enough and independent on the initial node v, the Chernoff bound ensures
that P[Bin(n,1 — ¢—1) >t |1~ ¢,—1 < t/n| = o(n™'). To bound P[1 — ¢,_1 > t/n], use (20) to obtain

{1—¢y—q >t/n} = { H q!gr!yg:) <1- %}

weWw

= { > log (i—_lp—) Iy, <t) >~ log (1 - i) } :
weW S n

Linearize — log(1—t/n) = t/n+o(t/n) and define the bounded auxiliary random variables X, ,, = nlog(1/(1—
Pw)) (I < t). Direct calculations reveal that

IE[X-'.,w] n nlog(l

w

_lp )(1 ~ ) = R(Pw + O(pw)) (1 —(1- pw)t)
= n(Pw + a(pw)) (tpw + O(tpw))) = ntp? + o(mpi’)‘ i

which implies

Z E[X; ) = nt Z P2, +O(nt Z pfu) (28)

weWw weW weW

nYy p<c<l,
weW

Thus under the stated condition that



it follows that 0 < (1 —¢)t <t — 3 -y E[X¢ ] In light of Bernstein’s inequality, we bound

Pl — g1 >t/n] =P [Z Xpw = f} <P l Z Xiw—E[Xiu] 2 (1 - C)i]

weW weW

3((1=a)t)?
S exp ( 3 pew VaJI_XL.j] + nt lrlr‘n;Xw {Pw}m)' =
Since
2 = (o250 o (-0
= pn? (p?” —+ o(pi,)) (tpw + o(tpw))) = nztpg, + o(nzt Z p‘isﬂ)’ G0

weWw
it follows that for some large K| > 0
Z Var[ Xy ] < Z IE[XE‘H,] — n?t Z 2, +o(n2t Z pfu) < K.
weW welW weEW weW

Finally, the assumption of the theorem implies that there exists K5 > 0 such that

7 max < K.
wewpw =i

Substituting these bounds into (29) yields

_ 3(1 —c)?
Pl o > ] < exp (5 20,

and taking ¢ = K3logn for some K3 large enough and not depending on the initial node v, we conclude that
P[1 — ¢i—1 = t/n] = o(n™!), which in turn implies that taking Ky = max{Ko, K3}, ensures that

P[T(vg) > Ky4logn| = o(1/n)
for any initial node vg. Finally, a union bound over the n possible starting values vg implies that

P[mgac_T(vg) > Kylogn] < no(n™") = o(1),

which implies that all connected components in the random intersection are of size O(logn), with probability
tending to one as n tends to infinity. B

Let us now comment that the conditions of the theorem are not self-redundant. From Cauchy-Schwarz inequality

- 2 . - "
it follows that (Zw&wp;i) ( Lwewpw) > (Zwew pfu) = /n? Given that )" .y P3, = O(1/n?) it
follows that 3~ pw = Q(1). From the fact that p,, = O(1/n), it follows that Zwewpw = O(m/n) =
Q(1).Thus this is valid case only if m = Q(n).

5.2 Supercritical regime

In this subsection we consider the (very) supercritical regime, where Zwew pi. = ¢/n, where ¢ > 1is a
constant. The barely supercritical regime, when ¢ > 1 but not a constant, we leave for future work.




Theorem 6 Let

2: ;oi, = nloor?a,) and py = O(1/logn) for all w.

weEW
For any positive constant ¢ > 1, if 3 p2, = c/n, then there is a unique largest component of order ©(n),
in a random intersection graph, with high probability. Moreover, the size of the largest component is given by
(1+0(1))(1 — p), where p is the solution in (0, 1) of the equation p = exp(c(p — 1)). All other components are
of size O(logn).

First, note that the conditions imposed on p,, are weaker than ones in the case of the sub-critical regime.

The outline of our proof is the following. We first consider the value 1 — [._{,(1 — 7,), which is of essential
for a behavior of the branching processes (Y;, NV;), see Lemma 3. We provide lower and upper bounds for
that value. We first, show that the process can be stochastically lower bounded by Bin(n,c'/n), for some
constant ¢ > 1. This will ensure the stopping time in RIG for some node vy is of size ©(n), whp 2. Hence,
there will be a component of size @(n) in our RIG. Furthermore, we provide an upper bound for the value
1- f,;lﬂ(l — ), showing the upper stochastic dominance. Given those two stochastic bounds, from the
analysis on the corresponding ErdGs-Rényi graphs, we conclude that the sizes of all components in RIG are
of order either O(logn) or ©(n). This of course does not provide that there is a unique largest component in
RIG, since the proof for the uniqueness in Erdés-Renyi graphs depends on its structure. We finally show the
uniqueness of the largest component and show that its size follows the law similar for the Erdds-Rényt graphs
with the corresponding characteristics.

