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INFORMATION UNCERTAINTY TO
COMPARE QUALITATIVE REASONING SECURITY RISK
ASSESSMENT RESULTS

Gregory M. Chavez, Brian P. Key, David K. Zerkle, Danicl W. Shevitz
Los Alamos National Laboratory, Los Alamos, New Mexico, United States
gregchavez@lanl gov
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Abstract: The securily risk associated with malevolent acts such as those of terrorism are often void ol the historical
data required for a Lraditional PRA. Most information available (0 conduct sceurity risk assessuents for
these malevolent acts is obtained from subject matter experts as subjective judgements.  Qualitative
reasoning approaches such as approximate reasoning and cvidential reesoning are usclul for modelling the
predicted risk from information provided by subject matter experts. Absent from these approaches is a
consistent means to compare the security risk assessment results.  Associated with cach predicied risk
reasoning result is a quantifiable amount of information uncertainty which can be measured and used to
compdre the results. This paper explores using entropy measures to guantify the information uncertainty
associated with contlict and non-specificity in the predicted reasoning results. The measured quantitics ol
contlict and non-specificity can ultimately be used o compare qualitative reasoning results which are
important in triage studics and ultimately resource allocation. Straight forward extensions ol previous

entropy measures are presented here to quantily the non-specificity and conllict associated with sccurity risk

assessment resulls oblained from qualitalive reasoning medels.

NTRODUCTION applications is the type of information used to
validate the results. That is. in control applications
historical data can be used to validale the AR results:
however. for particular terrorist attacks there s
gencrally an absence of historical  data. Lor
example. prior to September 11, 2001, there was no
historical data  for successful attempts  using
airplanes to attack World Trade Center Towers in
New York. Inthe absence of specific historical data.
the AR results for SRAMA applications can be
realistcally verified by the SMEs.  Apart [rom this
SME verificaion approach there is no consistent

In security risk assessment from malevolent actions
(SRAMA) s as those of tecrorism, there is an
absence ol quantitative historical data necessary for
a conventional probabilistic risk assessment. Much
ol the information for SRAMA is elicited from
subject  matier  experts (SMEs)  as  subjective
judgements and is often available as qualilative
imprecise values.  An Approximate Reasoning (AR)
model is a uselul alternative to a probabilistic model

c

8 conclusions  using  imprecise e : :

I vided by SMEs. AR has numerous means to quantify the dilference in competing
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comparison of the results is critically important.
Modifying a particular input value can alter the
resulting AR risk value and this change may not be
sufficiently or consistently quantified using only
SME verification.

This study, therefore, proposes quantifying
the information uncertainty associated with each
predicted AR result and using the measured
quantities to conduct comparisons of the results.
The term entropy has been defined as a measured
quantity of information uncertainty related to non-
specificity and conflict (Klir and Wierman 1999).
I'xisting measures for entropy were not developed
for use with AR results. This study extends entropy
to AR results and it is unique in that a similar
approach has not been previously pursued in AR or
applicd in the area of SRAMA. It is a novel
approach because it examines both conflict and non-
specificity associated with the SRAMA AR result.
Moreover. this approach is distinctly different than
previous  approaches  involving  information
uncertainty  and  linguistic  values.  In previous
approaches the entropy quantified involves all the
possible states described by a particular fuzzy set
(Pal et al. 1994, Klir and Wicrman 1999. Klir 2005);
whereas, in this applicalion the enlropy quantified is
associated  with  only  one  state  described
linguistically using furzy sets.  Fuzzy sels are
discussed in Section 2.

Quaniification ol non-specificity and conllict
can be also be applied to security risk assessment
results obtained using Evidential Reasoning (ER).
Like AR. ER is an approach used to draw
conclusions from information. The major diflerence
between the two approaches is the imprecision
associated with describing the state is caplured with
AR while the lack of certainty associated with

assigning a particular state to one ol several
linguistic values is captured with ER. There have

been recent atlempts to combine AR and ER for
SRAMA upplications which are fuzzy evidential
reasoning (Yang et al 2009) and belie! measures on
fuzey sets (Darby 2007). In this paper. AR and ER
are tres paralely and are collectively referred to
as qualitative reasoning and the reader is referred to
Ross (Ross 2004) for AR and Yang (Yang ct al.
2006) tor ER.

