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ABSTRACT

Our objective is to improve seismic event screening using the properties of surface waves. We are accompiishing
this through (1) the development of a Love-wave magnitude formula that is complementary to the Russell {2006)
formula for Rayleigh waves and (2) quantifying differences in complexities and magnitude variances for earthquake
and explosion-generated surface waves.

We have applied the M/ (VMAX) analysis (Bonner o ».. 2006) using both Love and Rayleigh waves to events in
the Middle East and Korean Peninsula, For the Middle East dataset consisting of approximately 100 events, the
Love M (VMAX) is greater than the Rayleigh // (VMAX) estimated for individual stations for the majority of the
events and azimuths, with the exception of the measurements for the smaller events from European stations to the
northeast. It is unclear whether these smaller events suffer from magnitude bias for the Love waves or whether the
paths, which include the Caspian and Mediterranean, have variable attenuation for Love and Rayleigh waves.

For the Korean Peninsula, we have estimated Rayleigh- and Love-wave magnitudes for 31 earthquakes and two
nuclear explosions, including the 25 May 2009 event. For 25 of the earthquakes, the network-averaged Love-wave
magnitude is larger than the Rayleigh-wave estimate. For the 2009 nuclear explosion, the Love-wave [/ (VMAX)
was 3.1 while the Rayleigh-wave magnitude was 3.6.

We are also utilizing the potential of observed variances in A/ estimates that differ significantly in earthquake and
explosion populations. We have considered two possible methods for incorporating unequal variances into the
discrimination problem and compared the performance of various approaches on a population of 73 western United
States earthquakes and 131 Nevada Test Site explosions. The approach proposes replacing the /7 component by A7
+ a* o, where o denotes the interstation standard deviation obtained from the stations in the sample that produced
the /\/ value. We replace the usual linear discriminant a* A/ -+b*, with a* /// +b* ... +c*c. In the second
approach, we estimate the optimum hybrid linear-quadratic discriminant function resulting from the unequal
variance assumption. We observed stight improvement for the discriminant functions resulting {rom the theoretical
interpretations of the unequal variance function.

We have also studied the complexity of the “magnitude spectra” at each station. Our hypothesis is that explosion
spectra should have fewer focal mechanism-produced complexities in the magnitude spectra than earthquakes, We
have developed an intrastation "complexity” metric Ay, where Ay, = Ms(i)-Ms(i+1) at periods. 1, are between 9 and
25 seconds. The complexity by itself has discriminating power but does not add substantially to the conditional
hybrid discriminant that incorporates the differing spreads of the earthquake and explosion standard deviations.



The Russell (2006) i/ formula has opened up new avenues of scientific research, such as the development of
improved regional surface wave Q models (Stevens ec 5., 2006; Levshin . .0, 2006; Cong and Mitchell, 2006) that
may further reduce interstation variance of the magnitudes. We believe that application of the M/ {VMAX) technique
to Love waves is the next logical step in the scientific process that could lead to improved discrimination. Jur
objective is to improve seismic event screening using the properties of Rayleigh and Love waves. We are
accomplishing this through (1) the development of a Love-wave magnitude formula that is complementary to the
Russell (2006) formula for Rayleigh waves and (2) quantifying differences in complexities and magnitude variances
for earthquake and explosion-generated surface waves.
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We have applied the A/ (VMAX) analysis (Bonner «: .., 2006) using both Love and Rayleigh waves to ~100 events
located in the Middle East. 1/ (VMAX) is for estimated both Rayleigh and Love waves using the Russell (2006)

formula:
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Our initial hope is fo be able to use the same formula for both phases. The details of the processing used to estimate
M (VMAX) are described in Bonner .- »,. (2006).

