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Abstract 

We present BLA'"lCR: a new spatially exploitaLive approach LO Jeaming objeeL de­
tectors which shows excellent results when applied to the task 01 detec ting objccts in 
grcyscale aerial imagery in the presence or amhiguous and noisy data. There are four 
main contribuLions used to produce these resul ts . First. we introducc a gram mar-guided 
i'eature extraction system, enabling the exploration of a richel' feature space while con­
straiJ1 lllg the features to a usc lui ~ ubset. This is specilied with a rule-hascd gcnerative 
grammal' crafted by a human expert. Second. we learn a classifier on this data sing 
a newly proposed varitlnt or AdaBoost which takes into account the spatially correlated 
nature of the data. Third, we perroI'm another round of training to optimize the method of 
convcning the pixel classifications generateu by boosting into a high quality set 01 Ix y) 

locations. Lastly. we carefully define three cornrnon problems in object detection and de­
fine two evaluation criteria that are tightly rnatched to these problerns. Major slrengths 01' 
this arrroach are: (I l a way or randomly searching a broad feature space, (2) its perlor­
mancc when evaluated on well-matcheu evaluation criteria. and (3) its lise 01 tile /ocllriol1 

prediclion dornain to learn object detector, as well as (0 generate detections that pClf ol'm 
well on several tas ks: object counting, tracking, and target detection. We dCl11o ns tl'a te 
the cllicacy of B E M vlF:R with a comprehensive experimemal evaluation on a chall eng ing 
data SCl. 

1 Introduction 

Le Jrning to detect objects is a subfield of computer vision that is broad and useful with 
many applications. This paper is concerned with the task of unstructured oi7jecr defection: 
the input to the object detector is an image with an unknown num ber of objec ts present. 
and the ou tput is the locations of the objects found in the form of u:,r) pairs. and perhap~ 
delin eating them as well. A typical application is detection of cars in aerial imagery fo r 
purpose<; such as car counting for traffic analysis, tracking, or teu'get detection. F igure 
shows (a) an ex atnple image from the data set used in the experiments, (b) its lll :1rk-u p. (el 

(9 2009. T he copyri ght 01 Ihis document resides with ils authors. 
II may he distributed unchanged freely in print or electronic forms. 
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(d) (e) ( f) 

(a) (b) (c) (g) (h) (j) 

F ig urc j: An aeri a l photo of Phoe ni x, AZ was div ided in! 11 s lice ... . An exam pl\! s lic e is 
show n in suhfi gure (a). Its mark-up is shown in subfi gure (b); bac kgruu nd r ixels are blnck, 

object p ixe ls are grey. a nd confu ser pixels , wh ile. S ubfigu re (c) sh ows an example of a post 

processing applied 10 a weak hypothes is, wh ich he lps disamb ig uate betwee n simila r car am! 
bu ilding patches by abstai ning on building pixe ls. C ars are indicated by red, background by 

blue ancl abste ntion by green. Examples of am biguous o hjec ts incl ude (d ) a roof-mounted 
air-l'u ndilioner, (e) an overhead st reet s ig n, (f) vegetation, (g) close ly packed cars, (h) a dark 
car. and ( i) a car on a roo f carpark in part ia l shadow. 

an example of an initial confidence-rated weak hypothesis learned on it, and subfigures (d - i) 

shOlv some of the trickier examples in the data set. 

Sec tion 2 reviews common approacbes to object detection. Section 31 descri bes a n w 

variant of AdaBoost that takes into account the spatially con'elated nature of the da ta to re­

duCt.: the e ffects of label noise, simplify solutions, and achieve good accuracy with f we r 

fe atures. Section 3 . 1 describes our technique for generating features randomly but gu ided 

by a stochastic grammar crafted by a domain expert to make useful features more likel y. and 
unhelp ful features, less likely. A second round of training involves learning uetectors which 

predict y) locations of objects from pixel classifications. described in Section 3.3 . Since 

the quality of detection'; g.reatly depends on the problem at hand, two differe nt evaluation 
cri teria are carefully formulated to closely match three common problems: trac king , target 
de tection, and object counting. Lastly, .in our evaluation Section -+. each component in lh 

detl:ction pipeline is isolated and compared against alternatives through an extensive val i­

da tion step involving a grid search over many parameters on the two di fferent metrics. The 

rew lts are used to gain insights into what leads to a good object detector. We have fou nd our 
contributions give better results. 