Section 3 pre

g discussion on the

quantities ol no ificity and conlTict for AR and

ton ol entr

Fhe utility of a concept is

illustrated on a simple AR and ER results in Section
3 and conclusions are provided in Section 4.

2 QUALITATIVE REASONING

A SME may indicate that the occurrence of a
particular result is ‘“highly likely™, *“somewhat
likely™, or ‘'negligible" and the resulling
consequences are “extremely costly”, “moderately
costly”, or “insigni(icant”. These cxpressions are
called propositions and the kind of uncertainty
associated with these propositions can be from
vagueness, imprecision, and/or a lack of information
regarding a specific state of the system. This type of
uncertainty has collectively been  called fuzzy
uncertainty (Ross 2004). Fuzzy sct theory provides
a means for representing uncertainty contained in
thesc propositions. Propositions ol this type are
commonly referred o as fuzzy propositions and
express subjective ideas that can be interpreted
slightly — differently by various  individuals.
Reasoning using {uzzy propositions is referred to as
approximate reasoning (Klir and Yuan 1995, Ross
1993). This section brielly describes fuszzy set theory
for the purposes of this paper and the reader is
referred to (Ross 2004) for an in depth description ol
cach.

2.1 Fuzzy Set Theory

Natural language tends o be interpreted
differently by various individuals. The linguistic
values used by SMEis are no dilTerent and have a

recise. For example.
an SMIL may indicate that the process

tendeney Lo be vague and imp

1o construcl a

weapon device is “extremely difticult™ or that it is

ssomewhat difficult”™. The preeise meaning ol

dightly

linguistic  values may be interpreted
difterently by individu
linguistic values may often be the values the SME is
most confident in and comfortable providing. There

Fei

various however.

is vagueness and imprecision associated with a

linguistic valuc which has been termed fuzzy
uncertainty.  Fuzzy uncertainty dilferent from
random uncertainty, where randonm  uncertainty
arises due to chanee and deals with specilic and well
defined values such as the number un the top face of
a die that is thrown. Random uncertainty is referred
to as an aleatorie 1 [ | I uncerainty
is relerred an in some
A~ 2. N - %



reducible uncertainty (Oberkampf et al. 2004, Zadeh
1995}, Linguistic values such as “high”, “medium”,
and “low” describe several specific states or
conditions and arc considered sets. The boundary
that defines any one of these sets is unclear or fuzzy
and thus these sets are called fuzzy sets.

A collection of objects having similar
characteristics defines a universe of discourse, X.
The individual elements, i.e. states, in X are denoted
as x, with the same notations used for ¥ and y, and Z
and, respectively. The elements can be grouped into
various sets, such as 4, B, or €. The set value of 4,
B,or € may represent something like “high” which
has a luzzy boundary. The individual states of a
fuzzy sct can be mapped to a universe of
membership values using a function theoretic form.
Il a state x is a member of the set 4, then this
mapping is given by Equation (1). A typical
mapping of A is shown in Figure I.

wilx) €10,1] (D)

Fhe complement ol 4 is delined as:

i) = 1= pz(x) (2)
Lhe mapping for the complement is also shown in
Figure 1. The mupping is known as a membership
function and the membership of a specilic state 1s x,
is referred to as the degree of membership.  The

an indication of

he [uzzy set's ability to describe the state.

ce of membership of x, provides

n
A
\
;
A
Figure I: This caption has ane line so it is centered.
Fuzzy dSet Lheory and Approximate

An AR model uses the degrees of
membership of elements in fuzzy sets to draw
conclusions about a system such as risk of attack on
a facility. The AR result is comprised of a vector of
various fuzzy sets uscd to describe a specific state of
risk and a respective degree of membership in each
fuzzy set. Now suppose that an SML indicates that
values A and B for states x; and y, respectively,
infers a particular value E for .. ‘The information
provided is considered a rule governing the outcome
<, and can be represented as follows:

