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ABSTRACT 

Three investigations of difference frequency generation (DFG) of 

far-infrared radiation by optical mixing are described: a theory of 

DFG by monochromatic, focused Gaussian pump laser beams, a theory of 

DFG by a picosecond pump laser pulse, and an experiment using ruby-pumped 

dye lasers. First, the theory of far-infrared generation by optical 

mixing of monochromatic, focused Gaussian beams in a uniaxial crystal 

is developed, taking into account the effects of diffraction, absorption, 

double refraction, and multiple reflections and total reflection at 

the boundary surfaces. (Reflection and transmission coefficients of 

a uniaxial crystal slab are derived by a new matrix technique.) Results 

of numerical calculations are presented. Focusing the pump beams 

appreciably enhances the far-infrared output despite the strong far-

infrared diffraction. In a l-cm long crystal, the optimum focal spot 

size is approximately equal to or smaller than the far-infrared 

-1 
wavelength for output frequencies less than 100 cm -. Double refraction 

of the pump beams is relatively unimportant. Both far-infrared absorp-

tion and boundary reflections have major effects on the far-infrared 

output and its angular distribution. The former is often the factor 



which limits the output power. We show that a simple model treating 

the nonlinear polarization as a constant lie-radius Gaussian distribution 

of radiating dipoles adequately describes the effect of pump-beam 

focusing. We also compare the results of our calculations with those 

for second-harmonic generation. Second, a theoretical calculation of 

far-infrared power spectra generated by picosecond pulses in a nonlinear 

crystal is developed. The results are illustrated with two practical 

examples: LiNb0
3 

slabs oriented for rectification of the optical e-ray 

and for beating of the optical o-ray with the optical e-ray. The 

-1 
former is phase matched at 0 cm ; the latter, at both the forward-(FCPM) 

and backward-collinear phase-matching frequencies. The one-dimensional, 

time-dependent electric field is discussed and then used to explain 

the origin of the oscillation periods in the power spectra. Finally, 

a series of experiments using a pair of ruby-pumped dye lasers and a 

novel dual-frequency dye laser system is described. With these two 

laser systems, continuously tunable far-infrared radiation in the 

-1 
frequency range 20 to 190 cm was generated. Forward-, backward-, 

and non-collinear phasematching in LiNb03 at frequencies between 20 

-1 and 160 cm were investigated; 90 0 noncritical FCPM was also observed 

-1 -1 -1 
in ZnO at 190 em ,CdS at 180 cm ,and ZnS at 91 em The highest 

peak power (-200 mW) and the broadest tuning range using a single 

-1 crystal sample (40 to 160 cm ) were obtained with noncollinear phase 

matching in LiNb03~ 
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CHAPTER I. DIFFERENCE FREQUENCY GENERATION OF FAR-INFRARED 
RADIATION AS A NONLINEAR OPTICS RESEARCH TOPIC 

I. Introduction 

For the purposes of this thesis, optical difference frequency 

generation is defined as a process in which two optical waves mix in 

an electro-optic crystal to create a third electromagnetic wave at 

their difference frequency. There are three fundamental reasons why 

investigation of this process has been an active area of nonlinear 

optics research for over ,a decade. First, the generation process 

itself differs from second harmonic generation (SHG) enough to require 

a separate analysis. When the pump frequencies are a factor of ten 

or more larger than the difference frequency as in typical far-infrared 

generation experiments, the large diffraction angle of the difference 

frequency wave compared to the pump waves can make the approximations 

used to describe SHG inapplicable. Second, the dispersion of the DFG 

susceptibility provides data on the low frequency excitations of the 

nonlinear crystal (e.g., magnons and phonons) which do not contribute 

to the optical or near-infrared SHG susceptibilities. Finally, DFG 

is a means of transferring the tunability of optical lasers or 

parametric oscillators into lower frequency regions where tunable 

bright coherent sources have not yet been developed. 

Since the 1920s, radio engineers have known how to generate coherent 

radiation from a few kHz to 100 MHz or more. In the 1930s, the split-

anode magnetron extended radio frequency techniques to cm wavelengths, 

and in response to the need for cm wavelength radar, the klystron, 
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the mu1ticavity magnetron, and the traveling wave tube - invented during 

the World War II years - extended the wavelength range to the millimeter 

regime. After the war, these techniques were pushed into sub-millimeter 

1 
wavelengths so that now carcinotrons can reach 350 ~m. At the other 

end of the spectrum from the near-ultraviolet down through the near-

infrared, organic dye lasers have provided bright tunable sources while 

parametric oscillators and spin-flip Raman lasers cover a region that 

extends down into the medium-infrared. 

-1 
The 30 to 500 cm (333 to 20 ~m wavelength) part of the far-infrared 

region has proved more resistent to the development of bright tunable 

sources using either radio frequency or optical techniques. For decades 

one of the best radiation sources for far-infrared spectroscopy has 

been the quartz envelope high-pressure mercury arc lamp; when used in 

Fourier transform spectroscopy, it is still the most versatile far-

infrared source. 
2 

An ideal 5000 0 K blackbody of 1 cm surface area is 

-1 
a convenient source to compare with, since between 30 and 70 cm the 

high-pressure mercury arc radiates like a 5000 to 6000 0 K blackbody. 

-1 2 (By 150 cm its effective temperature has dropped to 1000 o K. ) 

Although its total radiated power is 3.5 kW, only 0.54 W or 0.015% 

-1 
of this power is in the 30 to 500 cm spectral region and only 0.13 mW 

is in a 1 cm-1 bandwidth at 100 cm-1 . 

Many quantum electronic systems generate coherent far-infrared 

radiation without using difference frequency generation. Glow discharge 

pumped HeN, H20, H2S, and S02 molecular gas 1asers
3 

provide bright 

coherent continuous wave (cw) or repetitively pulsed sources. Since 
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they are not tunable, they are of limited use for spectroscopy. 

4 Optically pumped molecular gas lasers offer more promise as a 

spectroscopic source. With a single TEA CO
2 

pump laser, many organic 

molecules can be made to lase - each at its own far-infrared wavelength. 

Although these sources are not tunable either, the sheer number of 

such wavelengths should make such a system useful for low resolution 

spectroscopy of broad band transitions and high resolution spectroscopy 

of line transitions (by means of a Stark shift, etc.). PbSe and 

Pbl_xSnxTe semiconductor p-n junction lasers have been operated in the 

far-infrared. 1 The PbSe laser has been pressure tuned from 455 to 

-1 5 6 . 7 
1370 cm ; , so a Pb

l 
Sn Te laser system might be pressure tunable 

-x x 

over a significant part of the far-infrared. Stimulated Raman and 

stimulated polariton scattering have also provided tunable far-infrared 

8 9 
sources.' Very recently, far-infrared radiation has also been 

observed in the output of the lnSb spin-flip Raman laser. 9 ,10 

Relativistic electron beams can also generate far-infrared 

11 radiation at harmonics of the accelerator bunching frequency or at 

a wavelength approximately equal to the Doppler-shifted period of a 

spatially periodic magnetic field.
12 

The harmonics of the bunching 

frequency can be generated, for example, as Cerenkov radiation in a 

11 waveguide loaded with a periodic slow wave structure. The Doppler 

shifted schemes have been of more interest lately due to the possibility 

f f 1 1 . 13 d . 11 hI' o ree-e ectron aser actl0n an a potentla y muc arger tunlng 

range. Elias et al.
12 

have measured a gain of 0.07 per pass at 10.6 vm 

using a 70 rnA instantaneous peak electron current, 24 MeV electron beam 
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in a 5.2 m long, 3.2 cm pitch, 2.4 kG helical magnetic field. Using 

the same magnet with a 1 amp, 8 MeV electron beam, the output wavelength 

-1 27 and the gain per pass would be 95 ~m (105 cm frequency) and e 

respectively. Unfortunately, electron accelerators capable of reaching 

relativistic energies are expensive to build and operate; thus, far-

infrared sources based on relativistic electron beams will probably 

be feasible, if at all, only at laboratories that possess the necessary 

accelerator for other purposes. 