2 Background 

Locali l.i ng objects in an image is a prevalent problem in computer vision known as object 

defection. Object recognitiol1, on the other hand, aims to identify the prese nce or ab~e nce o f 

an object in an image. Many object detection approaches reduce object detection to object 
recognition by employing a sliding window [8. 12, 22 ], one of the more common des ig n 
patterns of an object detector. A fixed sized rectangular or circular window is s ltd across 
an image, and a classificr is i:lpplied to each window. The classifier usually generates a 

real-valued output representing confidence of detection. Often this method must care fully 
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arbitrate between nearby detections to achieve adequate performance, 

O bjec t detection model s can be loosely be broken down into several different overlap­

ping categories, Parts-based based models consider the presence of parts and (u ~ ually) the 

positioning of parts in relation to one another [1. 3 , 7 ], A special case is the bag of words 
m()del v,'here predictions are made simply on the presence or absence of parts ra the r than 

the ir ove rall structure or relative positions r IO, 231. Some parts-based modcl s model objects 

by the ir characterizing shape during learning and matching shape to detect 12]. Cascades 
are commonly used to reduce false positives and improve computational e fficiency. Rathe r 

than applying a single computationally expensive classifier to each window, a seq uence of 

cheaper cl ass ifi ers is used. Later classifiers are invoked only if the previous clc sSIfiers gen­

",rate de tections. Generative modef approaches Jearn a distribution on objec t appeartlnce~ or 

object con fi g urations 114 j. Segmentation-based approaches fully delineate objects of inte res t 

WI th polygons or pixel classification [20]. ContOllr-hased approaches identify contours in an 

im <lge before generating detections [8 , 15 ]. lJescriplOr l'ector approach es oenerate a set o f 

features on local image patches. O ne of the most commonly used descriptors is the Scale In­

var ia nt Fe ature Transform (S IFT ), which is invariant to rotation, scaling, and translation and 

robus t to illumination and affine transformations l13 1. A Jarge number of o bject detectors 

use interest !Joint detectors to find salient, repeatab le . and discriminative points in the image 

as a first step [1, 51. Feature descriptor vectors are often computed from these inte rest po in ts. 

Probabilistic models estimate the probability of an object of interest occurring; ge nerative 

models are often used [7 , 19]. Feature Extractioll creates higher level re presenta tions of the 

image that are often easier for algorithms to learn from. He isele, et af. [ 10] trai n a two- level 

hierarchy of support vector machines: the first level of SVMs finds the prese nce of p,u'ts. 

and these outp uts are fed int o a master SVM to determ ine the presence of an objec t. D orko. 

et af. [5 j use an interest point detector, generate a SIFT description vector on the inte rest 

points , and then use an SV M to predict the presence or absence of objects . 

O ne of the more popular and highly regarded feature-based object de tectors is the slid­

ing window de tector proposed by Viola and Jones [22]. which uses a feature set orig inaJlj 

proposed by Papageorgiou, et af. l l6 j. Adjacent rectangle, of equal si/.e are filled with Is 

and -I s and embedded in a kernel filled with I.eros. The kernel is convol ved with the image 

to produce the feature and using an integral image greatly reduces the computation time for 

these feature,. VioJa and Jones e mploy a cascaded sliding window approach wh ere each 

component classifier of the cascade is a linear combination of weak classifiers trai ned with 

Ad aBoost. 