Proof
Let us consider the value 1 — (1 ). One upper bound, ZT _oTr» is already given in (25). Using Jensen’s
inequality on the function loc(l —x) we prowde a lower bound

t-1

logH(l—r-T) = Z‘locr 1—71;) _L]og( (pr—1 —qb,-))
=0 =0
1 1 — @1
< tlog(l—;g(@_l—@))=tiog(1—f). 31

Thus, the value 1 — []4_{(1 — ;) is lower and upper bounded by

1 - y_1\t = o
= (1——;—) <1 —Eﬁ(l—n) s;:arf S (32)

In order to lower bound 1 — [ 1 — l—'ﬁ'—‘—'

)t. let us introduce and analyze fi(z) =1 — (1 — z/t)!, where t > 1.
It will be of our interest to consider f;(x) when z | 0. First the fi(x) is decreasing in t for fixed z. Hence
fi(x) = 1 — e™*. Moreover, for any € > 0 (¢ is not necessarily a constant, and will be explained later) we have
that for z € [0, €], we have ‘-":- ‘z < 1—e* < fy(z). Second fi(x) is increasing in z for fixed t. From (20),
1 — ¢ < 1—dy, hence 1 — (1 —2522)t <1 — (1 —2=%=1)t, Now, let us look at 1 — ¢g. From (23) and (22), by
using Chebyshev inequality, with > . p2, = ¢/n, it follows that ¢y, is concentrated around its mean, that is,
for any constant 6 > 0, ¢g € (1 + §)[E[¢hg], with probability 1 — o(1/n). Thus, it follows that, for any constant
0 >0,1—¢p € (1£6)e/n, with probability 1 —o(1/n). Now, we conclude for any § > 0 there is € > 0 such that

(c— 6} 1"“ > 1, since constant ¢ > 1. Note that lim._¢ "(" © =1, thus by choosing e sufficiently small, then
l1—e

can be arbitrarily close to 1. Hence, we have that 1 — 'r":u(l —1,) > c'/n, for some constant ¢~ > 1,
wh:ch is arbitrarily close to ¢. This means that our branching process on RIG is stochastically lower bounded by

the Bin(n — 1, ¢’/n), which stochastically dominates a branching process on Gye'/n- We know that there is a

*We will denote whp, meaning with the probability tending 10 1. as the number of nodes n tends to infinity.




giant component in G, ., 0f size ©(n), that is, its stopping time is of order ©(n) and so is the stopping time
for RIG. Hence there is a giant component in RIG, whp.

The next paragraphs bound the size of the giant component in RIG. Thus we consider the regime for which exists
a giant component, that is, starting from some vy, its stopping time 7, = ©(n).

We now show, that for the conditions of the theorem there is p* = ¢ /n, for some constant ¢t > 0, such that
1—¢—1 <1—(1—p™). Thisis equivalentto —log ¢;—1 < tlog(l —p*) = tp™ +o(tp™) = tet /n+o(t/n).
From the definition for ¢;_;, see (20), with previously introduced random variables X;,, = nlog(1/(1 —
Pw))(T'y, < t), it follows that we want to show that P[}_, X, < tct]. In the previous subsection, we
have analyzed X,,, E[X],E[X,],E[X2]. Given that 3", E[X, ] = ¢/n, by choosing ¢* > ¢ > 1, by Bernstein
inequality it follows that P[> X, ., < tc™| =1 — o(1/n), for the conditions of the theorem.

Analogously, we now show, that for the conditions of the theorem there is p~ = ¢~ /n, for some constant
¢” > 1,suchthatl — (1 —p~)* <1—(1—(1-¢.—1)/t)". This is equivalent to — log¢,_; > tlog(l —p~) =
tp~ +o(tp™) = te” /n+ o(t/n). With the analogue conclusion as in the previous case, by choosinge > ¢~ > 1
by Bernstein inequality it follows that P[}",, X, ., > tc™] = 1 — o(1/n), for the conditions of the theorem.

