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Component Evolution in General Random Intersection Graphs 

Milan Bradonjic : Aric Hagberg! Nick Hengartner fAllon G. Percus § 

Abstract 

We analyze component evolution in general random intersection graphs (RIGs) and give conditions on 
existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis 
on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, 
inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the 
branching processes and inherits the fundamental concepts from the study on component evolution in Erdos­
Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of 
offsprings follows a binomial distribution with a different number of nodes and different rate at each step 
during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. 
Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs 
as an important random structure which has already found applications in social networks , epidemic networks , 
blog readership, or wireless sensor networks. 

Keywords: Random graphs, branching processes, probabilistic methods, random generation of combinatorial 
structures, stochastic processes in relation with random discrete structures. 

1 Introduction 

Bipartite graphs, consisting of two sets of nodes with edges only between nodes in opposite sets, are often the 

natural representation for classification of objects where each objects has a set of properties [10]. Collaboration 

graphs also are common examples of bipartite graphs where, for example, the sets of scientists and research 

papers or actors and movies form the two sets [23, 15]. In general most social networks can be cast as bipartite 

graphs since they are built from sets of individuals connected to sets of attributes such as membership of a club or 

organization, work colleagues, or fans of the same sports team. For example, simulations of epidemic spread in 

human populations are often performed on networks constructed from bipartite graphs of people and the locations 

they visit during a typical day [11]. Social networks, however, are not the only networks with bipartite structure, 

any set of relations between objects and properties form a bipartite graph. For example, the relation between 
network nodes and keys in an implementation of a secure wireless network forms a bipartite network [5]. 

Modeling social networks or Object classification networks remains a challenge. The well-studied Erd6s-Renyi 

model, Gn,p, successfully used for average case analysis of algorithm performance, does not well represent many 

randomly formed networks, such as social or collaboration networks. For example, Gn,p does not capture the 
typical scale-free degree distribution of most real-world networks [3]. More realistic degree distributions can 

be achieved by the configuration model [17] or expected degree model [7], but those still fail to capture other 
common properties of social networks such as high number of triangles (or cliques) and strong degree-degree 

correlation [16, I J. Extension of the configuration model to specify the degree of both bipartite sets remedied 

some of these problems [13J. 
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Another closely related alternative set of models, are random intersection graphs which were first introduced 
in [22, 14]. Any undirected graph can be represented as an intersection graph [9]. The simplest version is the 

"uniform" RIG, G(n, m, p) where each of the 71 nodes in the graph are connected with the same probability p 
to a random subset of m elements in the attribute set. Then, two nodes in the graph are connected, if and only 
if they are connected to at least one element in the attribute set. A more general model, and the one which we 

study in this work, is the general RIG, G( 71, m, p), where the set of probabilities p, which connects nodes to 
attributes, is not uniform, but rather has unique values for each attribute [19, 18]. This general model has only 

recently been developed and only a few results, such as expander properties, cover time, and the existence and 
efficient construction of large independent sets, have been studied [19, 18,20]. 

In this paper we analyze the component evolution in general random intersection graphs which generalizes the 

results for uniform random intersection graphs [4]. Two other special cases of the general random intersection 
graph model, with a specific overlap threshold controlling the connectivity of the nodes, were analyzed in [5]. 

Our analysis also generalizes the component evolution methods used on Gn,p [2, 21]. Specifically, in order 
to study the component evolution we analyze the branching processes (the behavior of a breath-first search 

algorithm) when the number of offsprings follows a binomial distribution with a different number of nodes and 

different rates at each step during the evolution. This approach is a generalization of the case when the number 
of offsprings of the nodes at the same level of the branching tree follow the same distribution [6]. The main 
challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial 
distribution with a different number of nodes and different rate at each step during the evolution. 

2 Model and previous work 

In this paper we will use the notation for random intersection graphs introduced in [5]. 

Model. There are two sets: the set of nodes V = {I, 2, ... ,n} and the set of attributes W = {I, 2, ... , m}. 
Every node v E V is assigned a randorr: set of attributes S( v) <;;; W. Then two nodes u, v E V are connected 

if, and only if, IS(u) n S(v) 1 ;::: 8, h- a given integer 8 ;::: 1. We consider the general intersection graph 

G(n, m, p), introduced in [19, 18], with p = {Pw}WEW, where Pw E (0,1) I, and, for all v E V and W E W, 
lP' [w E S( v) 1 = Pw. We consider the general case when Pw are not necessarily the same and for simplicity we fix 

s = 1. 

