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ABSTRACT 
Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a 
producing reservoir. Based upon these changes we estimate diffusive travel times associated with the 
transient flow due to production, and then, as the solution of a linear inverse problem, the effective 
permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based 
upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical 
properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that 
the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to 
satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba 
field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, 
overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 
irregularly-spaced images of range change, we calculate the diffusive travel times associated with the start-
up of a gas production well. The inequality constraints are incorporated into the estimates of model 
parameter resolution and covariance, improving the resolution by roughly 30 to 40%. 
 
INTRODUCTION 

 
The recent interpretation of some time-lapse 
seismic surveys indicates that oil and gas 
production can lead to stress changes and 
strain in the overburden (Barkved and 
Kristiansen 2005, Staples et al. 2005, Tura et 
al. 2005, Rickett et al. 2005, Roste et al. 2006). 
These studies complement earlier work on 
surface displacement and seismicity related to 
fluid pressure changes at depth (Castle et al. 
1969, Segall 1985, Dussealt et al. 1993, Bruno 
and Bilak 1994, Fielding et al. 1998, Amelung 
et al. 1999, Massop and Segall 1999, Stancliffe 
and van der Kooij 2001, Schmidt and 
Burgmann 2003). Several investigations 
indicate that surface displacements can help in 
the estimation of reservoir pore volume and 
pressure changes associated with flow (Vasco 
et al. 1988, Mossop and Segall 1999, Vasco et 
al. 2000a, Du et al. 2005, Hodgson et al. 2007) 
and, ultimately, the effective permeability 
variations within the reservoir (Vasco et al. 
2000a, Vasco and Ferretti 2005, Vasco et al. 
2008) 

In this paper we apply a modification of 
the inversion technique for diffusive arrival 
times described in Vasco et al. (2008). Their 
approach, formulated in terms of fluid 
pressure, is reformulated in terms of reservoir 
volume change. Inequality constraints are 
incorporated into the linear inverse problem 
for volume change within the reservoir. The 
inequality constraints are introduced to limit 
the tradeoff between positive and negative 
volume change in the model. The inequality 
follows from the expectation that gas 
production should lead to pore volume 
decreases within the reservoir. The application 
is to a set of Interferometric Synthetic 
Aperture Radar (InSAR) data gathered over a 
horizontal gas production well. The transient 
pore and fluid volume variations, constrained 
by the time-varying surface displacements, are 
modeled as a propagating front and analyzed 
using an asymptotic formulation similar to ray 
theory. A complete model assessment is 
conducted, both for the linear inverse problem 
and for the inverse problem with inequality 
constraints. 
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METHODOLOGY

Estimation of volume change, diffusive travel

times, and effective permeability

One effect of any significant fluid extraction from a reser-
voir is that the reservoir, and subsequently the overburden
can deform measurably over time. The goal of our work is
to use such time-varying displacement to constrain reser-
voir flow properties, such as permeability. The first step
in this approach consists of mapping the measured sur-
face motion into reservoir pore and fluid volume changes
(Vasco et al. 1988, Mossop and Segall 1999, Vasco et
al. 2000a, Du and Olson 2001, Vasco and Ferretti 2005).
In the second step, the temporal variations of the reser-
voir volume changes are used to construct diffusive travel
times and to define flow path trajectories, as part of a to-
mographic inversion for permeability (Vasco et al. 2000b,
Vasco et al. 2008).

Estimation of volume change

In this sub-section it is assumed that the reservoir volume
has been discretized into a three-dimensional configura-
tion of grid blocks. Each grid block within the reservoir
can undergo a fractional volume change due to changes in
fluid pressure induced by production. The set of fractional
volume changes within the reservoir is denoted by the vec-
tor v, where the i-th component of the vector represents
the volume change of the i-th grid block. As described
in detail in Vasco et al. (2000a) and Geertsma (1973)
we can construct a linear system of equations relating the
volume change at time t within each grid block of the
reservoir model v(t) and the observed displacements at
time t, u(t),

u(t) = Υv(t) (1)

where

v(t) ≤ 0.

The elements of the matrix Υij depend upon the Green’s
function which is the point response of the elastic medium
at location of the j-th grid block xj for the i-th data value
(Vasco et al. 1988, Vasco et al. 2000a). We regularize the
inverse problem with norm penalties and a penalty for
volume change far from the well, as we expect that the
largest volume and pressure changes will be at, or close
to, the production well (Vasco and Ferretti 2005).

If the reservoir behaves elastically during each time
interval, it is possible to map the volume change into
fluid pressure using a technique described in Vasco et al.
(2008), based upon the work of Segall (1985). Specifically,
the fluid pressure changes are given by linear system of
equations

δp(t) = Πv(t) (2)

which is just the forward problem, in which we map vol-
ume change v directly into fluid pressure change δp. The
coefficients of the matrix Π are given in Vasco et al.
(2001).

Note that the mapping of volume change into pressure
change, equation (2), depends upon the geomechanical
properties of the reservoir and the overburden through
the coefficients contained in the matrix Π. Thus, the es-
timates of pressure change are limited by one’s knowledge
of the variations in the poroelastic parameters character-
izing the reservoir. As shown below, lateral variations
in reservoir properties can lead to errors in the estimates
of the magnitude and pattern of pressure change. Seis-
mic reflection data can provide information on variations
in reservoir properties, such as porosity, and these data
should be used if available.

Another important point is that, under certain circum-
stances, the change in fluid pressure at a point in the
reservoir is linearly related to the volume change at that
point. The conditions for this to hold are that the medium
must behave elastically and the volumetric change due to
the propagation of stress and displacement in the overbur-
den and within the reservoir must be small relative to the
volume change induced by the pressure change. If these
conditions are satisfied, and the volume change is dom-
inated by the local fluid pressure change, then the peak
volume change will occur at the same time as the peak
pressure change. Thus, even though the amplitude of the
pressure change may be influenced by the coefficients in
the matrix Π, the arrival time, which is described below,
will be relatively insensitive to the geomechanical prop-
erties contributing to the coefficient matrix. If the defor-
mation deviates from linear elasticity then there may be
a lag between the pressure change and any resulting vol-
ume change. For example, such a lag can occur due to
visco-elastic behavior, as produced by the dewatering of
shales (Liu and Helm 2008).

Estimation of the diffusive travel time and the fluid diffu-

sivity

For a liquid, the equation governing the evolution of the
fluid pressure within the reservoir is a form of the linear
diffusion equation (de Marsily 1986). For gas the situation
is somewhat more complicated due to the compressibility
of the gas. That is, the density of a gas is a strong function
of the gas pressure (Muskat 1946, Aronofsky and Jenkins
1954). Fortunately, there is an integral transformation
from the physical pressure p(x, t) to a new variable p̂(x, t)
given by Al-Hussainy et al. (1966), where the transformed
p̂ variable satisfies a quasi-linear diffusion equation. Thus,
when modeling gas we can work with the transformed vari-
able and linearize the quasi-linear coefficient of the time
derivative, the resulting equation is again a linear diffu-
sion equation. The result is that a linear or quasi-linear
diffusion equation may be used to model the flow of both
gases and liquids.

