EEE—
National Security Technologies'.c

Extreme Radiation Hardness and Space
Qualification of AlIGaN Optoelectronic Devices

Ke-Xun Sun*,"2, Lawrence MacNeil?, Karthik Balakrishnan', Eric Hultgren', John Goebel!
Yuri Bilenko™3, Jinwei Yang?, Wenhong Sun3, Max Shatalov3, Xuhong Hu3, Remis Gaska®
1Stanford University, Hansen Experimental Physics Lab, Stanford, CA 94305

2National Security Technologies, Livermore, CA 94551
3Sensor Electronic Technology, Columbia, SC 29209

YA [=37%)
UA TN

Nationai Nuciear Securly Administraion

’ Sensor Electronic
» Technology, Inc.

Nitride Technology

5D

——

ﬁl’A MPA
IWN2010

namatona Wakshop cn e Somiconducars

*kxsun@stanford.edu, sunke@nv.doe.gov, **bilenko@s-et.com

Radiation Challenges

for Europa and Jovan Jupiter Missions

« EJSMis the flagship
mission for NASA/ESA
outer planet
exploration programs

« JEO to fly over Europa

Launch

Radiation Hardness Requirements

And Risk Mitigation

System and devices function
properly after 1x1072 protons/cm?
proton irradiation in one year
Mitigation approaches:

— Films (non-electronic media)

Radiation Hardness Challenges
for NIF Diagnostics
m Ignition shot: N~1015 neutrons
« Neutron energy ~15 MeV

« Detector placed at 1 m away from target
« Neutron emission per ignition shot ~10'5

NIF Radiation Estimation
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+ Total 1x10%2 hardness, and use much less shielding + One year fluence (700 shots)
protons/cm? fluence (best) o £ 5.6x10™ 1/cm?
expected for mission . .
e & |iferiime » GaN devices provide extreme — — —
J iati otal # Particles ne Sho ne Year
o Launch £ &8 radiation hardness: G Particle & Per Shot Total Fluence at | Total Fluence at | 1 Mmm? Detector
e R - . 12 ) oty | Tent | e | ey | mewey | Tl
s 3 B + Radiation challenge Functional after 3x10'2 protons/cm brightness) (tfem) (tfem)
ot 10 s unprecedented for irradiation N neutrons o ot ~5.6x107 5610
°0 eesine Eosmacine NASA missions 15 Mev (700 shots) -
2x10%
Xeray " " _axton
Graph from T. Y. Yan presentation “Risk Mitigation Effort ‘ Lets BkeV 1o 1o Roukch 240
Overview” at EJSM Workshop 2009, Baltimore
Experimental Setup Extreme Radiation Hardness of AlGaN Photodiodes Extreme Radiation Hardness of
at the s Proton Facility Tested with 65 MeV, 3x10'2 protons/cm? AlGaN Deep UV LED
AL LT Photodiod ‘E);pte"T'entadl Measurements 80 pA R 15,000 pA R
+ UC Davis Crocker Proton Facility otodioce in pnotovoltaic mode PA Run 500 pA Run ;000 pA Run

* Proton beam energy 65 MeV

+ Proton beam fluence increases mostly with step size 1x10"
~2.5x10"" protons/cm?

« Total fluence 3x10'2 protons/cm?
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roton Irradiation of the AlGaN Photodiodes
Photodiodes are placed in the proton beam pass

Photodiodes are illuminated by 255 nm UV light generated by
UV LEDs mounted outside the proton beam

» For each fluence level, measure the photodiode readout for UV light
on and UV light off

« The differential reading is defined as the photodiode response to UV
» Normalized response is shown
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Emission Spectral Stability After 19,800 Hours
Spectral Shift < -2 nm
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Power Stability After 20,000 Hours Operation
Power Level Stable within ~2%
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Optical Power vs Driving Current Curves
after Shake and Bake Test
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Conclusions
AlGaN Photodiodes are demonstrated to have extreme radiation hardness
AlGaN UV LED radiation hardness has been demonstrated earlier
These new devices deserve further considerations for NIF diagnostics
NSTec has capabilities to contribute to NIF, LCLS, and Z
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