The component evolution of the uniform model G(n, m, p) was analyzed by Behrisch in [4], for the case when 

the scaling of nodes and attributes is m = nCt
, with a :f. 1 and p2m = e/n. Theorem I in [4] states that the size 

of the largest component N( G(n, m, p)) in RIG satisfies (i) N( G(n, m, p)) :::: (1~c2) log 71, for a > 1, e < 1, 

(ii) N(G(n,m,p)) = (1 + 0(1))(1 - .0)71, for a > l,e > 1, (iii) N(G(n,m,p)) :::: (~~~)~logm, for 

a < I, e < 1, (iv) N(G(n, m, p)) = (1 + 0(1))(1 - p)y'emn, for a < I, e > 1, where p is the solution in (0,1) 
of the equation p = exp(e(p - 1)). 

The component evolution for the case 8 ;::: 1 in the relation IS(u) n S(v)1 ;::: s is considered in [5], where the 

following two RIG models are analyzed: (I) Gs(n, m, d) model, where lP'[S(v) = A] = (~') -1 for all A <;;; Won 
d elements, for a given d; (2) G~(n, m, p) model, where lP'[S( v) = A] = piAl (1- p )m-IAI for aU A <;;; VV. In light 

of results of [4], it has been shown in [5], that for d = d(n), p = p(n), m = m(n), 71 = o(m), where s is a fixed 

integer, and d2s 
rv ems s!/n, the largest component in Gs(n, m, d) satisfies: (i) N( Gs(n, m, d)) :::: (1~c2) log 71, 

for e < 1, (ii) N(Gs(n, m, d)) = (1 + 0(1))(1 - p)n, for e > 1, in the case when nlogn = o(m) for s = 1 
and 71 = o( m s /(2s-1)) for s :::: 2. The sa:ne results for the giant component in G s (71, m, p) still hold for the case 
when p2s = es!/msn and 71 = 0(ms/(2s-1)) [5]. 

Both Gs(n, m, d) and G~(n, m, p) are special cases of a more general class studied in [12], where the number 

I We can eliminate the cases Pw = 0 and Pw = 1, since either none or all of the nodes would have the attribute wand we are interested 
in graphs without isolated nodes or completely connected nodes. Note that the pw 's do not sum up to 1. 
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of attributes of each node is assigned randomly as in the bipartite configuration model. That is, for a given 

probability distribution (Po, PI"", Pm), we have lP'[I S(v)1 = k] = Pk for all 0::; k ::; m, and moreover given 
the size k, all of the sets S(v) are equally probable, that is for any A <;;; W, lP'[S(v) = A : IS(v)1 = k] = 
(:') -1. That is, we see that Gs (n, m, d) is equivalent to the model of [12] with the delta-distribution, where the 
probability of the d-th coordinate is 1, while G~ (n, m, d) is equivalent to the model of [J 2] with the Bin( m, p) 
distribution. Comparing G( n, m, p), the general RIG model, with the model of [12], it follows that general RIG 
model does not perform a "uniform sampling", as the model of [12], which we explain in (6), Section 3. To 

complete the picture of previous work, it was shown that when n = m a of probabilities p = {Pw}wEW can be 

chosen to tune the degree and clustering coefficient of the graph [8]. 

3 Mathematical preliminaries 

The edges in RIG are not independent. To see this, consider three distinct nodes u, v, w E V. Conditionally 
on the set S(w), the random sets S(u) and S(v) are conditionally independent, since given S(w), the sets 

S(u) n S(w) and S(v) n S(w) are mutually independent. The latter implies conditional independence of the 

events {u rv wi S(w)}, {v rv wi S(w)}, and hence 

IP'[u rv W, v rv wi S(w)] = lP' [u rv w I S(w)]lP'[v rv w I S(w)]. 