The experimental observations of far-infrared generation by 

nonlinear optical difference frequency mixing can'be sorted into two 

groups by the spectral characteristics of the pump source. In the 

first group of experiments, the Fourier components of a single broad 

bandwidth laser form the pump source. With such a laser Zernike 

and Berman14 observed the first reported nonlinear optical difference 

frequency generation of far-infrared radiation in 1965. They illuminated 

-1 a quartz crystal that was cut for collinear phase matching at ~100 cm 

+3 with the broad bandwidth output of a free-running Nd :gl~ss laser 

and observed random difference frequency spikes. Yajima and Takeuchi15 

reported observing the far-infrared radiation generated by a Q-switched 

+3 Nd :glass laser in LiNb0
3 

in their paper on DFG by picosecond pulses. 

d T k h · IS, 16 1 17 d k h . 1 18 h Yajima an a euc 1, Yang et ~., an Ta euc 1 et ~. ave 

observed the self-beating of the frequency components of a picosecond 

mode-locked Nd+3 : glass laser pulse in various crystals: LiNb0
3

,IS-17 

znTe,15,16 ZnSe,IS 'CdS,IS quartz,IS and LiI0
3

;18 these experiments 

have demonstrated a means of generating tunable far-infrared pulses 
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a few tens of picoseconds in duration. More recently, Matsumoto and 

Yajima
19 

have reported far-infrared generation in ZnTe, LiNb03, and 

ZnSe using the output of broad bandwidth ruby-pumped dye lasers. 

The second group, which includes the majority of far-infrared 

generation by difference frequency mixing experiments, uses two nearly 

monochromatic pump beams. Such experiments have been reported by 

over half a dozen research groups under a wide variety of experimental 

condi tions in the twelve years since Zernike and Berman I s experiment. 

Many different combinations of laser systems and nonlinear crystals 

have been used to investigate the DFG process: CO 2 laser lines in 

InSb,20-25 GaAs,26-42 and znGep
2

;43 a CO
2 

laser and a spin-flip Raman 

1 b . InSb .44-49 d l· f . 11 d aser earn In , Rl an R2 lnes rom a speCla y constructe 

ruby laser in ZnTe;50-52 temperature tuned ruby laser lines from a 

. f . 1 1 Q . h d b 1 . L· NbO 53-57 d palr 0 Slmu taneous y -SWltC e ru y asers In l 3 an 

53 . 58-60 
quartz; ruby-pumped Raman lasers In GaP; and ruby-pumped dye 

lasers in LiNb0
3

, ZnO, ZnS, and CdS
6l

- 63 and in reduced (black) LiNb0
3

. 64 

The most common experimental scheme uses collinear pump beams and 

generates a far-infrared wave that propagates in the same direction 

as the pump waves. Usually the mixing process is phase matched for 

efficient far-infrared generati.on, but in a few experiments20 ,25,28,50-52 

phase matching was unnecessary; in most of these cases the coherence 

length for far-infrared generation was longer than the effective sample 

1 h d . h f ··d 20,28,50-52 1 engt ue to elt er a ortunate COlnCl ence or to a arge 

. 1 b ". ff·· 64 optlca a sorptlon coe lClent. Usually collinear phase matching is 

attained through the dependence of the birefringence of uniaxial crystals 
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on their orientation. This mechanism doesn't exist in isotropic crystals, 

so various ingenious methods have been employed to achieve collinear 

phase matching: 
22 23 

Nguyen and Patel ' used a static magnetic field 

to induce b ire fringence in InSb through the Voigt 
22 

Faraday 
23 

effects; or 

ok 21 Zernl e temperature tuned the 9.6 and 10.6 ~ refractive indices of 

InSb; Nguyen and Bridges 44-48 used the free carrier concentration 

(by selecting a properly doped sample) to set the plasma frequency 

and hence the 9.6 and 10.6 ~ refractive indices of InSb; finally, Thompson 

29-31 26 27 0 32 
and Coleman, the Bell Labs groups, ' and Bogatkln et ale 

have used the waveguide dispersion of GaAs (or GaAs filled) waveguides. 

In isotropic materials the most generally useful phase matching 

technique is nonco11inear phase matching (NCPM) in which a slight angle 

between the pump beams is used to compensate for the higher far-infrared 

refractive index. Of course, NCPM can also be used in birefringent 

1 D 'H~ 0 0 58-60 h B k 1 62 d h N 0 1 crysta s. er=rtlnl, t e er e ey group, an t e atlona 

34-42 Magnet Lab group have successfully employed this technique; the 

latter two groups have demonstrated that far-infrared generation in the 

NCPM geometry can be very efficient. In particular, the Magnet ~ab 

o 39-42 group has developed a folded nonco111near geometry, a modification 

of the multiple internal reflection scheme first suggested by 

65 Armstrong et a1., in which the pump beams propagate in a zig-zag 

pattern down a long crystal with a rectangular cross section while 

the far-infrared beam propagates parallel to the long axis of the sample. 

This scheme has increased the far-infrared power that can be obtained 

from mixing CO2 lasers in GaAs by several orders of magnitude while 
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preserving the convenient "one crystal works for all difference 

frequencies" feature of nonco11inear 

crystal. With this efficient folded 

phase matching in an isotropic 

41 42 
geometry Aggarwal et a1. ' 

have generated continuous wave far-infrared radiation that is step­

tunable from 10 to 140 cm-1 with less than a 100 kHz bandwidth at 

-1 significant power levels; at 100 cm two 25W CO2 lasers generated 

~.2 ~W of far-infrared power. 

The largest group of theoretical papers on DFG of far-infrared 

radiation have treated the two pump beams and the far-infrared wave 

as diffraction1ess apertured plane waves. De Martini60 discussed DFG 

in an isotropic medium for a pair of plane pump waves with a common 

plane of incidence when the nonlinear polarization vector is 

perpendicular to this plane. He has included the far-infrared absorption 

and the polariton dispersion of both the linear and nonlinear 

susceptibilities as well as the single surface boundary conditions. 66 

10 
Shen has discussed the connection between DFG and stimulated polariton 

scattering due to the spin-flip Raman transition in InSb and has shown 

that the interference between the resonant magnetic dipole and the 

non-resonant electric dipole terms of the nonlinear difference 

frequency susceptibility explains the asymmetry of the experimentally 

25 measured dependence of the difference frequency power on the static 

magnetic field strength. 
67 

In an earlier paper, Brown and Wolff have 

discussed the resonant magnetic dipole DFG process by itself. 

Paraire ~t al. 56 have generalized the plane wave solution to treat 

a wedge-shaped sample of a uniaxial crystal in the special case when 
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the c-axis is normal to the input surface and the pump wave vectors, 

the surface normal vectors, and the c-axis are all coplanar. They 

discuss generation of both far-infrared 0- and e-rays, single surface 

reflection and transmission at the output surface of the wedge, and 

the dispersion of the nonlinear susceptibility. 

Prior to the research discussed in chapter II, several models 

which include diffraction effects have appeared in the literature. 