The study area (Figure 1) 1s located in the zone of continental collision between Eurasian, African and Arabian
plates. The region of study i1s very complex and spans a variety of different tectonic regimes. The seismicity in South
and Central Iran and Turkey is in the upper crust, shallower than ~20 km (-~ , Engdahl .. ., 2006). It deepens
toward the north in the Alborz region in Northern Iran, where it becomes distributed through the crust. Further to the
North in the Central Caspian Sea, the seismicity follows the Apsheron-Balkhan Sill and reaches depths of 30-100
km, deepening toward the north. Turkey seismicity is dominated by strike-slip focal mechanisms and concentrated
between depths of 10 and 20 km. Zagros fold-and-thrust region — most of the earthquakes are shallower than 30 km,
with median depth 15+7 km.
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We computed A7 (VMAX) for over 100 seismic events located in this region with reported body wave magnitudes
(:=.) between 3.8 and 5.6. The majority of the location and magnitude information (with a few exceptions) was
obtained from the NEIC bulletin. The comparison between V/{VMAX) for Love and Rayleigh waves is shown in
Figure 2. The A/{VMAX) computed using Love waves is greater than the magnitude for Rayleigh waves for the
majority of the events of larger magnitudes (above «~,~4). For smaller events, however, we observe a large number
of events with the Rayleigh //(VMAX) exceeding the Love M(VMAX). This peculiarity could be caused by cither
reduced SNR for smaller magnitude events, or by some unknown source processes, such as a dominant normal fault
mechanism. In addition regional differences in the wave attenuation and/or anisotropy could cause changes in the
amplitudes for the rays traveling in different directions. Since the station coverage is not homogeneous, these
propagation effects could potentially result in biases in M (VMAX) estimate for smaller events with limited
sampling.
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Azimuthal dependency of the estimated ///(VMAX) for several larger events of known magnitudes (.»,/ is shown in
Figure 3. The azimuthal differences are most likely caused by source effects (.. ». non-isotropic source radiation),
however the propagation effects (- . anomalies in regional attenuation, anisotropy) can play a certain role. The
stations located between the azimuths 0° and 60° often have higher magnitude measurements, than the stations
located in ather directions. Notice that for larger events the Love M/ (VMAX) is greater than the Rayleigh
VI(VMAX) for most azimuths. This difference is more pronounces for strike-slip type events, and becomes smaller
for the thrust events, common for the Zagros region.

To test whether the azimuthal differences in the magnitudes are caused solely by the focal mechanisms, or if there
are propagation effects, we plotted A7/ (VMAX) for the individual stations grouped by the direction of propagation.
Figure 4a shows the cross-plot between Rayleigh and Love M (VMAX) for the stations located to the NE from the
corresponding events (back azimuth range between 20° and 70°). There is a significant number of measurements
with Rayleigh /(VMAX) exceeding Love M (VMAX) for smaller events. The measurements for the stations
located to the NW of the events (azimuth range between 270° and 360°) show smeared distribution for broader range
of magnitudes (Figure 4b). No significant anomaly for smaller events is observed. Therefore it is likely that the
reverse in Love and Rayleigh ///(VMAX) for smaller magnitudes is cause by the regional propagation effects, rather
than by the source characteristics.
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We applied the V/(VMAX) technique to 31 earthquakes (Figure 5) occurring between 1996-2008 located in the
Korean Peninsula and surrounding regions. The events ranged in size between 3.2 < A/ _< 5.1. The distances to the
three-component stations (red circles in Figure 5) recording the events ranged from 55 km to 1900 km. For the
estimation of Love-wave magnitudes data were converted to transverse motion, while the Rayleigh-wave
magnitudes were estimated using vertical component data. The analysis resulted in 298 single-station estimates of
II(Love) and 266 estimates of A/ (Rayleigh).
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Figure 6 provides a comparison of Love vs. Rayleigh wave M (VMAX) estimates. Applying Equation 1 calibrated
for Rayleigh-waves results in a positive bias for the Love wave magnitudes. This result is consistent with the results
for events with Ms(VMAX) > 4 in the Middle East study. Only 6 of the 31 network magnitudes had a larger
Rayleigh-wave magnitude than Love wave, although when the standard deviation was considered, these events
could fall below the line representing equivalent Love- and Rayleigh-wave magnitudes.

In addition to the earthquake dataset we analyzed the two North Korean underground nuclear explosions (UNE).
Bonner «« -» {2008) found //(VMAX)=2.93 for the Rayleigh waves from the 9 October 2006 North Korean UNE.
There were no Love waves registered on any of the analyzed stations. The 25 May 2009 announced UNE in North
Korean had a larger magnitude (A/(VMAX)=3.6) and had Love waves large enough for analysis. The VM (VMAX)
estimated for the Love waves was 3.1, which placed it below the earthquake population in Figure 6. The 25 May



2009 event's standard surface wave magnitude, based on Rayleig
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» and 1s perhaps even more anomalous than its predecessor (Bonner ¢: .., 2006). It appears

that the reason the first event did not separate from the carthquake population well was not due to convergence of

the populations near m, ~4.
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We have attempted to use the potential of observed variances that differ significantly in earthquake and explosion
M(VMAX) populations (Figure 7) for improved event screening. We have considered two possible methods for
incorporating unequal variances into the discrimination problem and compare the performance of various
approaches on a population of 73 Western U.S. Earthquakes and 131 Western U.S. Explosions.