However, the latter does not imply imply independence of the events {u rv w} and {v rv w} since 

[P'[u rv W, v rv w] lE[lP'[u rv w, v rv W I S(w)] 

lE [lP'[u rv w I S(w)]lP'[v rv w I S(w)]] 

1 lP'[u rv w]lP'[v rv w]. 

( I) 

(2) 

Furthermore, the conditional pairwise independence (I) does not extend to three or more nodes. Indeed, condi­

tionally on the set S(w), the sets S(u) n S(v), S(u) n S(w), and S(v) n S(w) are not mutually independent, and 
hence neither are the events {u rv v}, {u rv w}, and {v rv w}, that is, 

lP'[u rv v, u rv W, V rv W I S(w)] 1 lP' [u rv v I S(w)]lP'[u rv wi S(w)]lP'[v rv w I S(w)]. (3) 

We now provide two identities that we will use throughout this paper. For any w E W, let qw := 1 - Pw, and 

define ITo:E@ qcx = 1. 

Claim 1 For any node u E V and fixed set A <;;; W, 

lP'[S(u) n A = 0] = II (1 - Pa) = II qa· (4) 
<YEA <YEA 

Proof Write 

lP'[S(u) n A = 0] = lP'[Va E A, a t4 S(u)] = II lP'[a t4 S(u)] = II (1 - PlY) = II qCil 

<YEA <YEA 

which is the desired expression .• 

Claim 2 For any node u E V, and fixed sets A, B <;;; W, 

[P'[S(u) n A = 0, S(u) n B 10] = ( II qo:) (1 - II q(3) = II qcx - II qf3. 
o:EA o:EB\A o:EA f3EB 
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Proof The sets A and B \ A are di sjoint. The result follows from (4) . • 

It follows from (4) that for any node u, v E V, lP' [u ~ vIS(v) ] = 1 - [lo.ES(v) qa. Taking the expectation over 
S(u) yields 

lP'[u ~ v] = L IP'[S(u)] (1 - II qa-) = 1 - II (1 - p~) . (5) 
S(,,) ~W a-ES(v) wEW 

To explain non-uniform sampling of the general RIG model, it in general follows that for a given set of probabil­

ities {Pw}wEW: 

4 Branching process on random intersection graphs 

Our analysis for the emergence of a giant component is inspired by the approach described in [2]. The idea is to 

define an auxiliary process related to a breath-first search (BFS) algorithm starting at an arbitrary node Vo E V, 
whose stopping time is the size of the component containing Vo. To define this process, we label at each time 
t the nodes in V as alive, neutral, or dead. Specifically, we initialize the process at time t = 0 by labeling all 

the nodes in V as neutral. Then we pick one node Vo at random among the neutral node, and label all the nodes 
connected to Vo as alive. Finally, label VQ as dead . At each subsequent times t 2:: 1, pick one node Vt uniformly 

at random from the alive nodes and label all the neutral nodes connected to Vt as alive, and Vt as dead . 

We describe this process in terms of the random variables (Nt, Yi, Zt): Nt the number of remaining neutral 

nodes at the end of iteration t, Yi the number of alive nodes at the end of iteration t, and Zt the number of neutral 
nodes that become alive in the course of iteration t. These random variables satisfy Yo = 1, No = n - 1 and the 

recursion relation 

Moreover 

Define the stopping time 

Yt - 1 + Zt -I, fort 2:: 1, 
t 

n - 1 - L ZT ' for t 2:: 1. 
T=l 

t 

L ZT - t, for t 2:: 1, 
T=l 

n - t - Yi, for t 2:: O. 

T(vo) = inf{t > 0 : Yt = OJ. 

(7) 

(8) 

(9) 

( 10) 

(ll) 

By construction of the process {Yd , the size of the connected component C(vo) containing Vo is T(vo). Note 

that the previously defined process on a graph stops at the first t for which Yi = O. However, we can formally 

consider the set of the previous equations, for any t, that is even when Yi < O. This set of equations, we may 

later call "BFS" equations. 