14 53 In their experimental papers, Zernike and Berman and Faries et al. 

used the far-field diffraction pattern of the nonlinear polarization 

crea~ed by a unif,onnly illuminated cylinder with plane wave fronts 

normal to the axis of the cylinder and included the effect of total 

reflection at the exit surface. Our results show that this model or 

its generalization to Gaussian beam illumination is a good description 

of far-infrared generation when walk-off effects are not too large. 

Boyd and Kleinman
68 

and Faries
54 

have given the nonlinear polarization 

for DFG by interacting Gaussian beams, but they have not given any 

results using this polarization. 69 Abdullin et al. have also described 

far-infrared generation by a pair of interacting Gaussian beams. They 

restricted their treatment to isotropic media and ignored boundary 

reflections, total reflection, and far-infrared absorption to emphasize 

the physical explanation of the phase matched cone seen in our 

calculations as Cerenkov radiation. (Note: Abdullin et al.'s power 

formula is an asymptotic expression that is valid only when the Cerenkov 

cone is significantly narrower than its opening angle.) 
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The theory of DFG of far-infrared radiation by picosecond optical 

1 h b d 1 d · d d 1 bY·· d T k h .15,16 pu ses as een eve ope ln epen ent y y aJlma an a euc 1 

and by Morris and Shen. 70 While we have emphasized the intensity 

variation in the far-infrared radiation by considering the case of a 

single coherent picosecond pump pulse, Yajima and Takeuchi have 

expanded the pump beam as a sum of laser cavity longitudinal modes 

to compare the power generated by a mode-locked (coherent case) pulse 

to that generated by the random fluctuations of a Q-switched Nd+3 :glass 

19 laser or a broad bandwidth dye laser. They have also included the 

effect of optical dispersion which we have omitted for simplicity; for 

LiNb03 this merely displaces the phase matched frequencies or changes 

the coherence length slightly, but for crystals like ZnTe in which 

the difference between the optical and far-infrared refractive indices 

is small, it can change the coherence length appreciably. Yajima and 

Takeuchi have neglected the backward phase matched signa1
70 

without 

15 17 
which the experimental results ' for LiNb0

3 
cannot be understood. 

There are two review articles that deal with DFG. 71 
Shen's review 

covers the status of far-infrared generation by optical mixing 

research up to 1974; this paper is an excellent introduction to the 

DFG literature. 
72 

Warner's review article emphasizes up-conversion 

and includes only a very sketchy treatment of DFG; it does, however, 

discuss DFG at frequencies above the far-infrared. 

In the subsequent chapters of this thesis, we describe three 

investigations of far-infrared generation by difference frequency 

mixing of optical or near-infrared laser beams in nonlinear crystals -
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two theoretical and one experimental. In chapter II we present a 

theory of far-infrared generation by difference frequency mixing of 

two monochromatic TEM mode laser beams and a series of computer 
00 

73 
calculations based on this theory. We discuss the important effects 

of a far-infrared diffraction angle that is much larger than the optical 

diffraction angles: loss of far-infrared power to totally reflected 

modes and variation of the phase mismatch from one far-infrared plane 

wave mode to another. We also discuss the effects of far-infrared 

absorption and optical walk-off, and we present the solution to the 

crystal-vacuum boundary conditions for a uniaxial crystal in a matrix 

form that focuses attention on the physical reflection processes rather 

than on the many simultaneous equations. In chapter III we describe 

70 a theory of DFG from the beating of the Fourier components of a 

single picosecond pulse (or a mode-locked train of such pulses) using 

a quasi-plane wave approximation. We discuss two types of DFG of 

far-infrared radiation with picosecond pulses: (1) the propagating 

wave analog of optical rectification in which an optical o-ray or e-ray 

beats with itself and (2) the beating of an optical o-ray with an 

optical e-ray in which spectral narrowing due to phase matching can 

dominate. Both forward and backward propagating far-infrared waves 

are generated by this process, and reflection off the surfaces of the 

nonlinear crystal mixes the two waves.. The theory predicts that, with 

an appropriately chosen backward collinear phase matching frequency, 

generation of the backward propagating wave should be easily observable 

in LiNb0
3 

slabs less than several rom thick; this prediction and the 

general features of our theory have been experimentally verified by 
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Yang, Richards, and Shen.
l ? In chapter IV, we discuss the experi­

mental observation of far-infrared radiation from 20 to 160 cm-
l 

in LiNb0
3 

and at the maximum forward collinear phase matching frequency 

in ZnO, CdS, and ZnS using two nearly monochromatic dye laser beams. 

Substantial signal-to-noise ratios are observed for forward collinear, 

backlvard collinear, and noncollinear phase matched DFG in LiNb0 3 and 

for fOTIvard collinear phase matched DFG in ZnO; of these, noncollinear 

phase matched DFG in LiNb0
3 

is the most efficient process. The direct 

observation of backlvard collinear phase matched generation of a far-

infrared ,vave with nearly monochromatic laser beams in LiNb0 3 is 

indisputable verification of the origin of the low frequency peak in the 

mixed polarization mode picosecond pulse experiment of Yang, Richards, 

17 
and Shen. We also describe a novel dual frequency dye laser that 

was developed for and used in some of these experiments. Appendicies A 

and B describe some of the mathematical details of chapter II. 

Appendix C describes the numerical methods used for the computer cal-

culations presented in chapter II and contains a listing o! the 

computer code. AppendixD gives the far-infrared field for the square 

optical pulse case discussed in chapter III. Appendix E describes 

the nonlinear least-squares fitting procedure used to obtain the 

dispersion of the o-ray far-infrared absorption coefficient from our 

experimental data. The remainder of this chapter describes the 

connection between DFG and other nonlinear optical processes. 
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II. Relationship Between Difference Frequency Generation 
of Far-Infrared Radiation and Other Nonlinear Optical 

Processes 

Difference frequency generation, sum frequency generation, second 

harmonic generation, optical rectification, up-conversion, parametric 

amplification or oscillation, and the linear electro-optic effect are 

all described by the second order nonlinear susceptibility tensor and 

Maxwell's equations. These processes are all manifestations of a 

single nonlinear optical interaction in different frequency regimes and 

under different initial or boundary conditions. Parametric amplifica-

tion, parametric oscillation, and optical rectification have especially 

close connections to DFG. When both parametric amplification (or 

oscillation) and DFG involve the same set of three frequencies, they 

differ only in their initial and boundary conditions. Drastically 

reducing the intensity of the low frequency pump (signal) beam, 

lengthening the nonlinear crystal sample, and enclosing the crystal 

in an optical resonator for the signal or idler (difference frequency) 

waves converts a phase matched DFG experiment into a parametric amplifier 

experiment. In the parametric oscillator, the signal beam builds up 

from spontaneous emission noise at the set of cavity modes that are 

74 most nearly phase matched. Optical rectification, when observed 

through propagating waves, is the zero frequency limit of difference 

frequency generation; however, in the more common experimental 

arrangement optical rectification is observed as an electrical pulse 

across parallel capacitor plates and is thus the longitudinal or 
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electro-static solution to Maxwell's equations rather than the 

transverse, propagating wave solution observed in DFG experiments. 

The electro-optic effect is the DC field limit of the combined sum-

and difference-frequency processes which are degenerate when one 

mixing frequency is zero (i.e. when the optical input and output 

waves have the same frequency). When absorption at the pump and at 

very low far-infrared frequencies is negligible, the second order 

65 75 
susceptibility (discussed below) obeys a permutation symmetry , 

and the optical rectification and electro-optic effect susceptibilities 

are equal. 

A brief description of the pertinent part of nonlinear optical 

76 77 
susceptibility theory , will clarify these interrelationships. 