As shown in Appendix A, using the linear relationship
(2), we can write the equation for fluid pressure in terms of
the induced volume change. Applying the Fourier trans-
form to the resulting diffusion equation written in terms
of the volume change V (x, t), gives [see equation (A9) in
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Appendix A]

Π∇ · ∇V̂ + Ψ · ∇V̂ + ΩV̂ = −iωΠκV̂ (3)

where V (x, ω) is the Fourier transform of the volume change,
x is the spatial coordinate, ω is the frequency,

Ψ = ΠΛ + 2∇Π,

Ω = ∇Π · Λ + ∇ · ∇Π

are coefficients that only depend upon x, Λ = −∇ lnK(x)
is the gradient of the logarithm of the absolute permeabil-
ity K(x), and

κ(x) =
Ce(x)

K(x)
(4)

is the reciprocal of the fluid diffusivity (Vasco et al. 2000).
The coefficient Ce, which can vary in space, relates fluid
pressure variations to changes in porosity.

In Appendix A an asymptotic representation of the so-
lution to the diffusion equation (3) is provided by a series
in powers of 1/

√
ω

V̂ (x, ω) = e−
√
−iωσ(x)

∑

n=0

∞ An(x)

(
√
−iω)n

. (5)

Note that the zeroth-order term in equation (5)

V̂ (x, ω) = A0(x)e−
√
−iωσ(x) (6)

can be transformed back to the time domain, resulting in
an expression

V (x, t) = A0(x)
σ(x)

2
√

πt3
e−σ2(x)/4t (7)

that is very similar to the classic solution of the diffusion
equation (Crank 1975). The function σ(x) is referred to
as the phase or the pseudo-phase function (Virieux et al.
1994) and is related to the propagation time of the tran-
sient diffusive disturbance. For an impulsive source-time
function it can be shown that the phase σ(x) is related
to the arrival time of the pulse peak, Tpeak (Virieux et al.
1994, Vasco et al. 2000):

σ =
√

6Tpeak. (8)

For a step-function source Tpeak is the time as which the
time derivative of the volume change V (x, t) is a maximum
(Vasco et al. 2000). Substituting this asymptotic series
representation into the diffusion equation, and retaining
terms of the lowest order in 1/

√
ω, (3) produces an eikonal

equation
∇σ · ∇σ − κ(x) = 0 (9)

for the phase function σ(x) [see Appendix A]. It is notable
that the eikonal equation (9) implies that the phase only
depends upon the flow properties and does not depend
upon the reservoir compressibility Π(x). This does make
physical sense because, due to the linearity inherent in
elastic deformation, both the peak and the peak rate of

volume change occur at the same time as they do for the
pressure change.

Expressing the eikonal equation in ray coordinates, we
can write the phase function as an integral (Vasco et al.
2000b, Vasco et al. 2008)

σ(x) = −
∫

X(l)

√
κdl (10)

where X(l) is the trajectory from the production well to
the point in the reservoir at which the volume change is
being calculated or estimated. For a given set of phase
values, corresponding to a set of arrival time constraints,
each a discrete form of equation (10), can be written as a
system of linear equations

Σ = Gy (11)

where Σ is a vector of phase estimates, G is a coefficient
matrix which contains the trajectory lengths in each grid
block of the reservoir model, and y is a vector whose com-
ponents are the average value of

√
κ in each grid block

(Vasco et al. 2000b).

Model parameter covariance estimation in

the presence of inequality constraints

Due to the presence of inequality constraints in equation
(1), the inverse problem, in which we solve for the reser-
voir volume change v, is no longer linear. Thus, tech-
niques from linear inverse theory for the assessment of
model parameter estimates (Parker 1994) are not neces-
sarily accurate. In this paper we present three different
approaches to evaluate model parameter variance and the
covariance matrix for an inverse problem subject to in-
equality constraints. As discussed below, each approach
is approximate and each has specific strengths and weak-
nesses. The first method, based upon Monte Carlo simu-
lation, is the simplest and the most widely used technique.
The second technique, which is original, leads to an an-
alytical approximation of the posteriori model parameter
variance. The third approach, first developed by Liew
(1976a, 1976b), approximates the covariance matrix asso-
ciated with the constrained least squares problem using
an implicit linearization.

Covariance estimation for the linear inverse problem

Before presenting the three approaches, we briefly dis-
cuss the covariance matrix associated with a linear in-
verse problem. That is, let us consider the linear problem
specified in equation (1), without the additional inequal-
ity constraints. The linear inverse problem, given by the
set equality constraints in equation (1), has a solution

v̂ = Υ†u (12)

where v̂ are the estimated volume changes, Υ† is the gen-
eralized inverse of the matrix Υ, which may include regu-
larization components if the problem is ill-conditioned and
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hence the matrix Υ is singular (Aki and Richards 1980,
Menke 1984, Parker 1994, Tarantola 2005). Because, as
indicated in equation (1), the model parameter estimates
v̂ are linearly related to the data u, one can show that
the posteriori covariance matrix is given by

Cvv =
(

Υ†)T CuuΥ
† (13)

where Cvv and Cuu represents the model parameter and
the data covariance matrices, respectively (Aki and Richards
1980, Menke 1984).

Covariance estimation via Monte Carlo simulation

Monte Carlo simulation is a very general approach for
solving inverse problems (Press 1968, Tarantola 2005).
The technique also allows one to estimate the model pa-
rameter covariance matrix through the successive inver-
sions of data plus additive noise (Tarantola 2005). The
noise is modeled as random deviates with a prescribed sta-
tistical structure representing the errors associated with
the observations. The perturbed observations are inverted
with the same algorithm used to invert the actual observa-
tions. Given an extensive set of inversion results it is pos-
sible to evaluate the sampled covariance matrix directly
from the resulting suite of models. Unlike the linear for-
mulation, in the presence of inequality constraints the co-
variance matrix depends upon the model values. For this
reason, when conducting the Monte Carlo simulation, we
add noise to the displacement predicted by the estimated
model of volume change. That is, we invert the simulated
displacements for the i-th set of values ui, given by

ui = Υv̂ + Γi (14)

where Γi is a vector of random deviates with the same
statistical properties as the data errors.