4.1 The probability of exposing neutral nodes during the branching process 

As in [5], we denote the cumulative feature set associated to the sequence of nodes Vo, ... , Vt from the BFS 

algorithm by 
(2) 
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Furthermore we define the history of the BFS at lime t to be 

In light of Claim 2, the conditional probability Tt of exposing a given neutral node u given the history 'H t is 

Tt '- W[u ~ Vt , u f Vt-l, U f V(-2 , ·· . ,u f vol'Hd 
W[S(u) n S(vd =f. 0, S(u) n S[t-IJ = 01'Htl 
W[S(u) n S(vd =f. 0, S(u) n S[t-I] = 0IS(vd, Sit- Ill 

II qa - II q{3 

aESlt_l] {3ESl ti 

cPt - I-cPt, 

(13) 

( 14) 

where we set rj) t := DaESlt] qa, and define S[-IJ = 0, cP-I = 1. Observe that this probability is the same for all 

neutral nodes. Hence the number of neutral nodes becoming alive at time t is, conditionally on the history 'H t , a 

Binomial distributed random variable with parameters Nt and Tt. Formally, 

( 15) 

This allows us to describe the distributions of Nt and Yt in the next lemma. 

Lemma 3 For times t ;::: 1, the number of neutral and alive nodes satisfies 

t-l 
Nt l'Ht-1 ~ Bin (n - 1, II (1 - T".)) (16) 

".=0 

and 
t-I 

YtI'H t - 1 ~Bin(n-l , l- II(I-T".)) -t+l. ( 17) 
T=O 

The proof of this lemma requires us to establish the following result first. 

Lemma 4 Let random variables AI ,A2 satisfy: Al ~ Bin(m, VI). A2 given Al ~ Bin(AI,v2). Then 
I1Ulrginally A2 ~ Bin(m, VIV2) and Al - A2 ~ Bin(m, VI(1- V2)). 

Proof Let U1 , ... , Um and VI, ... , Vm be i.i .d . Uniform(O, 1) random variables. Writing 

m 

Al ~ L: ll(Uj ::; VI) and A211\1 ~ L: ll(Vk::; V2), 
j=1 k:Uk <Vi 

we have that 
m m 

1\2 ~ L:IT(Uk :::; '/dIT(Vk :::; V2) 4 L:IT(Uk :::; VIV2), 
k=1 

from which the conclusion follows . • 

k=1 

Proof (Proof of Lemma 3) We prove the Lemma by induction in t. For t = 0, we have No = n - 1, and 

ZI ~ Bin(No, TO), that is, ZI ~ Bin(n -1, TO) . Using (8), it follows that Nl = n - 1 - ZI ~ Bin(n - 1, TO). 

Thus the Lemma is true for t = O. Assume that the Lemma is true for some t ;::: 1, 

t-l 
Ntl'Ht-l ~ Bin(n - I,ll (1 - TT))' (18) 

T=O 
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From (15), we know that Zt+ d H t '" Bin(Nt , rd and (10) implies N t+1 = Nt - Zt+l. Now from Lemma 4, it 
follows 

t 

Nt+llH t '" Bin(n - 1, II (1 - rT))' (19) 
T=O 

Hence, by mathematical induction, the Lemma holds for any t ~ O .• 

4.2 Expectation of cPt 

We now focus on describing the distribution of qyt = TI ES qet" Given any sequence Vo, VI, V2, ... , Vn-l 
" III 

enumerating the nodes in V and 'W E W, let f w denote the first time that a node in that sequence connects to 'W. 
We set f w = 00 if none of the vertices in V connect to 'W. That is f w = kif 'W tf. S( vo) u S( Vl) U ... U S( Vk-I) 

and'W E S(Vk)' Since each node is attached independently to 'W with the same probability Pw, it follows that 

{ 

k +1 
lP'[r.w > k] = q~ 

qw 

k = O, .. . ,n-1 
k ~ n. 