The conventional statistical approach to separating the distributions with unequal variances would be to derive the
likelihood ratio criterion for that case which yields a hybrid discriminant composed of a |inear term and a quadratic
term with weights dependent on the unequal covariance matrices for the two populations. Taking the solution
involving the likelihood ratio guarantees that the probability of correctly ruling out an event as an explosion subject
to a tixed probability of failing will be maximized under the multivariate normal assumption for the input variables,
usually taken to be Ms and mb. Sometimes, additional tuning parameters are added to covariance matrices that may
improve performance in particular samples or when the joint Gaussian assumptions are not satisfied (se¢ Friedman,
1989, Anderson et al 2007). The common assumption that the covariance matrices of the two populations arc
approximately equal reduces the classification function to a linear function of the input variables. For example, the
simple difference Ms-mb is often used as a further approximation. This approach, however, is not recommended
because of poor performance in sample populations such as the one considered here.

An alternate method proposes replacing the /7 component by /. + a*o, where ¢ denotes the interstation standard
deviation obtained from the stations in the sample that produced the A/ value. In this context, we interpret this as
replacing the usual linear discriminant a* A4 +b* . by a* M +b*,, +¢* ¢ (Figure 9). We also estimate the optimum
hybrid linear-quadratic discriminant function resulting from the unequal variance assumption. While, the input
standard deviations will not be normally distributed (they follow the chi distribution), the linear approximation may
be reasonable for the same reasons that the linear discriminant function works in the usual case. While the two
discriminant functions resulting from the two theoretical interpretations of the unequal variance function did slightly
better in the test samples used here, all methods except /. - m, did extremely well using the western United States
dataset. We plan on evaluating this method further using our entire dataset of earthquakes and explosions.
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We have also studied the complexity of the “magnitude spectra” at each station. Qur hypothesis is that explosion
spectra should have fewer focal mechanism-produced complexities in the magnitude spectra than earthquakes
(Figure 10). We have tried several different methods, including the intrastation std as a function of period shown in
Figure 10 and a “differencing” approach. For periods between i=9 and 25 seconds, we estimate:

Aws = Ms(i)-Ms(i+1). (2)

We start at i=9 seconds to minimize edge effects. This results in n=17 new magnitude differences, ;. for each
station. It may be fewer if estimates at some pertods fail a signal-to-noise ratio test.

We then have estimated several different metrics, M, from Ay for comparison of the differenced magaiit des. Thus
far, we have settled on:

Z|AM-“—Z§-; |
n

M= 3)

Figure 11 show the histograms for the earthquake and explosion populations M while Figure 12 shows ine
cumulative distribution functions of M. The metric M works well for the application of trying to separate complexity
of source spectra. At 90% explosion confidence, around .02 M, there is about a 30% earthquake confidence.
explosion ground truth populations.

CONCLUSIONS AND RECOMMENDATIONS

Preliminary research shows that Love wave magnitudes for earthquakes are often equal to or larger than Rayleigh
wave magnitudes. Conversely, for explosions, Love-wave magnitudes are typically smaller than Rayleigh-wave
estimates. or below background noise levels. However, we observe a number of smaller events with reversed
pattern. Interestingly enough, this peculiarity is observed for the Middle East dataset, but not for Korean dataset. We
will continue to examine this phenomenon, possibly incorporating /. maximum likelihood estimates, with hopes of
porting the results, theory, and statistical ,-values into the Event Classification Matrix (ECM; Arderson «+ .,
2007). Additional aspects of surface wave propagation, including a new intrastation complexity metric and
differences in explosion and earthquake magnitude variances, also show promise for improved event screening.



We will also develop an improved formula for estimation of /7. (V/Ai4X) using Love waves. Equation | was
developed using empirical relationships using the Rayleigh waves, which may or may not be calibrated for Love
waves,
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