Estimation of variance based upon statistical moments

As the Monte Carlo methodology may be computation-
ally intensive, a different approach is desirable for large-
scale models with numerous parameters. A more efficient
technique follows from an analytical approximation of the
model parameter variance, based upon the first two statis-
tical moments of the underlying probability distribution
function. Due to the inequality constraints, a gaussian dis-
tribution is not mapped into an a posteriori gaussian dis-
tribution. Thus, even if the errors in the data are normally
distributed, the model parameter estimates will not neces-
sarily be normally distributed. In particular, constrained
least squares algorithms have a tendency to map nega-
tive model parameter estimates to the origin, increasing
the frequency of zero estimates for these parameters. This
phenomena has been noted in the statistical literature and
observed in the Monte Carlo-based analysis of positively
constrained inverse problems (Vasco et al. 1990).

For a univariate view along one axis, we approximate
the probability distribution by the linear combination of

a delta-function at zero and a truncated gaussian distri-
bution (Johnson and Kotz 1970). The delta-function is
scaled such that its integrated area is equal to the area
under the ’missing’ portion of the gaussian which lies to
the right of the origin in the case of a negativity constraint.
In this statistical model, the probability density function,
for the i-th parameter, representing the volume change of
the ith grid block, vi, is given by

pdfvi
(v) =

1

2

[

1 + erf

(

µi
√

2σ2
i

)]

δ(v) + N(µi, σi)H(−v)

v ≤ 0
(15)

where µi and σi represents respectively the mean and
the standard deviation of the i-th element of the uncon-
strained model parameter vector, N(µi, σi) is the asso-
ciated gaussian distribution, and H(v) is the Heaviside
step-function, representing a unit step at the origin. Af-
ter some algebra we can evaluate the mean value, θi, for
the probability distribution function (15)

θi =

∫ +∞

−∞
v · pdfvi

(v)dv

=
σi

2

[

−exp

(

− µ2
i

2σ2
i

)

√

2

π
+

µi

σi
− µi

σi
erf

(

µi
√

2σ2
i

)]

.

(16)

Using expression (16) for the mean value, we next compute
the variance, ϑ(vi), again by direct integration

ϑ(vi) =

∫ +∞

−∞
(v − θi)

2 · pdfvi
(v)dv

=
1√
2
[(µi − 2θi)

2 + σ2
i ]erfc

(

µi
√

2σ2
i

)

+ θ2
i

1

2

[

1 + erf

(

µi
√

2σ2
i

)]

− 1√
2π

exp

(

− µ2
i

2σ2
i

)

(µi − 2θi)σi.

(17)

In expression (17), the statistical parameters associated
with the truncated normal distribution, µi and σi, are ap-
proximated by the model parameter mean and standard
deviation calculated for the solution of the unconstrained
linear inverse problem. That is, we first solve the linear in-
verse problem, using the generalized inverse [see equation
(12)]. From the solution of the linear inverse problem we
obtain the mean of model parameter and, using the ex-
pression (13), find the standard deviation. Substituting
these values into expression (17) provides an estimate of
the model parameter variance associated with the inverse
problem containing inequality constraints. Using this pro-
cedure, we obtain an analytic approximation of the model
parameter variance.
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Inequality constrained least squares estimation

As noted by Gill et al. (1981), the least squares solution
of equation (1) is equivalent to a quadratic programming
problem, in which one minimizes a quadratic function

min
{

(u − Υv)
T · (u − Υv)

}

(18)

subject to linear inequality constraints

Av ≥ 0.

In equation (1) we have the simple requirement that the
volume changes are negative, resulting in A = −I. There
are well developed computational procedures for solving
the quadratic programming problem, as noted in Appendix
B. Many of the algorithms have been influenced by the
highly successful approach to linear programming devel-
oped by Dantzig (Hadley 1962).

Based upon the solution procedure for the quadratic
programming problem, discussed in Appendix B, we can
relate the solution of the constrained least squares prob-
lem, given above and denoted by vc, and the solution
of the unconstrained least squares problem (v̂) [equation
(12)]. Specifically, one can derive a linear relationship be-
tween the unconstrained least squares solution and the
solution with inequality constraints

vc = Qv̂ (19)

where
Q = [I− (ΥT Υ)−1I2M2] (20)

(Liew 1976a, 1976b), the matrices I2 and M2 are defined
in Appendix B. Given the apparent linear relationship
between the two solutions, there is a direct mapping be-
tween the covariance matrix of the unconstrained solution,
Cvv and the covariance matrix of the constrained solution
Cvcvc

Cvcvc
= QCvvQ

T . (21)

Note that, the matrices I2 and M2 depend upon the final
solution and so the matrix Q is actually a function of the
data and the covariance estimates are only approximate.

Estimating the model parameter resolution

matrix for an inverse problem with inequal-

ity constraints

Due to errors in the observations and the instability as-
sociated with most inverse problems it is generally not
possible to estimate the properties of the Earth exactly.
Rather, one typically must incorporate some form of reg-
ularization into the inversion which biases the results in
some fashion. The idea of a resolution matrix is to try
and estimate the blurring that is inherent in a regularized
inversion. In essence, the resolution matrix relates model
parameter estimates obtained by solving the regularized
inverse problem, to a hypothetical ’true’ model that sat-
isfies the error free forward problem exactly.

Resolution in the case of a linear inverse problem

The resolution matrix arose in the study of linear inverse
problems and that is where we begin our discussion. Con-
sider a solution of the unconstrained linear inverse prob-
lem, v̂, given in terms of the generalized inverse, Υ†, ap-
pearing in equation (12). The resolution matrix is ob-
tained by substituting for u in equation (12) using the lin-
ear equations (1). The result is a relationship between our
model parameter estimates v̂ and a model v that would
reproduce the data exactly

v̂ = Υ†Υv. (22)

The matrix relating the two solutions

R = Υ†Υ (23)

is the formal resolution matrix (Aki and Richards 1980,
Menke 1984, Parker 1994). The rows of the resolution
matrix (23) are averaging coefficients, indicating the con-
tribution of all model parameters to the model parameter
estimate. For a perfectly resolved model the resolution
matrix would be an identity matrix. A diagonal value
near 1 means that it is possible to estimate the parameter
with little tradeoff from any other parameter. Conversely,
small diagonal values mean that we cannot estimate that
particular parameters in isolation from the other param-
eters.

A purely numerical estimate of resolution

The inequality constraints in equation (1), render the in-
verse problem nonlinear. Hence, we cannot solve it using
a generalized inverse, as in equation (12), and the formu-
lation (22) cannot be used directly. However, it is still
possible to construct a resolution matrix using a purely
numerical approach. If we consider the data generated by
a model vector vm whose elements are zero, with the ex-
ception of the m-th element, which is equal to one, then
the resulting solution, v̂m, of the constrained inverse prob-
lem gives a column of the resolution matrix: (Humphreys
and Clayton, 1988)

v̂m = Rvm = Rm. (24)

where Rm is m-th column of the resolution matrix. So
to infer the resolution matrix for the constrained inverse
problem we have to generate synthetic data corresponding
to the vm model vector, for each m, and solve the corre-
sponding inverse problem. Thus, for N model parameters
we must conduct N inversions, which might involve con-
siderable computation for a large problem.