This distribution does not depend on the order vo , VI, V2 , . .. , Vn -1' For t ~ 0, we have 

t I 

¢ t = II q" = II II q" ~ II II q~yw=j) = II q~rw9), 
"ESj' j j = 0"Es{vjl\S li -1) j =OwEW wEW 

(20) 

Using the fact that for a B '" Bernoulli(r), the expectation IE[a B ] = 1 - (1 - Q.)r, we can easily calculate the 
expectation of (Pt 

IE[¢tl IE[ II q.~cw~t)] = II (1 - (1 - qw)IF'[flv :::; t)l) 
wEW wEW 

II (1- (1- qw)(l- q~+I)). (21 ) 

w EW 

The concentration of ¢o will be or crucial for the analysis of the supercritical regime, Subsection 5.2. Hence, we 
here provide IE [¢ol and IE[¢61. From (21) it follows 

(22) 
wEW wEW wEIV 

Moreover, from (20) it follows 

JE [¢~ l = JE[ II q~H( r w~O)l = II (1 - (1 - q;)IP'[fw = 0)]) = II (1 - (1 - q;)pw) 
wEW wEW wEW 

= II (1 - 2p;, + p~) = 1 - 2 L p;, + L p~ + o( L 2p~ - p~). (23) 

wEW wEW w E ii' wEW 

5 Giant component 

With the process (Yi, Nd defined in the previous section, we analyze both the subcritical and supercritical regime 
of our random intersection graph by adapting the percolation based techniques to analyze Erd6s-Renyi random 
graphs [2). 

The technical difficulty in analyzing that Slopping time rests in the fact the distribution of Yi depends on the 
history of the process. In the next two subsections, we will give conditions on {Pw : 'W E W} ensuring that 
IP' [l C( v)1 ~ K logn] < n-(1+<) (subcritical regime) and 1P'[IC(v)1 < Knl < X X XX (supercritical regime). 
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5.1 Subcritical regime 

Theorem 5 Let 

L P; = 0(l/n2) and Pw = O(l/n)for all w. 
wEW 

For any positive constant c < 1, ifL.wEW p~ :::: cln, then all components in a random intersection graph are of 
order O(log n), with high probability. 

Proof We generalize the techniques used in the proof for the sub-critical case in Gn,p presented in [2]. Let 
T(vo) be the stopping time define in (11), for the process starting at node vo and note that T(vo) = IC(vo)l. We 
will bound the size of the largest component, and prove that under the conditions of the theorem, all components 
are of order O(log n), with high probability. 

For all t 2': 0, 
(-1 

IP'[T(vo) > t] :::: IP'[Yi > 0] = IP'[Bin(n -1, 1 - II (1 - TT)) 2': t]. 
T=O 

Bounding from above, which can easily be proven by induction in t for T T E [0,]', we have 

t-l t-l t-l 
1 - II (1 - TT) :::: LTT = L(<PT-l - <PT) = 1 - <PI-I· 

T=O T=O T=O 

Further, by using stochastic ordering of the Binomial distribution (both in n and in L. T T), it follows 

t-l 
IP'[T > t] < IP'[Bin(n, LTT) 2': t ] = IP' [Bin(n, 1 - <Pt-l) 2': t] 

IP'[Bin(n,1 - <pt-Il 2': t 11 - <Pt-l < tln]IP'[1 - <Pt-l < tin] 

+ IP'[Bin(n, 1 - <pt-d 2': t 11 - <Pt - l > tln]lP'[l - <PI - I> tin] 

< [P[Bin(n,1 - <pt-Il 2': t 11 - rPt-l < tin] + JIl'[1 - <Pt-l 2': tin]. 

(24) 

(25) 

(26) 

For t = Ko log n, where Ko is large enough and independent on the initial node vo, the Chernoff bound ensures 
that IP'[Bin(n, 1 - <pt-Il 2': t 11 - <Pt-l < tin] = 0(n- 1 ). To boundlP'[1 - <Pt-l 2': tin], use (20) to obtain 

{I - <PI-l 2': tin} = {II q~rwS t) :::: 1 - ~} 
wEW 

= {L log C _1 P,J IT(fw :::: t) 2': -log (1 - ~)} . 
1vE W 

Linearize -log(l-tln) = tln+o(tln) and define the bounded auxiliary random variables Xt,w = n log(I/(I­
Pw))lI(fw :::: t). Direct calculations reveal that 

which implies 

n log C ~ Pw) (1 - q·;v) = n (Pw + o(pw)) (1 - (1 - Pw) t ) 

n(pw + o(pw)) (tPw + o(tPw))) = ntp~ + o( ntp;)), 

L lE[Xt,w] = nt L P?n + o( nt L p?n). 
wEW wEW wEW 

Thus under the stated condition that 

n L p?n :::: c < 1, 
wEW 

7 
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it follows that 0 < (1- e)t <::: t - LWEW JE[Xt,w]. In light ofBemstein's inequality, we bound 