Thus, with probability is 1 — o(1/n), we have

t—1

1-(1-p ) <1-JJa-r)<1-(1-p")" (33)
r=0

From the stochastic dominance (33), we have

[P[Bin(n—l,l —qa —p')*) Zt] < [P[Bin(n— i s ﬁ(l —r,)) zt]

=0
< ﬂ»[Bm(n.—1,1—(1—p+)f) zc]. (34)

Bellow we argue the uniqueness. RIG cannot be interpreted as a G, ,, with a certain edge probability, since the
edges in RIG are not independent, see (2). From (33) it follows that if we consider the set the recurrent equations
(Y;, Ny) on RIG, is stochastically bounded by the sets of the corresponding equations on Gy p- and G, 4. Since
¢~ ,c™ are such that there are giant components in GG, ,- and G,, ,+ whp, it follows that there must exist a giant
component in our RIG, whp.

We now look closer at the size of a giant component. For the case when p = A/n, where A > 1, in [Hofstad,
Spencer] it has been shown that there is the unique connected component in G, 5, of size &= n(y, where () is the
unique solution from (0, 1) of the equation

1—e M= (35)

More precisely, in [Hofstad], the CLT for the size of the giant component in G,, /,, has been proven, which in
distribution follows

|Cmax| — CAn G(L=G)

e N g )
where |Cmax| = max,{|C(v)|}. Remember that the stopping time 7" = inf{t > 0 : ¥; = 0}, see (24).
Hence, (34) and (36) imply that in random intersection graphs, whp there is a giant component of size, at least,
n(y(1 — o(1)). Considering, G,, ,,-, G,, ,+, we know that their stopping times will be approximately (n, where
( satisfy (35), for A= = np~, At = np™, respectively. More precisely the giant component in G,, -, G, ,+ will
follow (36). From (34) the stopping time of RIG is bounded by the stopping times on these two random graphs.
To argue that those two times are closed, let us look at FI(¢,c) = 1 — ( — e™%, where (¢, ¢) be the solution of
F(¢,¢) = 0, for given c. Since all partial derivatives of F((,c) are continuous and bounded around (c, (), it
follows that for a small perturbation of ¢, the solution in ¢ cannot deviate much.

(36)



Now, our goal is to show that whp there is a unique giant component for the conditions of the theorem. We pursue
the proof on RIG, analogously by adopting the proof for the uniqueness of the giant component in G, 5, from
[Joel-Spencer-Notes]. Let us assume that there are at least two giant components in RIG, denoted Vi, Vo C V.,
Let us consider a new independent “sprinkling” RIG  on the ‘top’ of our RIG, that is consider RIGt = RIG U
RIG . Let forany w € W be p/, = py, where v > 1 to be defined later. Let us consider all ©(n?) pairs {v1,v2},
where v; € Vi,v9 € V5, which are independent in RIG but not in RIG. Hence, the probability that two nodes
v1, v € V are connected in RIG is given by

1-TJa-p2)=1-JJa-02) =D +0(d_pZ) = w(1/n?). (37)
w w w w
The last equality is true, since fy > 1 and p,, = O(1/n) for any w. By Markov inequality, it follows that
there is a pair {v1,vs}, such that vy is connected to v in RIG . Thus, the components V}, V5 are connected,
whp, forming one connected component within RIG". Then it follows that this component is of size at least
2n(x(1 — &), for some sufficiently small constant & > 0. On the other hand, since the probabilities in RIG* are
Py =1—(1=pu)(1 = p,) = Puw + Pu(l = Pu) = Puw + P (1 — Pu) = pu(l +o(1)),

again this is true, since v > 1 and p,, = O(1/n) for any w. Thus,

S h)?= >R +0() ] pt(1-pw)) = D ph(L+0(1) = ¢/n+o(1/n). (38)

weW weW weW weW

From (36), bounds on the stopping time in RIG and its continuity, it follows that the giant component in RIG*
cannot be that large. This is a contradiction, thus there is only one giant component in RIG, of size given by
nC(1+o(1)), where ( satisfies (35). Moreover from (34) it follows that all other components are of size O(logn).
|
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