Since nonlinear optical effects are observed with high photon flux 
) 

laser beams, we can use the semi-classical theory of radiation to 

describe the growth and propagation of the nonlinearly generated 

electric fields. Furthermore, because we are only concerned with 

effects induced by external fields, the electromagnetic field is 

described by Maxwell's equations in which the induced current density, 

-+J b d d . 1· 1 . 76,78 , can e expan e In a mu tlPO e serles 

-+ 
-+ ap -+-+ 
J at + c17 x M 

a -+ +7 at (17· Q) + ... (1) 

-+ -+ +7 

where P, M, and Q are the electric dipole, magnetic dipole, and 

electric quadrupole polarizations, respectively. Although each of these 

terms can have both linear and nonlinear contributions, I shall discuss 
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+ 
only the electric dipole polarization term, ~P/dt, as this is 

sufficient to illustrate the phenomena that are related to difference 

frequency generation. To further simplify the discussion, I shall 

+ 
make the customary dipole or local field approximation in which P 

depends only on the history of & at the same point in space. 

vfuen the applied fields are much smaller than the atomic fields 

++ 
seen by electrons in the medium, the polarization P(r,t) can be 

expanded into a power series in the applied electric field &(;,t). 

Each term of this series has associated with it a response function 

*7(n) 
tensor, R , such that 

with 

(n) + 
p. (r,t) 

1 

+ 
P.(r,t) 

1 

+ + 
&. (r,t+T

1
) •.. &. (r,t+T ) • 

J 1 I n n 

Since the part of i(n) that is antisymmetric in the exchange of any 

two of the pairs (jl,T
l

) ... (jn,T
n

) does not contribute to p(n), the 

tensor i(n) can be rendered unique by requiring that it be invariant 

under all the permutations of the pairs (j l' T 1) ..• (jn' Tn) ; 76 this 

property is called the intrinsic permutation symmetry. 

(2) 

(3) 

The dipole susceptibility tensors are simply the Fourier transforms 

of these dipole response tensors: 
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) 
j 

Then, the Fourier transform of p(n)(t) is given by: 

p(n)(w) 

with 

&(t) f&(w) exp(-iwt) dw 

and 

pet) = fp(w) exp(-iwt) dw 

(The dependence of & and P on ? has been omitted to simplify the 

i ) Th ,J.. (n) ( ) . i . d notat on. e tensor ~. . . w;wl, ... ,w 1S nvar1ant un er 
1,J

l
, ... ,J n n 

(4) 

(5) 

any permutation of the pairs (jl'wl ) .•. (jn'wn ) due to the intrinsic 

+)-(n) 
permutation symmetry of R , and it also obeys the additional permuta-

65 75 tion symmetry: ' 

(n) . 
¢. . . (w ; wI' . . . , W ) 
1,J l ,· .. ,I n n 

(6) 

'* -+ +)-(n) Furthermore, since the fields ~(t) and pet) are real valued, ~ 

satisfies the further symmetry relation 
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(7) 

Although Eq. (5) also describes the mixing of the Fourier components 

of a mode-locked or other broad bandwidth laser, the second order 

nonlinear optical frequency mixing processes are most simply discussed 

using monochromatic laser fields. For a single monochromatic laser with 

&(W) = &10(W-W1) + &~o(W+W1)' only second harmonic generation (SHG) and 

optical rectification (OR) are caused by ;(2) and 

where from Eq. (8) on I shall omit those terms which are merely the 

negetive frequency counterparts of some explicitly displayed term. 

With two monochromatic laser beams, p(2) becomes 

+ SHG and OR terms. 

(8) 

(9) 

The linear electro-optic effect is described by the mixing of a laser 

field, &1' with a DC field, &dc' which can be obtained from Eq. (9) 

by setting w2 to ze~o and replacing (to2~;) with &dc: 
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t(2)(W) 
eo 

(10) 

The tabulated electro-optic coefficients, r
ijk

, are expressed in-terms-of 

the induced change in the inverse of the linear dielectric tensor 

r(&dC) so that in the principal axis coordinate system of a crystal: 

(11) 

-1 -1 B-(2) 
-8TIE, ,(O)E, ,(0) cp, 'k(Wl;Wl'O) 

11 JJ 1J 

Throughout the remainder of this thesis, I shall use Bloembergen's 

notation for the susceptibility X(2) for historical reasons and because 

it eliminates the miscellaneous factors of two in Eqs. (8), (9), and (10); 

in this notation 

(12) 

and the peak electric field at wl*O is 2!&(w
i
)!. The relationship 

B-
between the two notations and between them and the d tensor of Boyd 

and Kleinman
68 

which is used in the SHG tabulations of the Landoelt-

B ' ,79 , d b 1 oernste1n ser1es are summar1ze e ow: 
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<+(2) 2:1(2) <+(2) 
(l3a) XSHG 

= ¢SHG SHG 

<+(2) 4:1(2) 2$(2) (13b) XOR OR OR 

4(2) <+(2) 2~(2) (l3c) Xeo d = eo eo 

<+(2) 2:1(2) 2$(:) (l3d) ~x nux mlX 

When the optical frequencies are far from the electronic resonances 

of the material, Raman scattering from its simultaneously infrared and 

Raman active far-infrared elementary excitations is responsible for 

the dispersion of X(2) for DFG. Although spin-flip transitions,lO 

<+(2) 
magnons, plasmons, etc. can also lead to dispersion of X ,TO phonons 

cause the dispersion of X(2) in all of our experiments. In section IV 

of his review paper, Shen7l has given a clear, concise derivation of 

the dispersion of X(2) due to Raman scattering from polaritons associated 

with a TO phonon mode. He starts with Maxwell's equations for the high 

frequency pump (WI)' low frequency pump or Raman Stokes (w2), and 

difference frequency (w
3 

- w
l
-(

2
) electromagnetic fields, a damped 

simple harmonic oscillator (SHO) equation for the TO phonon mode, and 

nonlinear coupling terms that can be derived from the phenominological 

energy density: 

F 

(14) 
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The nonlinear polarization at the three frequencies w. (i=1,2,3) and 
~ 

~(2) ~* 
the force on the SHO are given by the equations P (w.) = of/dE (w.) 

~ ~ 

~ -+* 
and F(W

3
) = dF/dQ (w

3
), respectively. Solving the SHO equation for 

~ ~ 

Q(w
3

) and eliminating Q(w
3

) from the three Maxwell's equations. Shen 

obtains the Raman Stokes and difference frequency wave equations: 

80 
where 

**('3) ** +>-* 2 2 = fof /(w -w +iw I) XR 0 3 3 

B- ** +>- **(2) 
Fog fixed wI »0.)3' the tensors A, f, Eoo' and Xx; are all nearly 

independent of w3 unless wI is close to an electronic transition of 

the crystal. As can be seen from Eqs. (15) and (16), far-infrared 

+>- +>- ** 
reflection experiments determine A through E(O) and E , and Raman 

00 

<+ ~~(3) 
scattering experiments measurements determine f through X

R 
. The 

(15) 

(16) 

linear electro-optic coefficient determines ;«2) (w
l

-w
2 

;())l ,(
2

) through 

Eqs. (11), (13~), and the permutation symmetry of ;«2); together with 
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<+ <+ <+(2) 
A and f this determines ~ (If its dispersion can be neglected, 

~2) can also be determined from the results of SHG experiments.) 
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-0- -0-(2) 0(+(3) 
In the definitions of E (w3), X ,and XR ., the "." means sum 

+* over the index that corresponds to Q 
4(3) 

Also, the index of XR 
0(+ 

which is not summed over in Eq. (15) is the index of the first f 
+,", 

that corresponds- to E (w
2
). 
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CHAPTER II. THEORY OF FAR-INFRARED GENERATION BY DIFFERENCE 
FREQUENCY MIXING OF MONOCHROMATIC LASER BEAMS 

I. Introduction 

Far-infrared generation by optical mixing has recently received 

increasing attention. l It has the potential of providing a coherent 

tunable far-infrared source which compliments far-infrared molecular 

lasers. The most commonly used scheme is that of difference-frequency 

generation (DFG) by mixing of two laser beams in a non-centrosymmetric 

1 Wl·th d 1 2-3 CO 1 4-16 . fl· R crysta . ye asers, 2 asers, or spln- lp aman 

17-20 lasers as the pump beams, DFG can provide a far-infrared source 

discretely or continuously tunable from 1 cm-l to 200 cm- l or more. 