1P'[1 - (Pt-l ~ tin] = [II' [L Xt,w ~ t] <::: [II' [L Xt,w -JE[Xt,w] ~ (1 - e)t] 
wEW wEW 
],((1 - e)t)2 

< exp ( - 3 LWEW var [Xt,~ ] -+ nt maxw{pw}(l + 0(1)))' (29) 

Since 

1 2 2 
( n log C _ P1J) (1 - q~) = n 

2 
(Pw + o(pw)) (1 - (1 - Pw) t) 

n2(p;,)+0(p~))(tPw+o(tPw))) =n2tP~+0(n2t L p~), (30) 
wEW 

it follows that for some large KJ > 0 

L Var[Xt,w ] <::: L JE [X~,u ] = n2t L p~ + o( n2t L p~) <::: KIt. 
wEW wEW wEW wEW 

Finally, the assumption of the theorem implies that there exists K2 > 0 such that 

Substituting these bounds into (29) yields 

( 
3(1 - e)2 ) 

[II'[1 - ¢t-l ~ tin ] <::: exp 2(3/(1 + K
2
) t , 

and taking t = K310g n for some K3 large enough and not depending on the initial node Vo, we conclude that 

1P'[1 - ¢t-l ~ tin] = o(n-l), which in turn implies that taking K4 = max{Ko'!(3}, ensures that 

[II'[T(vo) > K410gn] = o(l/n) 

for any initial node Vo. Finally, a union bound over the n possible starting values Vo implies that 

lP'[ ma..'{T(vo) > K410gnj <::: no(n- 1
) = 0(1), 

uo E V 

which implies that all connected components in the random intersection are of size O(log n), with probability 

tending to one as n tends to infinity .• 

Let us now comment that the conditions o f the theorem are not sel f-redundant. From Cauchy-Schwarz inequality 

it follows that (LWEW p~) (LWEW PW) ~ (LWEW p~) 2 = c2 In2. Given that LWEW p~ = O(1/n2) it 

follows that LWEW Pw = D(1). From the fact that Pw = O(1ln), it follows that LWEW Pw = O(mln) = 
D(l).Thus this is valid case only ifm = D(n). 

5.2 Supercritical regime 

In this subsection we consider the (very) supercritical regime, where LWEW p~ = eln, where e > 1 is a 

constant. The barely supercritical regime, when e > 1 but not a constant, we leave for future work. 
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Theorem 6 Let 

and Pw = 0(11 log n) Jor all w. 

For any positive constant e > 1, if L WEW p~ = eln, then there is a unique largest component oj order 8 (n), 
in a random intersection graph, with high probability. Moreover, the size oj the largest component is given by 
(1 + 0(1))(1- p), where p is the solution in (0, 1) oJthe equation p = exp(e(p - 1)) . All other components are 

oJsize O(logn). 

First, note that the conditions imposed on Pw are weaker than ones in the case of the sub-critical regime. 

The outline of our proof is the following. We first consider the value 1 - n~-:'~(1 - T r), which is of essential 
for a behavior of the branching processes (Yt , Nr), see Lemma 3. We provide lower and upper bounds for 

that value. We first, show that the process can be stochastically lower bounded by Bin (n, e'ln), for some 
constant e' > 1. This will ensure the stopping time in RIG for some node vo is of size 8(n), whp 2. Hence, 

there will be a component of size 8(n) in our RIG. Furthermore, we provide an upper bound for the value 

1 - n~~~(1 - T r ), showing the upper stochastic dominance. Given those two stochastic bounds, from the 
analysis on the corresponding Erd6s-Renyi graphs, we conclude that the sizes of all components in RIG are 

of order either O(log n) or 8( n). This of course does not provide that there is a unique largest component in 
RIG, since the proof for the uniqueness in Erd6s-Renyi graphs depends on its structure. We finally show the 

uniqueness of the largest component and show that its size follows the law similar for the Erd6s-Renyi graphs 

with the corresponding characteristics . 