Rule 1: IF x, is A and yis B TIEN 5 is E

All the rules governing the particular outcome z
involving values for x, and vy, cun be grouped
together into a rule base. see Table | Now consider
the situation when both x, and y, can be described by
more than one value. In such a situation x, and y,
have a degree of membership in each value that
deseribes them. The values of x, and y, arc used to
identily the governing rule und infer the value of =
The inferred value of zp will have an associated
degree of membership which results from  the
conjunetion A, i.c. taking the minimum valuc. of the
degree of membership for x, AN p, in the values

included in the governing rule. Take for example the

rule  specified  above  with  p;(x) =03 and
;/_-,(yj) = 0.6. which results in a pg(z,) = 03.
Another applicable governing rule may be:

A pplicable g g rule may f

Rule 2: I x, is Band y, is 8 THEN = is E

with 25 () = 0.7 and ,vr'l,(_x'),-) = ().6. which resulls
in pg(z,) = 0.6. Both Rule 1 and Rule 2 resull in
the value £ for z; but there are non

two dilter

values for the degree of membership. That is. either

Rule | OR Rule 2 is applicable and the disjunction

(V). i.e. 1152\'11]\;’ the maximum value. ol LLg (/.‘.v-) = (.3
and pE(z,) = 0.6, results in wg(z) =0.6. The
conjunction and disjunction operations  are

when the logical AND and OR are enc
respectively.  In each of the rules the logical

encountered and the conunction op

L eriy } . { - 4 }
determine e resutting degrec ol menng




FU!G Base | Universe of Discourse X
‘ _ A B } @
N Universe of A F E ( G
Discourse | § F | E E
L ¢ E | &6 | 6

Table 1: Rule Base.
2.2.1 Application of AR in Risk.

This section illustrates the use of AR in
SRAMA using a simple example to determine the
risk of attack from success likelihood and the
ceconomic consequences of the attack, Table 2
provides the rule base used to infer the risk given the

success likelihood and the consequences.,
Risk Leonomie Consequence
Very Low | Low | Medum i Higl Vers
| 1
|
¢ Ver | \ Ver Ven
Low Low Low 1o

Ealt s Nery Low Yy Very Very o
tnl | Low Lo
w |
3 3 | Vers A\ Low Ma
= filivel Lana ¢
. N w 1 ‘ M Sledium
: — e A + i - S— } et
T [
2 ! Law " M Wediuin
I [ N ' von
Higl
Svemrfy | ow [N Mediu I Ve

Table 2. AR Risk Rule Base

rio S1 has the following vector of

vavalues for success likelihood and

HE consequences:

Jthood ): [0, 0. 0. 0,37, 0.43. 0. 0]

The lefimost centry for degree of membership in the
vector of success likelihood corresponds to
“negligible”, followed by “extremely unlikely™,
“very unlikely”, “unlikely”, somewhat likely™,
“likely™ and the rightmost entry corresponds to
“nearly certain™. The leftmost entry for degree of
membership in the vector of economic consequences
corresponds to “very low™ and so on to the rightmost
entry corresponding to “very high”. Using the rule
base of Tablc 2 and AR operations ol Section 2.2,
“very high” economic consequences AND an
“unlikely” success likelihood results in a “medium™
risk with a degree of membership of 0.57, While a
“very high™ economic consequences AND a “likely™
success likelihood results in a “medium™ risk with a
deoree of membership of 0.43. Since either ol these
two rules. shown in bold in Table 2. result in
“medium” risk the maximum of the resulting degree
of membership values is used to deterimine the final
degree of membership for & “medium™ risk. The
resulting vector of membership values for risk in
scenario | are:

S1(risk): [0. 0. 0.57.0. 0]

Corresponding to linguistic risk values of “very
low™, “low™, “medium™. ~high™ and “very hig
from lelt 1o right.
2.3 Evidential Reasoning

Like AR. rules are used Lo draw conclusions
about a particular outcome {rom a set ol inputs using

F-THEN rules in GR. These [F-THEN rules
ol an antecedent and a consequence portic
conditional portion ol U
v, is B of Rule 1.
consequence ol

¢ rule. e the I x, i
the antecedent

the antecedent includes THEN =

is
E. The main difference between an AR and ER

model is the uncertainty involved in th
AR involves  the

¢ reasoning.
uncertainty sociated  with

wherea

imprecisely  deseribing x,

imvolves the uncertaintly associate

to a particular erisp salue 4. A crisp
preci well

defined  boundary
model uses




plausibility, and probability measures. The bea does
not account ftor the uncertainty associaled with
imprecisely  describing  x,. The degree of
membership is used to assess the uncertainty
involved in describing a specilic state using an
imprecise linguistic value.