-1 
The output linewidth can easily be less than 0.1 cm as determined 

by the pump laser linewidths. In most cases, the output is in pulses 

with pulsewidths between 10 nsec and 10 ~sec, but CW operation has 

recently been achieved. 

A serious limitation of far-infrared generation by optical mixing 

has been the attainable average power, although so far as spectral 

power per unit solid angle is concerned it is already better than a 

1 blackbody source at 5000 o K. While focusing of the pump beams may 

increase the far-infrared output, it is not clear how tight the 

focusing can be before the detrimental effect of far-infrared diffraction 

sets in. No adequate theoretical calculation of nonlinear far-infrared 

generation with focusing and diffraction properly taken into account 

has been reported. Experimentally, on the other hand, a tight focusing 

geometry has so far been avoided. As a result, the full potential of 
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nonlinear far infrared generation has not been assessed. 

In the literature, the plane-wave theory was often used to inter-

1 f f f d . . 2,6,7,11,12,21-25 prete the resu ts 0 ar-in rare generatlon experlments. 

The theory assumes a single spatial Fourier component for each 

monochromatic wave so that the nonlinear process is characterized by 

a single phase matching relation. However, when the pump beams are 

focused to a spot comparable in size to the far-infrared wavelength, 

far-infrared diffraction is important and the spatial Fourier components 

of the output extend over a large cone. Each Fourier component now 

has its own phase matching relation with respect to the pump beams. 

Since it is not possible to phase match all the Fourier components 

simultaneously, focusing of the pump beams does not improve the far-

infrared output power as much as the plane-wave theory predicts. 

The plane-wave theory also assumes a single transmission coefficient 

for the far-infrared output across the boundary surface. Actually, 

with the far-infrared output extending over a large cone, the trans-

mission coefficient is different for each Fourier component and falls 

to zero at the total reflection angle. Thus, the real output can be 

considerably less than what the plane wave theory predicts. Finally, 

the plane wave theory often ignores the reduction in output power due 

to double refraction which can be significant for small spot sizes in 

crystalline media. 

Improvement in the calculations of far-infrared generation by 

optical mixing has been achieved by Faries et al.
26 

using the far-field 

diffraction theory for a distribution of oscillating dipoles induced 
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26-28 
by the pump beams. They used an average transmission coefficient 

for the far-infrared output across the boundary and excluded the 

contribution from the totally reflected modes. The effect of double 

refraction was, howeve~ ignored. As we shall see later, in the absence 

of double refraction, this approach in fact gives a remarkably good 

estimate of the far-infrared output. 

In this paper, we present a more rigorous calculation of far-

infrared generation by optical mixing. It proceeds by first calculating 

separately each Fourier component of the output field and then 

evaluating the output power by summing over the Fourier components. 

The effects of focusing, absorption, phase matching, and double 

refraction can all be properly taken into account. For the sake of 

simplicity, the pump beams are assumed to be of single mode with 

Gaussian profiles. Our approach is essentially the same as that used 

by Bjorkholm
29 

and by Kleinman et al. 3D for second-harmonic generation 

by focused beams. 

The main difference between second-harmonic (or sum-frequency) 

generation in the visible or near infrared and difference-frequency 

generation in the far-infrared is diffraction. Validity of the scalar 

Fresnel approximation for the pump beams guarantees its validity for 

the sum frequency but not for the difference frequency. Because of 

its much longer wavelength and hence stronger diffraction, the far-

infrared output extends over a much broader cone. Thus, the phase 

matching condition varies much more appreciably among the output 

Fourier components in difference-frequency generation (DFG) than in 
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sum-frequency generation (SFG). All the Fourier components can often 

be nearly simultaneously phase matched for SFG but not for DFG. An 

accurate description of DFG also requires knowledge of the difference-

frequency transmission coefficients over a very broad output cone. 

The body of the paper is organized into the following sections: 

Section II describes the theory of DFG by monochromatic Gaussian laser 

beams which is valid even when the pump focal spot size is smaller 

than a far-infrared wavelength. This theory is developed from a 

generalization of the non-linear polarization used by Boyd and 

K1einman
31 

and by Faries.
28 

Section III contains the results of 

numerical calculations obtained from this theory. First, we present 

the results for the ideal case of no double refraction. Then, we 

discuss briefly the reductions in attainable power due to far-infrared 

absorption and double refraction. Finally, in Section IV, we compare 

our results with the results of three other calculations: a simple 

plane wave calculation, a far-field diffraction calculation assuming 

a constant lie radius Gaussian distribution of induced dipoles, and 

31 the second harmonic generation calculations of Boyd and Kleinman. 

II. Theory 

A. Nonlinear Polarization 

We assume that the pump beams are monochromatic with Gaussian TEM 
00 

mode. If focusing and diffraction of the pump beams are not too strong, 

h f d f ., 1d' I b d' b' 28,31 t e ocuse pump le s ln a s a me lum can e wrltten as 
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2 2 
(x-a.-s.z) +y 

7- [ 7- 7- 1 
E.; (r, t) = ---=-- exp -

.L 1 + i~i 
1 1 

----~2~~------- + ikiz 
w.(l+i~.) 

1 1 

for 0 < z < ~, where the subindex i denotes the i-th beam; w. is the 
1 

e-
2 

beam radius in the focal plane which is located at z = zOi; the 

beam axis intersects the front surface of the medium at x = a. and 
1 

y = 0; the quantity ~. is defined by ~. = 2(z-zo.)/k.w.
2 

with 1 1 111 

(17) 

k. = w.n./c, n
i 

being the refractive 111 
index; finally, s. is the walk-off 

1 

angle given bYSi = t sin(28i ) 
2 -2 -2 

n. (n .-n .)if the beam is an 
1 em,1 0,1 

extraordinary ray propagating in a uniaxial medium along a direction 

at an angle 8 with respect to the optical axis where n . and n . 
0,1 em,1 

are respectively the ordinary and extra-ordinary refractive indices at 

8 = 90°. The derivation of Eq. (17) involves some approximations which 

can easily be justified as shown in Appendix A. In the following, to 

simplify the calculations in practical cases, we can assume that the 

largely overlapping pump beams are focused to the same spot size at the 

same point with wi = w, ~i = ~ and zOi - Zo This is a good approxi-

mation when the refractive indices of the pump beams are not very 

different, as is true in all practical cases which have been investi-

gated. 

The pump fields now induce a nonlinear polarization at the far-

infrared frequency in the med'ium. We consider here only the case of 

DFG in a uniaxial crystal as an example although the formalism can be 

easily extended to more general cases of optical mixing. The nonlinear 

polarization at the difference frequency w is then given by 
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(18) 

where X(2) is the. second-order nonlinear susceptibility tensor. We 

+ + 
assume that El is an ordinary ray and E2 is extraordinary. The 

+(2) + 
nonlinear polarization P (r) dan be readily found by substituting the 

+ 
expression of E. of Eq. (17) into Eq. (18). For convenience of solving 

1 

the wave equation later, we are however interested in the transverse 

+(2) (+) Fourier components of P r. The transverse Fourier transform gives 

+ 
where kT 

f
oo 

+(2 + 
dxdy P )(r) exp(-ik x-ik y) 

_00 x y 

x 12221 ] - - k w (l+~ ) - - k (a -sz)~ 
8 T 2 x 1 

<:'.1. + Ak d 0 ~x y y an we set a 2 = . For economy of notation, we 

omit explicit mention of the argument w. 