3 Approach 

T he BEA MER object detector pipeline consists of a feature extraction stage, pIxel classifica­

tion stage, and a detector stage as Figure 2 shows. hrst, a set of learned featu res are com­

bi ned into a pIXel cl assifier using AdaBoost [9 1. Then, the detector pipeline (see Sectio n 33 ) 
transforms the pixel classifications into a set of (.r,y) locations representing the prediClL"d 

locations of the objects. Our methodology partitions the data set into training. validation, 

and test image sets. The pixel classifier is learned during the training phase on the training 

images with the grammar constraints , post-processing parameters, and stopp ing conditions 

remaining fixed. These fixed parameters are later tuned on the validation set along with the 

de tector ' s parameters. T he detector generates (.r.y) location predictions from the p ixel clas­

sircation. After the training and validation steps, a fully learned object detector results. The 
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Feature E.xtrnC1ion Feoturea Apply Decision Stumps Postproc c':>s ing WeQ k HYPolhe.se5 
,. - - - --- - - -- - ~ - .~ . : .- - ,.:. - ~- :- --- -- --- - - -- - - -- - - --- - - - - - --- - - -- - -- - - -- -. -- - - p - .. - - .... ,. - .... -- -

- 'Jr Boos1ing Ensemble 

Figure 2 : Object detect ion is c arried out in J p ipeline co n-.ist ing of three st ~lges : feat ure 

extracti on. pixe l Cl lls~ifica t i on . and locality predict inns in the foml of (r .y). A t each trajn ing 

ite ration, a new pool o f feature extractors generated by a grammar. BEAM ER then chooses 

the: best feature extrac tor, decision stump, and pos t-process ing fi lte r combi nat io n. Thresh ­

old ing these feat ures yields a weak pixel c1ass ifkat ion which m'e com bined with AtJaBoost 

to prod uce a confidence image. T he grey arrows show the ftow of d ata to carry out o bjec t 

detec tion from "tart to fin ish for a static instanc~ o f an object detector. 

grey arrows show how data flows through a specific instance of an object deteetur. 

St:ction 3.1 describes the very first step of weak pixel classification, fe ature C ) Lraction. 

w hich is canied out by generating features with a genercttive grammar. Section 3.2 desc ri be. 

the learning of an ensemble of weak pixel classifications using boosting. Finally, Sec tion 33 
explain s how the pixel classification ensemble is transformed into (t.y) location domain 

pred ictions. A complete list of all the parameters descri bed in the following sections is given 

in Table 2 . 

3.1 Feature Extraction 

A single pixel in a greyscale image provides very limited informa~ion about its class. Feat ure 

ex traction is he lp ful for generating a more informati ve feature vector for each pixel. idea lly 

incorporating spatial, shape, and textural information. Thi s paper considers ex trilct in g fe a­

tures with neighborhood image operators such as convolution and morp hology. E ven good 

sets of ne ighborhood-based features are unlikely to have enough information to perfec tly 

predict labe ls, but the hope is that large and dive rse sets of fcatures can encode e n()ugh in­

formation tu make adequate predictions. At each boosting iteration. a new ~et o f' random 

features is generated, but only the best feature of this set i.' kept. 

Ge nerative grammars are common structures used in C omputer Science to speci fy rules 

to de fllle a set of strings r 11 , 21 ]. Extending our earlier work on time seri es [6 ], we use them 

to spe cify the space of feature extraction programs, which are r presented as direc ted g rap hs 

(a gr.lph rep rese ntation is preferable because it allows for re-u se of sub-compu tati ons). A 
grammar is made up of nontenninal productions such as P -) Ii B, which are expanded to 

ge ne l-ate a new string. The rule s associated with the production are selected at random. so 

I' can be expanded as e it her A or B. Figure 3 shows an example graph program generated 
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'clli psc' . i . 8, .3 1----------------
Figu re 3: A n exa mple of a feature extractor prog ram ge nerated by the BEAME R grammar 
wh ich is ach ieved by reducing Featur e(i) usi ng the prod uction rules o f the grammar 
(where I i: an image vari able), Featur e (l) -; Co mpound{J) ~ Binary(l.Compound(i)) -; 