The focus of this paper is on the results of the
LR and AR methods in SRAMA. An LR result is
comprised of a vector of various linguistic values
representing a specific state and the bea for each
linguistic value. One simple method of determining
the bea associated with the inferred linguistic value
in the consequence is o take the product of the bea
values involved in the antecedent of the rule. This
prucess is performed with all the pertinent rules in
the rule base. I'wo or more rules in the rule basc
may resultin the same linguistic value, in such a
case Lthese resulting dea values are summed to
determine the resulting bea value for the linguistic
value. IUis important to note that the bea (m) must
satisly the lollowing boundary conditions:

m(0)y =20 (3)

guation 3 indicates that a bea value cannot be
assigned to the proposition that x, is defined by the
null set. 0. bec:
quation 4 indicates theal the sum ol the bea values
for x,is 1, is equal to | where. 4, are crisp subsets of
=1. 2. 3. ... n musl be
power set PV} is the setif all

wise the null set defines no states,

the power set Pry) with j
qual 1o 1. The
subsets ol .

2.3.1 Application of ER

e ol ER
sle to determine the

This section demonstrates

1 simple exam

etlectiveness ol physical inventory [rom the material
imentory frequency and elfectiveness of inventory
verilication. Table 3 provides the rule base used to
inler the effectiveness ol physical inventory from the
naterial inventary frequency and effectiveness
nentory verili A cessing [acility 11 has
tl W ing ve ! i
ler! i 8] N 1r u Y
& [ins vovertll
\ | e ) R B
I A - -‘ !

The lefmost entry for bea in the vector of success
likelihood corresponds to “nct applicable™, followed
by “occasionally”, “regularly”, and the rightmost
entry corresponds to “continuously”. The leftmost
entry for the bea in the vector of effectiveness of
inventory verification corresponds to “not
applicable”, followed by “low”, “moderate™, and the
rightmost entry corresponding to “excellent™. Using
the rule base of Table 3 and ER operations of
Scction 2.3, a bea value of 0.1 in “occasionally™ for
physical inventory frequency AND a bea valuc of
1.0 in “moderate™ for effectiveness of inventory
verification results in a bea value of 0.1 in “low™ for
cffectiveness of physical inventory, While a bea
value of 0.9 in “regularly”™ for physical inventory
frequency ANID) a bea valuc of 1.0 in “moderate™ tor
effectiveness of inventory verification results in a
bea value ol 0.9 in “moderate” for effectiveness of
pnysical inventory.

Fli(etfectiveness of physical invenlory):
[0.0.1,0.9.0).

and corresponding to values of linguistic
ellectiveness of physical inventory oft “not
applicable™. “Tow™. *moderate™. and “excellent”™
from left to right

I=§1 5 of liveness of In { on
Physical
Jnsentor NA 1o
|
BA Nk A h A
& | ccanonails Y | o Low | on
_ 3 AR Maderat
; < Ny . e
Fable 3. Eftectiveness of Physical Inventory ER
Rule Basc
3 QUANTIFICATION OF

INFORMATION
UNCERTAINTY IN
QUALITATIVE REASONING



alternatives. The quantity of uncertainty present in a
result is related to the confidence (Devore 1999).
['hat is. the less uncertainty present in the resulting
alternative the more confidence one can have in the
result. By measuring the information uncertainty
present in each resulting alternative, the possible
alternatives can be ranked ordered and the most
credible alternatives can be determined based on the
amount  of  information  uncertainty.  The
quaniification of Entropy for random uncertainty
was addressed by Shannon (Shannon 1948). Klir

(Klir 2005) elaborates on Shannon's measure of

entropy and identifies conflict as the basis for the
entropy measured by Shannon.