B. Solution of Wave Equations 

(19) 

Far-infrared generation by optical mixing is described by the set 

of wave equations 

2 2 +> + + 2 2 +NL + 
[\7 x (\7x) - (w Ic )E]E(r?w) 4n(w Ic)p (r,w) (20a) 

+> + + +NL + 
\7 • [E"E(r,w)] -4n\7· P (r,w) (20b) 
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where the nonlinear polarization NL as a driving for the Pacts source 

nonlinear process. For DFG in a uniaxial d' pNL me 1um = P (2) given by 

Eq. (18) • Since the normal to slab boundary planes is A the easiest z, 

method is to Fourier transform the x and y variables in Eq. (20) and 

to solve for each Fourier 
~ ~ 32 

component E(kT,z) separately. The 

corresponding source term 
~ ~ 2 . 2 ~(2) ~ 

for E(kT,z) is 4n(w /c ) P (kT,z) with 

~(2) ~ 
P (kT,z) given by Eq. (19). 

~~ 

The general solution for E(kT,z) consists of two parts, the 

homogeneous solution and the particular solution respectively. The 

homogeneous solution is well known. For ordinary and extraordinary 

polarizations respectively, it can be written as 

8, +0+ exp (ik + • z) 
0- - 0- ,z 

A 

8, + e+_ exp (ik + • z) 
e- e-, z 

(21) 

where the subindices + and - denote forward and backward propagating 
~ 2 2 1/2 

waves respectively with the same kT, and ko±,z = ±[ Wilo/c) - kT ] 

with a similar expression for k + • To find the particular solution, 
e- ,z 

let us first assume that the nonlinear slab is imbedded in a linear 

medium with an equal linear dielectric constant. Thus, reflection and 

refraction at the crystal boundaries can be ignored. The boundary 

effects will be taken into account later. As shown in Appendix B, the 

~ 

particular solution for E(kT,z) is then given by 
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+ EP (k Z) A 
e- T' e 

where n is the refractive index for extraordinary ray propagating em 

perpendicular to the optical axis, 

2'ITiw 2 f 2 + ik (z-z') 
EP + A +() oz 

(k
T

, z) 
c

2
k 

o • P (k z')e dz' 
0- + . T' 

oz 0 

2'ITiw 
2 t +(2) + -ik (z-z')dz' 

EP + A oz (k
T

, z) 2 0 • P (k
T

, z') e 
0-

c k oz z 

(22) 

2 . 2 
P (+ ) _ 'IT1W 

Ee+ kT,z - -2---- f A +(2)(+ ik (z-z') 
P k ') e+,z d ' e+ • T'z e z 

c (k ) ff ez e 

2 . 2 'IT1W 

o 

19, 2 ik (z-z') 
A + + e- z e _ • P ( ) (k

T
, z ' ) e' dz ' 

z 

(k - k )n
2 

/ ~2n2[ _ (n~-n;m) e+,z e-,z em e 2 
n 

, 0 

C is the optical axis of the crystal. The last term in Eq. (22) is a 

longitudinal field which leads to optical rectification 33 when 

W = wI - w2 = O. it is, however, a non-radiating term and we shall 

neglect it in the following discussion. 
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The solution in Eqs. (22) and (23) appear in the form normally 

obtained for nonlinear optical processes in the slowly varying envelope 

approximation. However, no such approximation has been made. As shown 

in Appendix B, Eq. (22) together with Eq. (23) is an exact solution of 

-+(2) -+ 
Eq. (20) with P (kT,z) as the source term. -+p(-+ ) The field E kT,z in the 

21-+P -+ 1. 2 
medium does not have a slowly varying amplitude since 0 E (kT,z) /oz 

is not negligible in comparison with 2koIEP(kT'z) I/oz. In fact, the 

slowly varying envelope approximation is equivalent to assuming for 

each polarization a wave propagating in one direction only. 

As a check, we can use Eqs. (22) and (23) to derive the solution 

for the speciaQ case of optical mixing at an infinite boundary surface 

discussed 
ik z 

34 by Bloembergen. We have k 
y 

-+(2) -+ 
0, £ -+ 00, and P (kT,z) = 

A sz 
Poye in the medium. Equation (23) gives for the reflected output 

-+p 
E =­

r 

2 -ik z 2nw A oz 
c 2k (k +k ) YPOe 

oz oz sz 

and for the transmitted output 

for z < 0 

for z > 0 

The above solution is, however, only true for the case with no 

(24a) 

(24b) 

reflection at the boundary, but the boundary effects can be easily 

incorporated by taking into account the linear reflection of EP at the 
r 

boundary surface. The complete solution for the problem with a crystal-

vacuum plane boundary is then given by 



~p 

ER 

~p 

ET 

where k 
z 

2k 
oz EP(z 0) e k +k r oz z 

k -k 
EP 

z 
k~ t z 

2 = [(w/c) 

oz 

pz 
EP(z 

r 

2 1/2 
k ] x 
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-ik z 
z for z < 0 

ik z 
0) 0 

e for z > 0 

Substitution of the expressions for EP 
r 

and EP in Eq. (24) into Eq. (25) yields results identical to those 
t . 

34 derived by Bloembergen. 

The above example suggests that the boundary effects can indeed 

be taken care of separately. In Sec. IIC, we shall use the same 

(25) 

procedure to take into account the boundary conditions of optical mixing 

in a slab medium. 
~(2) ~ 

Then, with the expression of P (kT,z) in Eq. (19), 

we can calculate from Eqs. (21) - (23) and the appropriate boundary 

~~ 

conditions the Fourier component E(kT,z) of the DFG output and hence 

~~ 

the difference-frequency field E(r) in space. In many cases, only one 

of the four waves in Eq. (23) is nearly phase-matched. When this 

happens, we need to retain only the phase-matched component in a good 

approximate calculation. 

C. Boundary Effects 

We have seen in Sec. lIB how we can take into account the boundary 

effects of a crystal-vacuum interface by simply incorporating linear 

reflection and transmission of the waves at the boundary into the 

solution. We now discuss the boundary effects of the more general 

case of a slab crystalline medium. We can consider Er in Eq. (22) as 

forward propagating waves starting from z = 0 in the medium and 
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subsequently undergoing multiple partial reflections at the two slab 

surfaces. Similarly, we consider E: in Eq. (22) as backward propagating 

waves starting from z = ~ in the medium. Thus, the field outside the 

slab is given by the sum of E! and E: weighted respectively by 

appropriate Fabry-Perot factors due to multiple reflections and 

transmissions. To find the Fabry-Perot factors, we first calculate 

the. transmission and reflection matrices for ordinary and extraordinary 

waves at a single crystal-vacuum boundary surface, and then find the 

overall transmission and reflection matrices of the slab for the two 

waves by summing over multiple transmissions and reflections at the 

slab surfaces. 