Proof 

Let us consider the value 1- n~-:'~(1- Tr). One upper bound, L~-:'~ Tr , is already given in (25). Using lensen's 
inequality on the function log( 1 - x) we provide a lower bound 

t-l t-l t-l 
log II (1 - Tr) = L log (1 - Tr) = L log (1 - (cPr -1 - cPr) ) 

r=O r=O r=O 
t-l 

< t log (1 - ~ L(cPr-l - cPr)) = t log (1 _ 1 - :t- l ). 
r=O 

(31 ) 

Thus, the value 1 - n~~10 ( 1 - Tr) is lower and upper bounded by 

(32) 

In order to lower bound 1 - (1 - 1 - ~' _ 1) t, let us introduce and analyze ft(x) = 1 - (1 - x l t)t, where t ~ 1. 

It will be of our interest to consider ft(x) when x ! O. First the ft(x) is decreasing in t for fixed x. Hence 
ft(x) ~ 1 - e- x . Moreover, for any t > 0 (t is not necessarily a constant, and will be explained later) we have 

that for x E [0, t]' we have l -~ - < X ::::: 1 - e- x ::::: h(x). Second ft (x) is increasing in x for fixed t. From (20), 

1 - cPo ::::: 1 - cPt, hence 1 - (1 - 1-/'(J)t ::::: 1 - (1 - 1 -~( - 1 )t. Now, let us look at 1 - cPo. From (23) and (22), by 

using Chebyshev inequality, with L WE W p~ = cln, it follows that cPo, is concentrated around its mean, that is, 
for any constant 0 > 0, cPo E (1 ± o)JE[cPoJ, with probability 1 - o(l/n). Thus, it follows that, for any constant 

0> 0, I-cPo E (1 ±o)eln, with probability l-o(l/n). Now, we conclude for any 0> 0 there is t > 0 such that 

(e - 0) 1-:-< > 1, since constant c > 1. Note that lim E--->o 1 _~- r = 1, thus by choosing t sufficiently small, then 

1-:-" can be arbitrarily close to 1. Hence, we have that 1 - fl~-:'~(1 - T r) > e'ln, for some constant e- > 1, 

which is arbitrarily close to e. This means that our branching process on RIG is stochastically lower bounded by 

the Bin(n - 1, e'l n) , which stochastically dominates a branching process on Gn,c' /n- We know that there is a 

2We will denote whp, meaning with the probability tending to I. as the number of nodes n tends to infinity. 
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giant component in Gn,clln, of size 8(n), that is, its stopping time is of order 8(n) and so is the stopping time 
for RIG. Hence there is a giant component in RIG, wbp. 

The next paragraphs bound the size of the giant component in RIG. Thus we consider the regime for which exists 
a giant component, that is, starting from some Vo, its stopping time Tva = 8(n). 

We now show, that for the conditions of the theorem there is p+ = c+ In, for some constant c+ > 0, such that 

1 - 4;t-l :S 1 - (1 - p+)t. This is equivalent to - log 4;t - l :S t log(l - p+) = tp+ + o(tp+) = tc+ In + o(tln). 
From the definition for t- 1, see (20), with previously introduced random variables Xt,w = nlog(I/(I -

Pw))IT(fw :S t), it follows that we want to show that IP' [Lw Xt. ,w < tc+]. In the previous subsection, we 

have analyzed Xw , IE[X], IE [Xw], IE[X~]. Given that L w IE[Xt,w] = cl n, by choosing c+ > c > 1, by Bernstein 
inequality it follows that lP'[Lw Xt ,w < tc+] = 1 - o(Iln), for the conditions of the theorem. 

Analogously, we now show, that for the conditions of the theorem there is p- = c- I n, for some constant 

c- > 1, such that 1 - (1 - p-)t :S 1 - (1 - (1 - 4;t -l )It)t. This is equivalent to -log 4;t-1 2 t 10g{1 - p-) = 
tp- + o(tp-) = te- In + o(tl n). With the analogue conclusion as in the previous case, by choosing e > e- > 1 

by Bernstein inequality it follows that fiD[Lw Xt,w > tel = 1 - o{I / n), for the conditions of the theorem. 