An approximate estimate of the resolution matrix for in-

equality constrained least squares problems

An alternative estimate of the resolution matrix follows
from the work of Liew (1976a, 1976b) for the least squares
problem with inequality constraints. In particular, we
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may combine the relationship (19) with the linear esti-
mate given by equation (22) to relate the solution of the
constrained problem vc to the hypothetical ’true’ solution

vc = QΥ†Υv. (25)

We can define the resolution matrix for the constrained
problem, Rc as

Rc = QΥ†Υ. (26)

As with the covariance matrix, given by equation (21), this
estimate is approximate because the matrix Q depends
upon the observations.

APPLICATION

The In Salah gas storage project at the

Krechba field, Algeria

Overview

Geologically, the Krechba field is part of a large structural
anticline, capped by approximately one kilometer of Car-
boniferous mudstone. The mudstone is, in turn, overlain
by a kilometer of interbedded sandstones and mudstones.
The anticline is intersected by several fault and fracture
systems which complicate the geology. The reservoir itself
is rather thin, roughly 20 m thick, and of variable qual-
ity. Natural gas is extracted from the reservoir via a set
of horizontal wells which are distributed along the crest
of the anticline. The natural gas from the field contains
excess CO2 which is separated from the hydrocarbons and
reinjected at the flanks of the gas field.

The In Salah Gas storage project represents one of the
first CO2 sequestration efforts associated with an active
gas reservoir. Due to this sequestration effort, roughly 1
million metric tons of CO2 are prevented from entering the
atmosphere each year. The In Salah project in Algeria,
along with the Sleipner field in the North Sea (Arts et al.
2004), and the Weyburn project in Canada (White et al.
2004) represent the first large-scale CO2 storage projects
currently operating worldwide. The satellite data, de-
scribed next, were primarily gathered to monitor the CO2

injection of the In Salah Gas storage project. However,
it was noted that subsidence related to the gas produc-
tion, that commenced somewhat before the injection of
the carbon dioxide, was also observable.

Monitoring surface displacement due to injection and pro-

duction

For our study we utilize descending-orbit satellite radar
images of the European Space Agency’s Envisat archive
from July 12, 2003 through March 19, 2007. The satellite
reflects radar waves off of the surface of the Earth and
records their return as a complex trace. Phase shifts be-
tween repeat reflections are related to variations in range,
which is the distance between the reflection point on the
Earth and a reference point in space. Two satellite paths,

tracks 65 and 294, traversed the production and injec-
tion region during this time period, producing 26 and
19 images, respectively (Vasco et al. 2008). The range
changes from the two tracks have been re-interpolated
onto a sequence of 15 irregularly spaced snapshots [0,
24, 58, 96, 128, 159, 198, 265, 306, 408, 545, 586, 677,
728 and 842 days]. The data were processed by Tele-
Rilevamento Europa (TRE) using the Permanent Scat-
terer InSAR (PSInSARTM ) technique. PSInSARTM is a
multi-image technique able to estimate and remove the
atmospheric noise, providing range change estimates with
millimeter accuracy (Ferretti et al. 2000,2001). In Fig-
ure 1 four images of range change, obtained by combining
the observations from tracks 65 and 294, are shown. At
842 days we observe a peak subsidence of about 0.5 cen-
timeters, offset somewhat to the east from the three main
production wells, shown as horizontal lines in the figure.

Estimation of reservoir volume change due to production

To infer flow properties, such as the effective permeabil-
ity, within the reservoir we use the approach outlined in
the Methodology section. The first step entails invert-
ing the observed surface displacement for reservoir volume
change. One difficulty associated with this field is that the
three production wells (KB−11, KB−12 and KB−14) are
in close proximity and went on-line at approximately the
same time. Thus, their transient pressure fields rapidly
began to interfere. Due to this interference, we have lim-
ited our analysis to a region surrounding the well that
started first: KB−11.

For our analysis the 20 m reservoir interval is sub-divided
into a 15 by 15 grid of blocks, each about 600 m in lateral
extent. The top of the reservoir was determined from a
seismic reflection survey and used to define the vertical
boundaries of each grid block (Figure 2). Following the
procedure mentioned above, and described in more detail
in Vasco et al. (2008), we formulated an inverse problem
for reservoir volume change. The green’s functions cor-
respond to a layered medium, as described in Vasco et
al. (2010). This model, which is based upon well logs, is
judged to be an adequate representation of the relatively
flat-lying overburden. Both model norm regularization
and a penalty term proportional to the distance from the
extraction well:

R = |u− Υv|2 + Wd|Dv|2 + Wn|v|2 (27)

are included in the inversion. In the expression (27) |v|2
signifies the L2 norm of the vector v, D is a distance
weighting function defining the distance penalty, Wd is
the weight associated with the distance penalty, and Wn is
the weight associated with the norm regularization. The
distance penalty term is an attempt to ensure that the
largest reservoir volume changes, that are thought to be
due to pressure changes in the reservoir, should be at or
near the production well. Note that, due to spatial vari-
ations in reservoir properties such as compressibility and
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porosity, there may be large volume changes some distance
from the production well. In fact, we do observe that the
peak range changes do not occur over the production wells
(Figure 1). Rather, we find that the greatest range change
is offset to the east of the production wells by a kilometer
or more.

We further hypothesize that, within the reservoir zone
the pore volume changes will be dominated by pressure
decreases due to gas production. To enforce this, we incor-
porate inequality constraints in addition to the linear data
constraints [equation (1)]. To solve the linear system sub-
ject to inequality constraints, we use a reflective Newton
method (Coleman et al. 1996, Gill et al. 1981) suitable
for large-scale problems, where a quadratic function has
to be minimized subject to bounds. For comparison, we
also solve the inverse problem without imposing inequality
constraints on the solution. To solve this problem (1), we
use a pre-conditioned conjugate gradient solver (Barrett
et al. 1994) known for its rapid convergence. In Figures 3
and 4 we show the inferred volume changes for four time
intervals [96, 198, 408, and 842 days], that are solutions of
the unconstrained and the constrained inverse problems,
respectively. The two solutions are very similar in charac-
ter, with the peak volume change lying to the east of the
three production wells, at the edge of the anticline that
defines the gas field. However, the inequality constraints
do indeed eliminate the positive and negative trade-offs
that are observed in the unconstrained solutions (Figure
3).