Consider first the case defined in Fig. lao The incident mono­

chromatic plane wave Ei+(kT) = E~+ "+ + E~+l and the reflected plane 

-+ -+ II" 1" wave E (k
T

) = E II + E 1 are related to the refracted ordinary and 
r- r- r-

-+ -+ -+-+ 
extraordinary waves Eo+(kT) and Ee+(kT) respectively, by the matrix 

relations 35 

c~+) ~ c::) A+ 
Ei + 

(26) 

(~) ~ c::) B+ 
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1 
r 

o 

1 
r + e-

± 
a 

0 

± 
a e 
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cl 1(1+/ +) ) e e-

+ II 
f3~ k/ (l+r e±)k 

± 1 1 ) a r +/(l+r +) e e- e-

± II II 
f3 r +k I(l+r +)k . e e- e e-

+ + II 2+ ++ 2+ ++ 
(-k - ± k ) 1 (k - ± k ), r == (-k - ± k k - 0-) 1 (k - ± k k - 0-) 

- ez z ez z e± Ye z e~e Ye z e~e 

A A A 
- o± . (z x k

T
) , 

A A A 
- e± . (z x k

T
) , 

- e • kT ± 

+ A 
[A A M] 13- - o± . (z x kT) \l( k~ 

0 

+ [A A A+] 
13~ - e± . (z xkT) xk~ 

With subindex "_" applied to the case of Fig. lb with 

We next consider transmission and reflection of ordinary and extra-

ordinary waves incident from the crystal side onto the boundary surface 

as described by Diagram a in Fig. 2. Clearly, Diagram a is equivalent 
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to the sum of Diagram b and Diagram c, and Diagrams band care 

identical to those in Fig. la and Fig. lc respectively. We therefore 

have 

where 

~ 

E 
t-

~ 

+ E" 
t-

# 

= T G:J 

the subindices "+" and "_" now refer to cases where the crystalline 

(27) 

medium occupy the left half-space and the right half-space, respectively. 

We can now use the results in Eq. (27) to calculate the effect of 

mUltiple transmissions and reflections at the boundaries of a crystal 

slab. In particular, we are interested in finding the forward and 

backward propagating far-infrared waves outside the slab created by 

optical mixing inside the slab. As we mentioned earlier, we can 

imagine that optical mixing generates waves E! starting at z = 0 and 

~ starting at z = ~ and in getting out of the slab, these waves undergo 

multiple transmissions and reflections. Therefore, for the generated 

field outside the slab, we readily find for z = ~ 
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-& -& [C~(~)) -& -& C-(o))] -+ 
ET+ = T+ F+ + P+ R_ 

Ee+(,Q,) E (0) 
e-

(28a) 

and for z < 0 

-+ -& -& [c-(o) -& -& C+(~)] E
T

_ T F + P _ R+ 
E (0) Ee+(,Q,) e-

(28b) 

where 

(XPUk ~) 

exp(±ik± J -& 
oz 

P± 

ez 

and 

00 

# # #-&## 
-1 

I: -&### n 
F± [ 1 P+R-P_R+ ] [P+R-P-R+ ] - + + - - + + - (29) 

n=O 

# 

Because of the generalized Fabry-Perot factor F±, the output fields 

-+ -+ 
ET± can be rapidly varying functions of kT, w, and,Q,. In some cases, 

however, when the pump laser beams have fairly bread 1inewidths or the 

crystal slab is wedged or not sufficiently well polished, it is more 

appropriate to find an average Fabry-Perot factor or the average output 

by averaging over one Fabry-Perot period. For example, in the nearly 

isotropic case, we find from Eq. (28) after some manipulation, 
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o 4 1-1 r1 I exp( -y,Q,) 

o 4 
l-Ir" I exp(-y,Q,) 

'" where y is the attenuation constant along z. 

+ -a 

(30) 

D. Far-Infrared Output Power and Its Far-Field Angular Distribution. 

The total far-infrared power outputs from the slab in the forward 

and backward directions are 

c 
21T J '" '" 1-+ 12 dxdy(zoQ) ET±(x,y) 

evaluated at large z:. By Parseval' s Theorem, this can be written as 

-+ -+ where ET±(kT) is given by Eq. (28). 

(31) 

(32) 

In most practical cases, we are also interested in the far-field 

angular distribution of the output power. As shown in the Appendix 

of Miyamoto and Wolf,36 it has the expression 

2 
c w 2 1-+ -+ W '" '" } 12 21T ~ cos 8 ET±{kT = ~ sin8(xcos¢+ysin¢) 

c 
(33) 
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III. Results of Numerical Calculations 

In this section, we shall present numerical calculations of far-

infrared generation by difference-frequency mixing using the equations 

given in the previous section. We choose somewhat arbitrarily the 

following values for the characteristic parameters of the nonlinear 

crystal: n = 2, n(w) 
o 

(2) -6 
4, and X = 1.87 x 10 esu. The two nearly 

overlapped pump beams, one ordinary and one extraordinary, are assumed 

to have the same focal spot in the crystal with both beams always along 

the normal to the slab. The question we propose to answer is how 

various quantities such as phase mismatch, focusing, beam walkoff, 

and absorption affect the far-infrared output at different frequencies. 

A. Far-infrared Generation in the Absence of Absorption and Optical 
Walkoff 

We assume in this case that the optical axis of the crystal is 

in the plane of the slab along~. The two pump beams, one ordinary 

and one extraordinary, propagate along the normal to the slab, z, with 

essentially no walkoff, the nonlinear polarization pNL is along y, and 

the common focal spot of the two pump beams is at the center of the 

slab. We also assume that the extraordinary refractive index n of em 

the pump beam can be varied by external means such.as temperature in 

order to adjust the amount of phase mismatch in DFG and that only the 

ordinary far infrared waves in the forward direction can be nearly 

phase matched. Since the phase mismatch is different for different 
. -)--)-

Fourier components E(kT,w) of the far-infrared output, we define an 

overall phase matching condition. 
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Figure 3 shows the far-field angular distribution of the far-infrared 

-1 
output, dP(e)/dn versus e, at 100 cm calculated from Eq. (33). In 

the calculation the slab has a thickness of 1 cm, the focal spot size 

-1 
is w = 25 Vm, and the axial phase mismatch corresponds to 6k = -5.1 cm • 

a 

Since the far-infrared output is approximately symmetric about 

-1 z (i.e., nearly independent of the azimuth angle ~ = tan (k /k », 
y x 

Fig. 3 actually shows a distribution in the form of a hollow cone. 
1 2 2 1/2 

e = sin- {n (w) - [n (w) + 6k c/w] } 
moo a The radiation peaks at the angle 

at which phase matching 6kz = k1 - k2 - koz(w) = ° occurs. The secondary 

maxima of the phase-matching curve can also be seen. They become more 

pronounced for shorter far-infrared wavelengths as the effect of 

diffraction becomes less important. From the expression of e , it is 
m 

seen that if 6k = 0, then e = ° and the far-infrared output appears a m 

as a narrow solid cone along the z axis. If 6k > 0, then there is a 

no solution for e and the far-infrared output is strongly suppressed 
m 

by phase mismatch; the angular distribution may show a weak central 

peak at e = ° and some secondary maxima at finite e. For negative 

6k , the phase-matched peak shifts to larger e until e = n/2; then a m m 

because of total reflection at the surface, the far-infrared radiation 

in the phase-matched direction can no longer get out of the slab and 

the output peak at e = n/2 drops quickly. 

The total far-infrared power output P versus 6k is shown in a 

Fig. 4 with the same set of parameters used for Fig. 3. The curve has 

-1 
a maximum around 6k = -5.1 cm corresponding to the full development 

a 

of the hollow phase-matched cone in Fig. 3. The steep rise of the 
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curve at ~k 
a 

-1 . o cm 1S due to the initial appearance of the phase-

matched cone. The gradual decrease between ~k ~ -10 cm-l and -75 cm-l 
z 

is due to the combined effects of decrease of the far-infrared 

transmission coefficients and decrease of the effective p(2) for the 

generation of ordinary far-infrared waves around the phase-matched 

direction. -1 The steep drop after ~k ~ -75 cm is due to total 
a 

reflection of an increasing portion of those far-infrared waves 

generated near phase matching. 