Binar Y(/ ,Unary(l )) --4 Binary(I. NLUnar y(l )) --4 Binary(I.Morph (I . RandomSE)) 

Bi nilry (I . croJe(1 RandomSE)) B inary(I . erode (l . (' el fi [lse' .!Ji! 2. 8. 0 .:1 )) ) 

norm DifT(I . erode (I , (' f' !lips"I, pi /2,8, O.:- J)) 

I Function I Description 

m ult(/" . Is ) Elemeni- w ise mult ip lies two images. J(a .b) = ab. 

blend(l" , [8) Element- wise averaging of two images. J(a,h ) _ a ,!1 . 
normDiff(li\.Io) Norm alized di ffere nce, I (a,b ) = L ' " 

, 
I'l l I' LI' IN (I ' 

scaledSub(l, I,18) Sc~led di ffere nce, 1 (a,b) = ~ % 

.igmo id(l. e, A) Soft maximum with threshold e and sc ale A, f (u ) = 
~rCI'In "t (j{ '" ell 

ggm(!. 0) Applies a G auss ian Gradient M agnitude to an image . 

Japlace(l , CY J Laplace operator with G aussian 2nd deri vati ves & standard 
deviation CY . 

laws(!. LI . \') Applies the Laws tex ture energ y kerne l 11 . 1'. 

gabor(l, e. k, r, v, f) Appl ies a gabor filter or a .<>pecitied angle e. ,ize k, rat io r, 

frequ ency v . and envelope f. 
ptil e(l . p, S ) A p'th perc e ntile filter with a structuring ele men t S app liecl to 

an image 1. 

Tab le I: Pri m itive operators llsed by the gramme1!. Element wise o perators are de. enbed by 
a function f la b ) of two pixe ls a and b. Unary operators J(I/) are descr ibed by a fu nc tio n o f 
one pixe l u . A k by k structuring e lement is parametri7.ed WIth an e ll ipse orientati on e and 
width to he ight rmlo r. 

by the BEA MER grammar shown in Figure -1- . The primitive operators used for our objec t 

detection system al'e listed in Table I and the grJmmar governing how they are combined is 

shown in Figure -1- . 

3.2 Pixel Classification with Spatially Exploitative AdaBoost 

The top of Figure 2. illustrates the pixel classification part of the BLAMER object detec tion 

pipeline. The goal of p ixe l classification is to fully delineate the class of interest but we in­
troduce modifications. A ~ et of feature extraction algorithm, is applied to an image . re'iu lti ng 

in a set of feature images. These feature images are thresholded and post-proces, ed to cre ­
ate weak pixel classifiers for detecting object pixels. The fi nal pixel cl assi fier is a wei ghted 
com bination of these weak pixel classifiers which output confidence with their predictions. 

Learning is based on a training set where nil the pixels belonging to the ohJects of in-
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Feat u r e t X) 

B i nary (X. Y) 

NLBinax y( X. V) 

Unary( X) 

Comp ound(X) 

~lorph ( X. S) 

Ra nd omS £ I ) 

NLUnary( X) 

LUnary (X) 

Bina r y"( Unary(X). Unary(X)) 

NLUna ry (Unary(X ) ) 

NLB ina ry (Unary(X). Unary(X)) 

Compound (X) 

mult(X. Y) I normD,ff(X. Y) I scalcdSub(X. Y) I blend(X Y) 

mult(X,Y) I nurmDifT(X.V) 

LUna ry (X) I NLUnary(X) 

Unar y (X ) , Bwary(X. Compound(X)) 

erodc( X.S ) I dilate(X.S ) I opcn(X.S) I close(X . .')) 

