

LA-UR-10- 01321

Approved for public release;
distribution is unlimited.

Title: Unusual Ordering in c-NpPd3

Author(s): K. Gofryk

Intended for: Invited talk at Institute for Transuranium Elements
Karlsruhe, GERMANY
4/19/2010

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Unusual ordering in c-NpPd₃

Krzysztof Gofryk, MPA-CMMS
Los Alamos National Laboratory
P.O. Box 1663, MS K764
Los Alamos, NM 87545, USA

NpPd₃ exhibits two crystal structures. At room temperature, the equilibrium structure is the dhcp TiNi₃-type, but rapid cooling from melt produces the *cubic* AuCu₃-type structure. In both cases, the Np-Np distance is 4.1 Å, so that the Np ions are expected to be localised. Both phases of NpPd₃ were first studied at the ANL in the early 1970s. Nellis et al measured the magnetic susceptibility and the electrical resistivity of cubic NpPd₃, and found evidence of magnetic ordering setting in below $T_N = 54$ K. The magnetic order in this phase was confirmed by Mössbauer and neutron studies. The neutron data revealed several magnetic Bragg peaks with an ordering wave-vector of $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. In contrast, no evidence for any long-range magnetic ordering was found for dhcp NpPd₃, despite the presence of an anomaly at 30 K in the bulk magnetic data. Our recent measurements of the magnetic (magnetization, susceptibility), thermal (heat capacity) and transport (electrical resistivity, magnetoresistivity, thermopower and Hall effect) properties of cubic NpPd₃ indicated highly unusual nature of the magnetic ordering. At T_N , the specific heat exhibits an extremely large peak [as large as 1000 J/(mol K)] and the magnetic susceptibility shows a clear jump. The transport properties of c-NpPd₃ indicate a dramatic Fermi-surface reconstruction at T_N , which shows up as pronounced anomalies at this temperature in the electrical resistivity, the magnetoresistivity, the Seebeck coefficient and the Hall coefficient.