The measure of entropy proposed by Shannon
works as follows: there exists a regular die with six
faces all oI’ which arc equally likely to be thrown
and there exists a six sided trick dic with one side
being twice as likely to be thrown as the remaining
sides. The regular die has more entropy than the
trick dic because all sides are equally likely to oceur
in the regutar die. The trick die is less uncertain

because one side is twice as likely to be thrown as
each of the remaining five: thus. one can have more
conlidence in the resulting trick die. De Luca and
['ermini (Deluca 1972) extended Shannon's measure
of entropy lo [uzzy uncertainty in a fuzzy set while

others also pre d alternative  measures.  see
Yager (Yager 1979). and [ligashi and Klir (FHigashi
and Klir 1982), Pual and DBerdek (Pal and Bezdek
[994) provide a good summary ol many of the
approaches used to measure entropy associated with

uszy set. Previous approaches qguantified the

involved in an entire fuzzy sel. whereas the

entropy

current  study  exam quantifyving the entrop

\
L
invelved in one state described using several fuzzy
i.c. the entropy associated with an AR result.
Shannon's meuasure ol conllict has the forn
¢ A 3 . S 5
S(p) = — Lrex p(x) log, p(x), (3)
Equation 3 can be used with bea values on sets
instead ol probability values p on x o determine the
conflict in the R result .

conflict due to the fuzzy uncertainty associate with a
membership function for a fuzzy set. Deluca and
Termini proposed quantifying the conflict ol'a fuzzy
set from its membership function and the
complement of the its membership function; as they
proposed in the following equation to measure
entrapy in a fuzzy set (Deluca and Termini 1972):
n

D(A) ==Y pg Gelogas(x) + p;Ge)log s (x:)

3
(7

Pal and Bezdek (Pal and Bezdek 1994) present

several previously proposed altemalive approaches

to measure fuzzy uncertainty in a fuzzy set.

As discussed in the previous section, AR uses
the degree of membership in linguistic values to
predict the outcome of a system. The oulcome
resulting from the AR is expressed as a vector of
tinguistic values. e.g. {urzy sets, and a respective
degree of membership in cach fuzesy set. That is. in
an AR result there is only one membership value for
each fuzzy sel. The conflict due to fuzzy uncertainty
as guantificd lrom methods such us De Lucu and
Termini (Deluca and Termini 19725 and those
summarized by Pal and Bezdck (PPal and Bezdek
1999) rely on the degree of membership for all the
clements within the fuzzy set. In an AR model the

conllict is not among one fuzzy set but several. that
(5. there is conflict among all the lfuzzy  sel
alternatives having a degree ol men greater
than 0. This study favolves the guantification ol
conflict present in the AR results rather than the
conllict between clements in one particular luzzy
set; thus. there exists a fundamental difference
between the work done previously and that ol the
current sluc Fquation 7 can be modilied to
account for the conflict involved in Imprecisely
describing a specific state x with the var

sets K; in the resulting vector R and the

in Lquation 8.

cquation is presentec
between Equation 7 and 8 is that |

involves one state x polentially deseribed
fuzzy sets: whereas.

Fguation 7 imvolve

set deseribing a different states x,.
" \"‘
L \ o .
C(R) =— ) gz, (Nogypg (x) +pg (X) g (x)
|
R is 1 1L mnsisting  oi aree ¢
ers) lor ! y b IR l
-



Another type of entropy, known as
nonspecificity, reflects the ambiguity in specifying
the exact solution (Klir 2005). Hartley (Hartley) first
proposed measuring the lack of specificity which is
simply related to the number of alternatives present.
Klir (Klir 2005) simply defines thc Hartley measure
of uncertainty as:
H(fz) = loga|El, ©)
where fz is any function of the subsel E. The
nonspecificity of an AR result can be determined
through a siraight forward extension ol Equation 9.
Considering that f, instead represents a veeclor
consisting of membership values for a specific state
in several fuzzy sets. The Hartley measure has also
been extended to probability distribution functions
and membership function which are not discussed
here and the reader is referred to (Klir 2003, Klir and
Wierman!999) for an in depth discussion.