(e E [02J[ j {2k+ I , c ( I ... 7}) . {IO!' ' s ~ 10.1 1)) 

si gOloid(X.a E SNorm().h E (O.I.O } ) 

,.lorph(X. RandomSE\l ) 

ptilc(X . /J c: [0.1001. RandomS E()) 

I gg'n(X .. ' " SNurm ()) 

laws(X.u E ( Ls.L , .S,.R,. W,). \' ::: {L,.F.,.S).R,.W,}) 

laplaee( X. (Y E .1 ~ SNorm ()) 

gabllr(x.e E [0. ir l · ~ EI I. 3 1.{I02'1 I l q EIO.JI}.{lo.\ + 2 ' .I ~ 'O .I I} .. ' ill lc ll\ lholh) 

convolve(X. VlolaJonesKe rne l ()i 

F igure -1- : The grammar lIsed to gene ra te feat ures for the p ixe l cl assi fication s tage u f thl:: 

object detection system . The ViolaJonesKernelO does not sample un iformly from the 
space of all ke rne ls. Rather, the kernel type (horizont al-2, ve rtic al-2 . horizontal-3 . vert ical-
3. quad) is chose n un iformly at ran dom, followed by the si ze, then location. RandomSE 
defi nes an elli ptical structUl-ing e lement, where the parameters of the el lipse are respecti ve ly 
orienta tion , major radi us in pixel s and aspect ratio . Thl: rnl:an ings o f the other param ters 

an: g iven in Table I . 

(a) (b) 

-'. ~ . ): : ; I 
~- ~ =I ' 
- - , ~I 

(c) (d) (e) 

igure 5: Subtigures (b)-(e) are fi ve examples of features generated by a grammar and afl­
plied to the image s hown in subfi g ure (a). 

terest (cars in our case) are hand-labeled. There are several difficulties in identi fyin g good 

wea k pixel classifiers from the ha nd-labeled training data. First, in applications like ours 
there are many more background pixe ls than foreground (object) pixels. Pcoviding too much 
background puts too much emphasis on the background during learning. and can lead to hy­
potheses that do not perform well on the foreground. Second, hand-Iabelin~ is a subjective 
and e rror prone activity. Pixels outside the border of the object may be accidentally labe led 
as cal'. a nd pixels inside the border as background. It is well known that label no ise causes 
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difficult ies fo r AdaBoost 1-+ . 17 J. This difficulty is compounded when the image data itself is 
noisy or there may not be sufficient information in a pixel neighborhood to correctl y c1 assif) 

every pixel. T hird, training a pixel classiher that fully segments is a much harder probl em 

than locali/.ation. For example, if a weak hypothesis correctly labels only a tenth of the 
obj ect pixels and these correct predictions arc evenly distributed throughout the object s, the 

weak hypothesis will appear unfavorable. This is unfortunate because the weak hypot he s is 

may be very good at localizing objects, Just not fully segmenting them. Similarly, some o th­
eI\V lse good Fe atures may identify many objects as wel.1 as large .,waths of background. In 

terms of localIzation, the performance is good but these hypotlieses will be rej ec ted by the 
learn ing algorithm because of the large number of false positives they produce. 

We propose three spatially-motivated modifications to standard Ada Roost to perCm l11 
well with th e difficulties above. First. we weight the initial distribution so the S tlIn of the 
foreg round weight is proportionate with the background class. Second, we LIse con hdence­
ra ted AdaBoost proposed by Schapire and Singer II MJ so weak hypoth ese , can o utput low 

or lero confidence on pixels which may be noisy or labeled incolTectly. In cuntidence­
rated boosting, the weak hypotheses output predictions from the real interval I I. I I and 
the more confident predictions are farther from zero. In the boosting literature, the ('(ffie is 

de fined as the weighted training error. Third, we perform post-processing on the weak pixel 
c1 assihcations to improve those that produce good panial segmentations of objects. 

Weak Classifier Post-processing FOLir different weak rixel classification post-proces~i n g 

biters are considered and compared against no filtering at all. T he first techl1lque perform s 
region growing (abbreviated R) with a 4-connected flood fill. Regions larger than k pixels 

are identified and converted to abstentions (/ero confidence predictions). T hi, is useful fo r 
di \ ~lmbiguating cars from large swaths, such as buildings, which may have SImilar texture 
as cars. This simple post-processing filter works very well in practice. The other three post­

pmcess ing techniques apply either an erosion (E), a dilation (0), or a local median filter 
(M ) us ing a circular structuring element of radius r. When applying one of these fille r,>, a 

p ixe l classifier only partially labeling an object will bc evaluated more fa vorably. Thi s im­

proves the stability of learning in situations where the object pixels are no isy in the im ages 

,lnd pixels are mislabeled. Section -+ thoroughly compares the perfom lance uf di ffc rent com ­
birlations of these four post-processing filters, all of which show better performance than no 

filtering at all. 