Model parameter resolution estimates

Including inequality constraints in the inverse problem
means that is no longer possible to provide analytic ex-
pressions for either the resolution or the covariance ma-
trix. However, inequality constraints can produce a more
plausible solution, for example, eliminating significant vol-
ume increase in a producing horizon. Furthermore, in-
equality constraints can remove trade-offs between cells,
such as adjacent positive and negative volume changes,
which add to the non-uniqueness associated with the in-
verse problem. Thus, inequality constraints can reduced
uncertainty and improve model parameter resolution.

In Figure 5 we present the diagonal elements of reso-
lution matrix for the unconstrained inverse problem. For
a well resolved model, the diagonal elements should ap-
proach unity, indicating that the estimates do not trade-
off in value. The rows of the resolution matrix are useful
in quantifying the spatial averaging associated with a par-
ticular model parameter estimate. Consider the j-th row
of the resolution matrix, the value of each element of the
row indicates the contribution of the corresponding un-
known to the estimate of the j-th unknown. As is evident
in diagonal elements, shown in Figure 5, the peak values
of the diagonal elements do not exceed 0.2 in magnitude.
The results suggest that, even though our model consists
of a single layer, there may be considerable trade-offs be-
tween the estimates of volume change in adjacent grid

blocks. We can verify the existence of such trade-offs if
we examine the rows of the resolution matrix, which are
averaging coefficients, as in Figure 6. The four rows of the
resolution matrix, shown in Figure 6, indicate significant
averaging with the volume change estimates over a radius
of about 2 Km.

When inequality constraints are included in the inverse
problem we have to use either a numerical approach or the
approximation (26) to evaluate the resolution matrix. In
this study we used the numerical approach, given by equa-
tion (24), which requires one complete inversion for each
model parameter to estimate the exact resolution matrix.
We plot the diagonal elements and four rows of the res-
olution matrix in Figures 7 and 8, respectively. When
inequality constraints are present, the size of the diago-
nal elements of the resolution matrix increase by roughly
40 percent. The individual rows of the resolution matrix
are more sharply concentrated about the point of interest
(Figure 8) and do not contain the negative trade-offs that
are seen in Figure 6.

Model parameter variance estimates

Our estimates of volume change are based upon the inver-
sion of the range change observations (Figure 1). Because
the range change measurements contain errors, our es-
timates of volume change will also contain some level of
error. For a linear inverse problem, one without inequality
constraints, there is a direct mapping from the covariance
matrix associated with the observations and the covari-
ance matrix of the model parameters, given by equation
(13). Though we do not have enough redundancy in our
range change estimates to construct a statistical model
of the data errors, we can approximate an error model.
To construct an approximate data covariance matrix we
considered two types of gaussian noise: spatially uncorre-
lated noise, representing random noise at each measure-
ment point, and a spatially correlated noise associated
with an atmospheric noise component of the SAR data.
The standard error on the range change observations is
of the order of about one millimeter, that is the expected
accuracy for PSInSARTM . The diagonal elements of the
resulting model parameter covariance matrix, given by the
mapping (13), based upon the estimated data covariance,
are shown in Figure 9.

If we include inequality constraints we can apply the
three techniques introduced in the Methodology section
to approximate the model parameter variance. The first
method, based upon Monte Carlo simulation, is rather
time-consuming because of the large number of simula-
tions required to guarantee convergence. Figure 10 dis-
plays the diagonal elements of the sampled model param-
eter variances, estimated from 350 distinct inversions. The
standard deviations in Figure 10 are generally lower than
those associated with the linear problem, except for a few
regions. These regions appear to lie at boundaries be-
tween areas where there is significant range change and
areas where there is little recorded range change.
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Due to the presence of inequality constraints, second-
order statistics such as the variance, do not give a com-
plete description of the parameter probability distribu-
tion. Furthermore, due to the non-linearity of the inverse
problem, the gaussian nature of the data errors does not
imply that the model parameter estimates will be gaus-
sian. Consider, for example, Figure 11 in which we present
four probability density functions (pdf) computed using
the 350 inversions from the Monte Carlo simulation. We
ran two sets of inversions: one with inequality constraints
and one without inequality constraints. As noted by oth-
ers, the constrained pdfs appear to consist of a combina-
tion of a gaussian truncated at zero and a spike centered
at zero. These results support our heuristic construction
of the pdf given by equation (15), which is the basis for our
second method. We used this method to estimate the vari-
ance for each model parameter, as given by equation (17).
The parameters µi and θi in equation (17) were taken from
the results of the unconstrained inversion. The standard
deviations, computed using equation (17), are shown in
Figure 12. Note that they are similar to the Monte Carlo
estimates shown in Figure 10.

The final approach, expressed mathematically by equa-
tions (19), (20), and (21), provides an analytical approx-
imation for the entire covariance matrix. Thus, we com-
pute the first and second statistical moments of the dis-
tribution but not the higher-order properties. As noted
above, in this approximation of the covariance, the matrix
Q depends upon the data and so the estimates are approx-
imate. For this reason, to have a fair comparison with the
previous approaches, we decided to use equation (14) to
evaluate the covariance matrix for each Monte Carlo re-
alization and then we average the realizations. In Figure
13 we show the diagonal elements of the estimated covari-
ance matrix. In Figure 14 we cross-plot the the standard
deviation estimates obtained by an approximation of the
pdf [equation (15)] and its moments against the standard
deviation estimates from the covariance matrix for the
constrained least squares estimation [equation (21)]. We
see a positive correlation between the two estimates, one
that is supported by a visual comparison of Figures 12
and 13.

Estimation of reservoir pressure change and diffusive travel

time

Given estimates of the volume changes within the reservoir
it is possible to map them into reservoir pressure changes
using Equation (2). While such a mapping is helpful in
trying to understand the evolution of pressure due to the
start of production, it is not necessary in order to esti-
mate the diffusive travel time. As noted above, we can
estimate the phase and travel times directly from the vol-
ume changes themselves.

The matrix, Π, for mapping volume change into pres-
sure change contains two contributions: the first provides
a direct elastic relationship between volume and pressure
change associated with a given grid block, the second is

due to the propagation of the stress within the reservoir
and the overburden which couples different grid blocks
(Segall 1985, Vasco et al. 2001). Numerical testing indi-
cates that the contribution from the propagation of stress
is second-order in importance. Thus, the relationship be-
tween volume change in pressure change can be adequately
approximated by the mapping

δp(x, t) =
1

β(x)
v(x, t) (28)

where β(x) is a proportionality coefficient (Vasco et al.
2008). The coefficient β represents the compressibility of
the material, a measure of the relative volume of a fluid
or solid in response to a change in pressure.