The nonspecificity in an AR result can be
quantitied using Equation 10

T‘J(:é] = log,|R], (10)

where £ is the number of Iu//) sets with a non-zero
degree o membership. Random uncertainty may be
present in available information elicited from an
SME but it is at an epistemic level and captured in
the linguistic values provided by the SME. As a
result the conflict due o random uncertdinty is

8. bquation 10 can also be used to

non-specificity involved in an LR result

stoply interpreted as the number of crisp
e ¢ts. Both Equation 8 and 10 have units of
bits of information from the use of the logarithm
base 2 (Klir 2005)
3.1 Entropy in AR and ER results
Il ,.th ification of contlict and non-specificity in
AR and [:R results are demonstrated here usi ‘llIL
C Jm“m cfion 2. Using Lquation 6
the conllict Lin the ER result
[ Hief % hivsical inventory [0, 0.1, 0.9,
0]. is caleulared
£ = 11 (0.1) + ¢ (0.9)] = 0.469
1 | RN | 1 1

N(R) = log,12| =1

Using Equation 9 the conflict involved in the AR
result SI(risk): [0, 0, 0.57, 0, 0], is calculated as
follows. Recall that the membership of the
complement is detcrmined from Equation 2.

C(R) = —[(0.5710g,0.57) + 0.43log, .43 = 0.986

The non-specificity involved in the AR result is
calculated using Equation 10.

N(}_?) =log,|1| =0

In addition to the ER and AR example provided
previously l\\o additional ER results and AR resuits
are provided. The ER und AR results and their
quantities of Hlformutlon uncertainty are presented
in Tables 4 and 3. respectively.

ER result

| | ('0 nflict | Nons ;umul

| FI1[0.0.1.0.9. 0] 460 [

| 12[0.0.2.0.8.0] (, 722 [t
| F3[0.0.15.0.75,0.1] | 1.054 | 1.385

I'able 4. Entropy for ER resu s

AR w;u// Conflict | Nonspecilicity
S1[0.0.0.57. 09858 D
| §2]0.03.0.7.0.2.0] | 2.883 o
S3[0.0.2.0.6.0.2.0.1] | 2.484 | 1.585
fable 3. Entropy for AR e sults

I'he  results  demonstrate  the lits  of
gquantilving information uncertainty (o compare the
results. There is a recognizable and comparable
ditlerence in the conflicl associated w all three
ER results yet the resulting linguistic values are very
similar, i.e. effectiveness of inventory verilication i
“low o mostly moderate™.  In the case of the AR
resulls, there is also a recognizable dilference in the
contliet and the non-specilicity. The non-specilicity
reflects a dillerence that can be discerned visually.
the greater number of alternatives the greater the
NOM-sp ily. Alternatively. measuring  the
conflict provides comparative information that is nol
as easily discerned visually.

Fables 4 and 5 illustrate juantification ol
the conflict and non-specilicity g ihed
and ER model \otual AR and ER ¢ !
models co 198 (& T I Ont
n o ull inl
vul "I__\ -

(



measurement and comparisons of conflict and non-
specificity can be used comparisons of the results
and ultimately resource allocation to reduce the risk.

4 CONCLUSIONS

The implicalions of this study are pertinent to
both AR and ER in SRAMA and information theory.
'R and AR results for SRAMA have quantifiable
amounts ol information uncertainty.  This study
exiends information theory to AR and ER SRAMA
models.  Straight-forward extensions of previous
approaches used to measure the fuzzy uncertainty
associated with a membership function are presented
in this paper and used o quantify the information
uncertainty in AR results. The mceasurcment of
conflict and non-specificity associated with AR and
ER resubts is illustrated and used to compare the
results Lo one another.  In addition. the measurced
conllict and non-specificily in ecach result may be
wsed to identify which result provided the most
confidence by recognizing thal & grealer amount of
confidence can be placed in the results with a lower
value of uncertainty. ‘The entropy measures ol this
study can be further extended to furzy evidential
reasoning: howe in the current literature the
(uzzy uncertainty associated with fuzzy evidential
reasoning is not specifically Identified with the
degree ol membership in a fuzey sel. The current
ussion on the

cr.

S

paper would benelit from a d
suggested entropy

involving luszzy sets and their relution to AR and ER

requirements  for measures
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