3.3 Learning and Predicting in the (x, y ) Location Domain 

T he hnal stage of object detection turns the confidence-rated pixel ' I assific~ltion into a list 

o f locations pointrng to the objects in an image. Noisy and ambiguow, data often red Lice 
the qualit y of the pixel classification, but since we use pixel class ificatio n ~IS a step i110ng 

the way, we perform an extra rOLind of training to learn to transform a rough 1<lbeling of 

object pixels into a high quali ty list of locality predictions, and to do so in a noi se -robust ~Ind 
spati al ly exploitative m anner. Pure pixel-based approaches arc hard to optimize for ]ocat ion ­

b,lsed c riteria, and often translate mislabeled pixels into false positives. Our alg orithms t rn 
the pixe l classifications into a list of object locations, allowing us to operate in and directly 
opti m ize over the same domain as the output: a list of (x.y) locations. 

J\ confidence-rated pixel cl ass ification provides r redictive puwer about which pi \c l ' ar ' 

like ly to belong to all object. The goal is a high quality \ocalimtion. rather than object 
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de lineation . ' 0 we reduce the set of posItive pixels to a smaller set of high-quaitty locations . 
T he first object detector. Connected Components (CC) thresholds the confidence image 

at l ero . performs binary dil ation with a circular structuring element of radius CYee. finds 
con nec ted components and marks detections at the centroids of the compune nts. 

Large Local Maxima (LLM). is like non-maximal suppression but Instead represe nts 
the locatIons and magnit udes of the maxima in location space as opposed to imagc space. 

The approach sparsifies the set of high confidence pixels by including only local maxima 

a.S guesses of an object's location. Ne xt, the LLM detector chooses among the set of loea! 
maxima those pixel locations with confidences exceeding a threshold BLLM . Th is method of 

detection is attractive because it is very fast, and somewhat reminiscent of decision slum ps. 

The detector outputs th se large maxima as its final predictions, ordering them with decreas­
ing confidence. A Gaussian smoothing of width CYU.M can be applied before finding the 
maxi ma to reduce the noise and further ret-Ine the solutions. 

The LL M detector treats maxima locations independently, which can be quite se nsitive 

to the presence of outlier pixels and noisy imagery. Noisy imagery often leads to an excess 
uf local maxima, some of which lie outside an object's boundary. which often r su Its in 

false positives. We propose an extension of the LLM detector called the Kernel Density 
Estimate (KDE) detector for combining maxima locations into a smaller. highe r quality 
set of locations based on large numbers of maxima with high confidence clustercd )'patially 

close to one another. More specifically, the final detections are the modes of a confidence­
weighted Kernel Density Estimate computed over the set of LLM locations. The wi dth of the 

ke rne l is denoted CYKDE. Our results show the KDE and I LM detecto rs perform remarkably 
well in the presence of noise. 

4 Evaluation and Conclusions 

Generati ng a ROC curve for a classifier involves marking each classification as a true nega­
tive or false positive. Q uantifying the accuracy of unstructured object detec tion with a ROC 

curve is not as straightforward: the criteria for marking a {me POsilil'e or Jalse posiril'e de­

pends on the object detection task at hand. We consider three object detection problems: 

cueing, tracking , and counting and define two criteria to mark detections that are closely 
m atc hed with these problems. Points on the ROC curves are then drawn using predicted 

locations above some confidence threshold. 

The goal of the cueing task is to output detections within the delineation of the obj ect. 
False positives away from objects are penalized, but multiple true positives are not. F igure 6 , 
subtlf' ures (a-c) show the results for this metric. 