Note that equation (28) assumes linear elastic behavior
during the time interval of interest. Some materials, par-
ticularly clays and shales can deform visco-elastically, in-
troducing a time lag between the pressure change and the
volume change. There is certainly an abundance of shale
in the overburden which will deform inelastically. How-
ever, we are only considering up to 842 days of deforma-
tion. A Study of phase lags between volume change and
pressure change in relatively unconsolidated clays (Liu
and Helm 2008) indicates that the time shift start to be-
have inelastically after about 900 days. We expect that
the consolidated shales at Krechba will take even longer
than this to begin deforming inelastically. Thus, over the
time interval of 842 days, we expect that the relationship
between pressure change and volume change is adequately
described by equation (28).

We found that assuming a spatially homogeneous com-
pressibility within the reservoir produces unrealistic esti-
mates of pressure change. In particular, using homoge-
neous mechanical properties results in a peak in pressure
change that is removed from the producing well, offset by
a kilometer or more to the east (Figure 15). In most cases,
such offsets in peak pressure are not physically plausible,
suggesting that a homgeneous geomechanical model is in-
adaquate for mapping volume change to pressure. For this
reason we have attempted to estimate a spatially-varying
compressibility within the reservoir. The idea underlying
our estimate is to try and use the volume changes at the
later intervals as a measure of the compressibility of the
reservoir. During the later time intervals the rapid pres-
sure variations associated with the onset of production
should have propagated out beyond the region of inter-
est. We can use the estimates of diffusive travel time to
verify that this is indeed true. Thus, at these later times,
the pressure changes over the region of study should vary
relatively slowly as a function of space and time. We ap-
proximate the pressure change for one of the later time
intervals as constant over the region. Then we use the
ratio of volume change to the constant pressure change as
a measure of the compressibility. This is a crude approxi-
mation, however, as we lacked access to detailed reservoir
data, it was not possible to provide a better estimate. We
felt that the approach was preferable to simply assuming
a constant compressibility for the reservoir which gives an
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implausible pressure distribution (Figure 15).
So, as a first step, we estimate the diffusive travel time

in an effort to discern the time after which the pressure
transient has propagated beyond the region under study.
From the time sequence of volume changes we estimated
the propagation time for the disturbance generated by the
initiation of pumping at well KB-11. In order to estimate
the arrival time in each grid block, we find the time at
which there is a peak in the derivative of the pressure time
series for each grid block. As noted above, one advantage
of the travel time formulation is that, if the pressure is
proportional to the volume change, as in equation (28),
the estimated arrival time is not sensitive to the exact
value of compressibility at a particular grid block. Be-
cause the production rate was not a step function but had
several peaks and troughs, there are corresponding peaks
and troughs in the time series of the estimated pressure
changes. We considered the arrival time corresponding to
the first observable peak. The resulting travel time esti-
mates are shown in Figure 16.

Even though well KB-11 was the first to initiate pump-
ing, well KB-12 began pumping only 50 days later. Thus,
the pressure field to the south of the well is influenced
by the activity at KB-12, forcing us to truncate the pres-
sure arrival time estimates roughly mid-way between the
wells. This truncation is evident in Figure 16, where we
have plotted the square root of the diffusive travel time
estimates. From the travel time estimates (Figure 16),
it seems that the pressure change has propagated to the
edge of the region after about 625 days (25 × 25). So
we used the volume changes between 728 and 842 days
to infer the relative compressibility within the reservoir.
Thus, assuming that the pressure change behind the dif-
fusive front, and away from the pumping well, is slowly
varying and may be approximated as a constant pressure
change, the relative compressibility is calculated using:

β(x) =
v(x)

δp
(29)

where δp is the spatially averaged pressure change between
728 and 842 days.

Given the spatially varying compressibilities from equa-
tion (29), we can compute the pressure changes for each of
the 15 time intervals using equation (2). Alternatively, we
can combine equations (1) and (2) and solve directly for
the pressure change in terms of the range change. For this
inversion we included regularization that penalizes pres-
sure changes that are far from the production well. The
resulting pressure changes are shown in Figure 17. Taking
into account the spatial heterogeneity in compressibility
we get now a plausible solution for pressure change, with
a peak pressure changes close to the well. As before, from
the new pressure estimates for each grid block we can
calculate diffusive travel times to each grid block (Figure
18). Note the similarity to the diffusive travel time com-
puted without accounting for the variation in geomechan-
ical properties (Figure 16). The similarity of the travel

times validates the expression for the phase of the volume
change, equation (9), that indicates that the diffusive ar-
rival times are not sensitive to the compressibilities within
the reservoir. So, while the pressure amplitude estimates
are sensitive to spatial variations in the poroelastic prop-
erties of the reservoir (Figure 15 and Figure 17), the pres-
sure arrival time estimates are not (Figure 16 and Figure
18).

Estimation of effective permeability

Given the pressure arrival times, which are not sensitive to
the compressibility variations within the reservoir, we can
now estimate the effective permeability within the reser-
voir. First, we discretize the reservoir into a rectangular
grid of cells. Using the arrival times we define a phase field
over the entire grid. Following the procedure described in
Vasco et al. (2008), which is essentially a raytracing algo-
rithm, we compute trajectories X(l) from the producing
well to each mesh point. In Figure 19 we plot the trajecto-
ries connecting each of the grid blocks to the production
well. Given the trajectories, and an estimate of the Ce

[see equation (4)] for the region, we can determine the
effective permeability in each grid block of the reservoir
model by solving equation (11) for

√
κ in each grid block.

Because of errors in the data and modeling approxima-
tions, we adopt a penalized least square approach, with
roughness penalties, minimizing

R = |Σ− Gy|2 + Wr|Dy|2 (30)

where Wr is a scalar coefficient controlling the importance
of the penalty terms in relation to the importance of fit-
ting the data, and D is a matrix which approximates the
Laplacian operator (Menke 1984). The coefficient matrix
G [see equation (11)] is defined in terms of the trajectories
shown in Figure 19 (Vasco et al. 2008).

The effective permeabilities, inferred from the penalized
least squares solution are plotted in Figure 20. The solu-
tion was constrained by the range change data and by in-
equality constraints. The permeability estimates contain
two high permeability regions. The two high permeability
anomalies lie beneath the area with the largest observed
range change (Figure 1). This region lies somewhat to the
east of the three production wells, at the eastern edge of
the anticline defining the gas field. One of the high perme-
ability features is aligned in the direction of the regional
fault system, suggesting that it might be a fracture. The
second anomaly coincides with a large depth variation in
the topography of the reservoir (Figure 2).