Thus, with probability is 1 - o{I l n), we have 

t- l 
1 - (l - p-)t :S 1 - II (1 - r.,.) :S 1 - (1 _ p+)t . (33) 

r=O 

From the stochastic dominance (33), we have 

t- l 
fiD[Bin(n-I,I - {I - P-)t) 2t] :SfiD [Bin(n-I ,I - II(l-r.,. )) 2t] 

r=O 

(34) 

Bellow we argue the uniqueness. RIG cannot be interpreted as a Gn,p, with a certain edge probability, since the 

edges in RIG are not independent, see (2). From (33) it follows that if we consider the set the recurrent equations 

(Yr, Nt) on RIG, is stochastically bounded by the sets of the corresponding equations on Gn,p- and Gn,p+' Since 
e-, e+ are such that there are giant components in Gn,p- and Gn,p+ wbp, it follows that there must exist a giant 
component in our RIG, wbp. 

We now look closer at the size of a giant component. For the case when p = )..In, where).. > 1, in [Hofstad, 

Spencer] it has been shown that there is the unique connected component in Gn,p, of size"'" n(" where (A is the 
unique solution from (0,1) of the equation 

(35) 

More precisely, in [Hofstad], the CLT for the size of the giant component in Gn,A/n has been proven, which in 
distribution follows 

ICmflx l - (An --> N(O (A(l - (A) ) 
Vii ' (1 - ).. + )..(,\)2 ' 

(36) 

where ICmaxl = maxv{lC(v)I}. Remember that the stopping time T = inf{t 2 0 : Yt = O}, see (24). 
Hence, (34) and (36) imply that in random intersection graphs, wbp there is a giant component of size, at least, 

n(,\(1 - 0(1)). Considering, Gn.l' ' Gn,p+' we know that their stopping limes will be approximately (n, where 

( satisfy (35), for A - = np-, A + = np+, respectively. More precisely the giant component in Gn,p- , Gn,p+ will 

follow (36). From (34) the stopping time of RIG is bounded by the stopping times on these two random graphs . 

To argue that those two times are closed, let us look at F(C c) = 1 - ( - e-c( , where (C , c) be the solution of 

F((,e) = 0, for given e. Since all partial derivatives of F((,c) are continuous and bounded around (e,e), it 

follows that for a small perturbation of c, the solution in ( cannot deviate much . 
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Now, our goal is to show that whp there is a unique giant component for the conditions of the theorem. We pursue 
the proof on RIG, analogously by adopting the proof for the uniqueness of the giant component in Gn,p, from 
[Joel-Spencer-Notes]. Let us assume that there are at least two giant components in RIG, denoted VI, V2 C V. 
Let us consider a new independent "sprinkling" RIG' on the 'top' of our RIG , that is consider RIG+ = RIG u 
RIG'. Let for any W E W be P'w = P'/;;, where 'Y > 1 to be defined later. Let us consider all 8(n2

) pairs {VI, V2}, 

where VI E VI, V2 E V2 , which are independent in RIG ' but not in RIG . Hence, the probability that two nodes 

VI, V2 E V are connected in RIG' is given by 

(37) 
w w w w 

The last equality is true, since h > 1 and Pw = O(l / n) for any w. By Markov inequality, it follows that 
there is a pair {VI, 'V2}, such that VI is connected to V2 in RIG ' . Thus, the components VI, V2 are connected, 
whp, forming one connected component within RIG+. Then it follows that this component is of size at least 
2n(),(1 - 8), for some sufficiently small constant 8 > O. On the other hand, since the probabilities in RIG + are 

p~ = 1 - (1 - Pv))(l - p~) = Pw + p~(l - Pw) = Pw + p'/;;(l - Pw) = Pw(l + 0(1)), 

again this is true, since 'Y > 1 and Pw = O(l/n) for any w. Thus, 

L (p~)2 = L p~ + 8( L p~+I(l - Pw )) = L p~(1 + 0(1)) = c/n + o(l/n). (38) 
wEW wEW w E W wEW 

From (36), bounds on the stopping time in RIG and its continuity, it follows that the giant component in RIG+ 
cannot be that large. This is a contradiction, thus there is only one giant component in RIG, of size given by 
/1(( 1 ±o( 1)), where ( satisfies (35). Moreover from (34) it follows that all other components are of size o (log n) . 

• 
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