We introduce the nearest neighbors criteria for marking detections for object tracking . 
G ood detectors for tracking locali7.e objects within some small error, and multir k detections 

of a given object are penalized. At each threshold the criteria finds the detection closest to 

an object. This pair is removed and the process is repeated until either no detections or no 
objec ts remain. or the distance of all remaining pairs exceeds a radius. r. emaining objects 

are Jolse negalil'es and remaining detections are Jalse POsilil'es. 

Lastly the task of object counting is concerned less with localization and more with 
acc urate counts. We employ the nearest neighbors criteria for this purpose but to loosen the 
desire for a spatial con"e1ation between detections and object locations, we set the nearest 
neighbor radius threshold r to a high value. 
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Figu re 6: Subfigures (a-c ) show the resul t of app lying the best model to the valid atjon set 

us ing the cueing metric. S ubfi gures ( d~ f) show the resu lt for the nearest neighbors metric. 

T he best model for each aspect in i:l comparison li lter is app lied to the u n~ccn test da ta set. 

1 Parameter I Parameters Tried 

Iterat ions T F {IO,25. 50, 75 , IOO} 
Feature s/per ite r w = 100 
Fe ature Set Gram mar, Ha;u'-only, G rammar wlo M orphology or w/o Haar 

Post -Processi ng Region grow (R) , Erosion (E ), D ilation (D ), Medi an (M ), None (N) 

w/ combinations {R}. {E.])}, {E.D.M}, {R,EJ),fVl}, {N } 
CC Detector CYcc from ° to 20 (0.2 increments) exclusive. 

LL M Detector CYI .lJv! from 0 to 20 (0.2 incremen ts) exclusive. 

KDE Detector (h OE from 0 to 10 (0.1 increme nr...; ) e xclusive . CYLUI as above . 

Features Generate IV fo r each of T iterations. 

Decision Stu mp P ic k bes t th reshold for e ach post-processing paramete r tried . 

Region grow PP k is varied from 1000 to 5000 (incre ments of 50U). 
-

Region grow PP k is varied from 1000 to 5000 (incre ments of 5(0). 

E,D,M PP r is varied be twee n I and 5. 

Table 2: T he fi rs t part of the table describ >$ eac h parameter adj us ted d uring val iuatioll . A 
hig hl y e xtens ive grid search was performed over a parameter :;pace defined by the Cartes ian 

product of these parameters . T he ,>econd part shows the mode l parameters adjusted du ri ng 

an AdaBoosl training itemti on . 

'\ e use the Area Under ROC Curve (AROC), computed numencally WIth the trape­
widal rule. as the statistic to optimil.e during validation to find the model parameters thut 

perform the most favorably on the validation set. Since detectors may ge nerate va~ t numbers 
o f false positives, we arbitrarily truncate the curves at U false positi ves per image (U = 30 
in our experiments). Validation is performed over the range of parameters gi ven in Table 2. 
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Fig ure 6 illustrates the results of applying the most favorable models and parameter vec­

tors (determ ined using the validation data) to the test set. Subfigure (a)-(c) and (d)-(f) illus­

trate the pe rformance using the cueing and tracking metrics. Subfigures (a) and (d) show the 

c lear advantage of using post-processing and grammar-guided features over just Haa r-li ke 

fe aturc~ . Subfigure (b) ;:md (e) show the benefit of post-processing for reducing the effects of 

labe l ami image noise, and clcarly highlights the need to properly tune parameters thro ugh 

validatio n and train all stages for each problem. Region growing performs better on the ne ar­

e st ne ighbors metric-unsurprising as it abstains on ambiguous background patches, reducin g 

fa lse positives. On the cueing metric, morphology helps in reducing the effect s of la bel noise . 

which ofte n lead s to false pOSItives outside an object delineation. Finally subtigures (c) and 

(f) show that the spatially exploitative detection algorithms LL M and KDE outperform the 

pixel-based CC de tector. 
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