DISCUSSIONS AND CONCLUSIONS

Deformation and strain above a producing reservoir can
provide information related to fluid flow within the reser-
voir. Such displacement can often be measured by geo-
physical techniques, such as ocean-bottom pressure sen-
sors, or by time-lapse seismic observations. Because we
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are using data gathered at some distance from the reser-
voir, the technique generally reproduces the low resolu-
tion component of reservoir volume change. However, as
shown above, we can map such volume changes into large-
scale permeability variations in a reservoir. Using mea-
surements of surface displacement near to the reservoir, as
provided by time-lapse seismic strain data, might improve
the spatial resolution of the volume changes. If the reser-
voir behaves elastically during the initiation of pumping,
the travel time inversion methodology is much less sensi-
tive to the geomechanical properties of the reservoir than
is a direct inversion for pressure amplitudes. With the ex-
ception of the inequality constraints, the inversion for per-
meability is linear leading to efficient algorithms. In this
study we only considered a single component of deforma-
tion, range change along the line-of-sight to the satellite.
Numerical simulations indicate that if two components of
displacement were available, horizontal and vertical, the
resolution would improve by an additional fifty percent.
Such multi-component data will be the focus of a future
investigation.

The inclusion of inequality constraints leads to an im-
provement of approximately 40% in the resolution of the
estimated volume change model. We have presented three
different approaches for estimating the posteriori model
parameter variance in the presence of inequality constraints.
The three techniques give similar variance estimates and
these values differ notably from linear estimates. The al-
gorithms described in this paper are applicable to a wide
variety of data: sea-floor pressure sensors, tilt meters,
time-strains from time-lapse seismic observations, Global
Positioning System data, as well as the InSAR data dis-
cussed here. The permeability estimation may be used in
conjunction with methods for measuring pressure change,
for example the direct imaging of pressure change by time-
lapse seismic monitoring or electromagnetic data sensitive
to the location of the water table. Furthermore, the model
assessment techniques, for calculating resolution and co-
variance, could prove useful for a wide array of problems
in which the unknowns are restricted in sign.
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APPENDIX A: AN ASYMPTOTIC

EXPRESSION FOR THE RESERVOIR

VOLUME CHANGE

In this Appendix we demonstrate that one can relate the
phase or pseudo-phase associated with the volume change
to the flow properties of the medium. Thus, as discussed
in Vasco et al. (2000) and noted in the body of the text,
we can relate the time at which rate of volume change
is a maximum to the fluid diffusivity. As shown below,
the expression is identical to that for the fluid pressure
and independent of the geomechanical properties of the
reservoir layer.

We begin with the governing equation for fluid pressure
P (x, t) in the reservoir

∇ · (K∇P ) = Ce
∂P

∂t
(A1)

where K(x) is the absolute permeability and Ce(x) is the
coefficient relating fluid pressure variations to changes in
porosity. Assuming elastic behavior over the monitoring
interval, generally one year or a few years, and assuming
that the bulk of the volume change is due to fluid pressure
changes in the reservoir, we relate the fluid pressure to the
volume change V (x) as

P (x, t) = Π(x)V (x, t) (A2)

as given above [equation (2)]. Substituting the expression
(A2) for P (x, t) in the governing equation (A1) gives

∇ · [K∇ (ΠV )] = CeΠ
∂V

∂t
(A3)

an equation for the volume change V (x, t). Expanding
the gradient and divergence operators gives

∇K · (V ∇Π + Π∇V ) + K∇ · (V ∇Π + Π∇V ) = CeΠ
∂V

∂t
.

(A4)

Dividing through by K(x), defining

Λ = −∇ lnK, (A5)

and grouping terms gives

Π∇ · ∇V + Ψ · ∇V + ΩV = Π
Ce

K

∂V

∂t
, (A6)

where
Ψ = ΠΛ + 2∇Π (A7)

and
Ω = ∇Π · Λ + ∇ · ∇Π (A8)

are coefficients that only depend upon x. Taking the
Fourier transform (Bracewell 1978) of equation (A6) pro-
duces the partial differential equation

Π∇ · ∇V̂ + Ψ · ∇V̂ + ΩV̂ = −iωΠ
Ce

K
V̂ (A9)

where V̂ (x, ω) is the Fourier transform of V (x, t).
We are interested in those components of transient vol-

ume change associated with the initiation of production.
Typically, such transient behavior is much more rapid
then the natural background variation in volume change.
In order to isolate the signal of interest, that associated
with the start of production, we shall represent the solu-
tion of equation (A8) as a series in inverse powers of the
frequency ω

V̂ (x, ω) = e−
√
−iωσ(x)

∑

n=0

∞ An(x)

(
√
−iω)n

. (A10)

In this representation the first few terms of the series are
the largest in magnitude and may be used to approxi-
mate the solution. The approach is similar to approxima-
tions used for ray methods in elasto-dynamics (Aki and
Richards 1980). As pointed out by Virieux et al. (1994),
if we expand the solution in inverse powers of

√
ω, in the

absence of any heterogeneity, our solution will reduce to
the the solution of the diffusion equationin a homogeneous
medium. Note that we can scale the frequency by a ref-
erence value ω0 in order to ensure the scaled frequency
ω/ω0 is sufficiently small in magnitude.

An asymptotic solution for volume change follows if we
substitude the series representation of V̂ (x, ω), expression
(A10), into equation (A9) and apply the differential op-
erators to each term in the series. For example, consider
the gradient operator applied to expression (A10), which
results in

∇V̂ (x, ω) = e−
√
−iωσ(x)

∑

n=0

∞ ∇An(x)

(
√
−iω)n

(A11)

−
√
−iω∇σ(x)e−

√
−iωσ(x)

∑

n=0

∞ An(x)

(
√
−iω)n

and similarly for ∇ · ∇V (x, ω)

∇ · ∇V̂ (x, ω) = e−
√
−iωσ(x)

∑

n=0

∞∇ · ∇An(x)

(
√
−iω)n

−2
√
−iωe−

√
−iωσ

∑

n=0

∞∇σ · ∇An

(
√
−iω)n

−
√
−iω∇ · ∇σe−

√
−iωσ

∑

n=0

∞ An

(
√
−iω)n

−iω∇σ · ∇σe−
√
−iωσ

∑

n=0

∞ An

(
√
−iω)n

. (A12)

The expressions (A11) and (A12) are composed of an in-
finite number of terms, each containing a factor that is a
power of 1/

√
ω. Because we are assuming that ω, or it’s

scaled counter-part, is large, we are interested in terms of
lowest order in 1/

√
ω. As found in Vasco et al. (2000) for

the pressure equation, the lowest order terms are those of
order -2:

(1/
√
−iω)−2 = (

√
−iω)2 = iω. (A13)
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Collecting terms of order iω gives

∇σ · ∇σ − Ce

K
= 0, (A14)

which is the eikonal equation governing the spatial varia-
tion of the phase. It is notable that the phase only depends
upon the fluid diffusivity, which we denote by

κ =
Ce

K
, (A15)

and is independent of the local geomechanical properties
of the reservoir Π(x). However, this does make physical
sense because, due to the linearity inherent in elastic de-
formation, the peak rate of volume change shown occur
at the same time as the peak rate of pressure change.
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APPENDIX B: AN APPROXIMATE

COVARIANCE MATRIX FOR THE LEAST

SQUARES SOLUTION SUBJECT TO

INEQUALITY CONSTRAINTS

In Appendix B we provide an overview of the approxima-
tion of the covariance matrix for the least squares solution
of a problem containing inequality constraints, first pre-
sented by Liew (1976a, 1976b). The least squares solution
of equation (1) is equivalent to a quadratic programming
problem (Judge and Takayama 1966), in which one mini-
mizes the quadratic function

min
{

(u − Υv)T · (u − Υv)
}

(B1)

subject to linear inequality constraints

Av ≥ 0.

In equation (1) we have a simple requirement that the
volume changes are negative resulting in: A = −I. The
dual function of the primal problem (B1) provides the
following relationship

−IΛ + ΥT u = (ΥT Υ)v (B2)

(Dorn 1961, Hadley 1964). Equation (B1) can be solved
using either the Lemke or Dantzig-Cottle algorithm (Cot-
tle and Dantzig 1974) which requires the solution of

[

I −W
]

[

y

Λ

]

= v̂ (B3)

subject to
yT Λ = 0

y ≥ 0

Λ ≥ 0

where W = (ΥT Υ)−1 and v̂ = Υ†u is the solution of the
unconstrained problem given in terms of the generalized
inverse Υ†. The vector Λ is a vector of Lagrange multipli-
ers associated with the inequality constraints. We indicate
the solution of equation (B3) by the starred variables y∗

and Λ∗. Substituting Λ∗ into equation (B2) and multi-
plying both sides by W = (ΥT Υ)−1 we get an expression
for v in terms of v̂

v = v̂ − (ΥT Υ)−1Λ∗. (B4)

Once we have the Lagrange multiplier vector, Λ, we can
rewrite (B3)

[

Ib −Wb

]

b +
[

Inb −Wnb

]

n = v̂ (B5)

where

b =

[

yb

Λb

]

is the vector of the basic variables and

n =

[

ynb

Λnb

]

is the vector of the nonbasic variables containing only null
elements. Using this decomposition and the fact that the
second term on the left of equation (B5) vanishes, we can
write

[

yb

Λb

]

=
[

Ib −Wb

]−1
v̂ =

[

M1

M2

]

v̂, (B6)

where the matrix on the right

M =

[

M1

M2

]

is just a decomposition of
[

Ib −Wb

]−1
into a matrix

M with rows M1 associated with yb and rows M2 asso-
ciated with Λb. From the lower set of equations in (B6)
we arrive at an expression for the Lagrange multipliers as-
sociated with the basic variables in terms of the solution
vector v̂

Λb = M2v̂. (B7)

Because only the basic elements of Λ∗ are nonzero we may
write Λ∗ in the form

Λ∗ =

[

0

Λb

]

.

We can write Λ∗ in an expanded, partitioned form

Λ∗ =
[

I1 I2

]

[

0

Λb

]

= I2Λb (B8)

where I2 are the left-most b columns of the identity ma-
trix. Combining the expressions (B4), (B7), and (B8) we
can write v in terms of v̂

v = [I− (ΥT Υ)−1I2M2]v̂ (B9)

or
v = Qv̂ (B10)

where Q is the matrix

Q = [I − (ΥT Υ)−1I2M2] (B11)

(Liew 1976a, Liew 1976b). The apparent linear relation-
ship between v and v̂ in equation (B10) suggests that
we can map the covariance matrix of the unconstrained
problem Cvv into the covariance matrix of the constrained
problem Cvcvc

,

Cvcvc
= QCvvQ

T . (B12)

However, because I2 and M2 depend upon the final so-
lution, specifically upon the partitioning of the basic and
non-basic variables, the matrix Q is actually dependent
upon the data u and the covariance matrix is only an
approximation.
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FIGURE CAPTIONS

Figure 1 Range changes for four time intervals. The
production wells surface traces are indicated by solid lines
in the figure. Well KB−11 started the production on July
2004, well KB−12 on September 2004 and well KB−14 on
May 2005.

Figure 2 Contour map indicating the depth, in kilome-
ters, to the top of the reservoir. The depths are referenced
to mean sea level.

Figure 3 Estimates of percentage volume change (nor-
malized) from the unconstrained inversion of the range
change observations (Figure 1).

Figure 4 Estimates of percentage volume change (nor-
malized) from the an inversion of the range change ob-
servations (Figure 1) that incorporates inequality con-
straints.

Figure 5 Diagonal elements of the resolution matrix
plotted in the corresponding grid block positions. These
estimates were computed without inequality constraints.

Figure 6 Averaging kernels for four different locations
in the reservoir model. These estimates were computed
without inequality constraints.

Figure 7 Diagonal elements of the resolution matrix
(normalized) computed with inequality constraints.

Figure 8 Averaging kernels (normalized) for four lo-
cations in the reservoir model, computed with inequality
constraints.

Figure 9 Standard deviation (normalized) for the es-
timates of percentage volume change, computed without
inequality constraints.

Figure 10 Standard deviation (normalized) for the es-
timates of percentage volume changes computed using the
Monte Carlo approach for the inequality constrained least
squares solution.

Figure 11 Sets of histograms displaying the variation
in the solutions obtained using Monte Carlo simulation.
(Left Panel) Unconstrained least squares estimates. (Right
Panel) Least squares with inequality constraints.

Figure 12 Standard deviation (normalized) for the es-
timates of percentage volume change computed using the
analytical approximation, equation (17), for the inequality
constrained least squares solution.

Figure 13 Standard deviation (normalized) for the es-
timates of percentage volume change computed using equa-
tion (21) for the inequality constrained least squares so-
lution.

Figure 14 A scatter plot comparing two estimates of
the standard deviation in presence of inequality constraints.
We plot estimates obtained using equation (17) against es-
timates obtained using equation (21).

Figure 15 Relative pressure change (normalized) from
an inversion of the range change observations in which
inequality constraints were included but not lateral vari-
ation in compressibility.

Figure 16 The arrival time of the transient pressure
field for the region near well KB−11 inferred from the
volume change estimates shown in Figure 4, including in-

equality constraint in the inversion.
Figure 17 Relative pressure change (normalized) from

an inversion of the range change observations in which
inequality constraints and lateral variation in compress-
ibility were included.

Figure 18 The arrival time of the transient pressure
field for the region near well KB−11, in case of inequality
constraint, estimated from the relative pressure change
estimates shown in Figure 17, where lateral variation in
compressibility were considered in the inversion.

Figure 19 Trajectories calculated from the constrained
estimates of diffusive travel times (Figure 18).

Figure 20 Logarithm of the permeability multipliers
obtained from an inversion of the travel times in Figure
18, using the trajectories shown in Figure 19.
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