If the far-infrared wavelength A inside the crystal becomes much 

smaller than the focal spot size w, the variation of far-infrared 

output versus phase mismatch ~k appears more like the usual phase­a 

matching function (sin2x)/x2 for the ideal plane wave case. An 

example is shown in Fig. 5 for the case of A = wiS. Because of the 

smaller A/w ratio, the off-axis Fourier components of the far-infrared 

become relatively less important and hence the output drops more 

rapidly with increase of ~k. The curve in Fig. 5 is, however, still 
a 

noticeably asymmetric and its peak occurs at ~k 
a 

-1 
-2 cm rather 

than ~k a O. As the ratio of A/w decreases further, the effect of 

far-infrared diffraction becomes even smaller; the phase-matching 

curve P versus ~k then develops more clearly defined secondary peaks a 

and approaches the symmetric form sin2(~k ~/2)/(~k ~/2)2. 
a a 

The focusing geometry of the Gaussian pump beams is completely 

characterized by the focal spot size w. In order to see how the far-

infrared output varies with focusing, we calculate the s = 0 curve in 

Fig. 6 which shows the maximum of P(~k ) as a function of w. Because 
a 
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of the higher pump intensity resulting from tighter focusing, the 

far-infrared output increases sharply with decrease of w. It, however, 

reaches a maximum at w = 13 ~m as the corresponding reduction of the 

longitudinal focal dimension takes its toll. It is interesting to note 

that in the model of collimated Gaussian pump beams with a radius w 

constant, P versus w has no maximum. This is 

because when kTw « 1 for all significant far-infrared Fourier components, 

p(2)(k
T

.z) in Eq. (19) becomes independent of kT and w. 

While Figs. 3-6 are for w = 100 cm-l , Figs. 7-9 show results of 

similar calculation for w = 10 cm-1 The far-field angular distribution 

of the output is given in Fig. 7 for two values of the azimuth angle 

¢ = tan-l(k /k ) = 0 and n/2. In this case, because A/W = 10 is large, 
y x 

far-infrared diffraction is more important; phase matching occurs 

around e = n/4 and the phase-matched peak is very broad. As a result, 

the output asymmetry with respect to ¢ shows up because at relatively 

large e, the transmission coefficient for the ordinary far-infrared 

wave across the slab boundaries is different for different ¢. For 

¢ = 0, the wave is linearly polarized perpendicular to the plane of 

incidence, while for ¢ = n/2, the wave is linearly polarized in the 

plane of incidence. The latter case has a Brewster angle at e = 76°. 

-1 
Figure 8 shows the total far-infrared output at w = 10 cm as a 

function of the axial phase mismatch 6k. The curve again resembles 
a 

the well-known phase-matching curve (sin
2
x)/x2 for the plane wave case 

except that its maximum is at 6k 
a 

-4 cm-1 instead of 6k = 0 and 
a 

it has no well-defined nodes. However, this resemblance does not 
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occur because diffraction is unimportant. It occurs because, when the 

far-infrared wavelength is sufficiently long, then all the far-infrared 

++ 
Fourier components E(kT,z) have roughly the same6k ~ ~ 6k ~; in other 

z a 

words, if 6k ~ = 0, then all the far-infrared Fourier components are 
a 

nearly phase matched. The small difference of 6k ~ among the Fourier 
z 

components, however, broadens the phase-matching peak and obscures the 

fine structure. 

The s = 0 curve in Fig. 9 describes the peak value of P(6k ) at 
a 

-1 w = 10 cm as a function of the focal spot size w. We notice that in 

the range of our calculation, this maximum output power P (6k) max a 

always increases with decrease of w. In this case, kTw becomes so 

much smaller than 1 at small w that the nonlinear polarization 

+(2) + 
P (kT) approaches a constant independent of kT, w, and z in spite 

of the factor (1+~2) in the exponential function in Eq. (19). 

Consequently, the s = 0 curve of Fig. 9 flattens out at small w. 

Eventually, for even smaller w, we should expect the curve to go 

through a maximum like the s = 0 curve in Fig. 6 for w = 100 cm-1 . 

B. Far-Infrared Generation with a Finite Wa1koff Angle Between the 
Pump Beams 

We now consider the effect of optical wa1koff on far-infrared 

generation. We still assume that the pump beams propagate normal to 

the slab and absorption is negligible, but the orientation of the 

optical 2 axis of the crystal is now varied in the ~~z plane in order 

to vary the walkoff angle s. The primary effect of optical walkoff 

is that it limits the effective interaction length of the beams. When 

s is much larger than the divergence angle of the pump beams, the two 
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l 
V 

pump beams overlap in the focal region only over a distance of 2w/lsl; 

most of the far-infrared radiation is generated from this overlapping 

region. As lsi increases, the effective interaction length decreases, 

and hence the phase-matching peak in the far-field angular distribution 

becomes weaker and broader as shown in Fig. 10 for w = 10 cm-l • For 

smaller focal spot sizes w, the walkoff effect is stronger. This gives 

rise to a lower maximum at a larger w for the s * 0 curves in Figs. 6 

and 9. 

The far-infrared output should in general consist of both ordinary 

and extraordinary waves. We have so far assumed that the e-wave is 

strongly phase-mismatched and can be neglected. This is true for 

e 
c 

-leA A) 1 1 fIle cos c·z arger than the tota re ection ang e R' However, 

when 2 approaches z or e approaches zero, the phase mismatch of the 
c 

e-wave is greatly reduced and the e-wave output becomes non-negligible. 

For e ~ 0, 've have the nearly degenerate case where the e-wave and the 

o-wave contribute almost equally to the far-infrared output. 

There are two other less important effects of optical walkoff on 

far-infrared generation. First, the exp(ik sz/2) term in Eq. (19) 
x 

contributes to the phase matching relation which now becomes 

6kz = k l -k2 + kxs - kz O. This term shifts the center of the phase-

matching cone in Figs. 3, 7, and 10 from k 
x 

o to k = s (6k + n w/ c) /2. 
x a 0 

Since for ¢ = 0, the far-infrared transmission coefficient for o-waves 

at the boundary falls off monotonically with increase of e, this 

increases the phase-matched output for k > 0 and decreases that for , x 

- 1+(2) + I kx < O. Second, as seen from Eq. (19), the maximum of P (kT,z) is 
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shifted from k = k = 0 to k = k ~~2/(1+~2) and k = 0; its effect 
x y x 1 y 

on the far-field angular distribution is just the opposite of that due 

to the shift of the phase matching cone. Depending on the situation, 

one effect may dominate over the other. They are responsible for the 

slight asymmetry of the ~ = 0 curves in Fig. 10. The phase-matching 

effect is more important for the ~ -0.01 case while the Ip(2) (k
T

) I 

effect is more important for the ~ -0.02 case. For shorter crystals 

(£ $ 0.5 em), the phase-matching effect is more important. 

c. Effects of Linear Absorption on Far-Infrared Generation 

In practice, nonlinear far-infrared generation in crystals is 

always limited by far-infrared absorption. This is the main reason 

why far-infrared DFG in solids has in most cases been restricted to 

-1 
the range between 1 and 200 cm . Roughly speaking, with an absorption 

coefficient y, the effective length of the crystal for DFG cannot be 

much more than 2/y. 

Figure 11 shows how the far-infrared output from a l-cm slab 

decreases as a function of the far-infrared absorption coefficient y 

for w = 10 and 100 cm-l • In the calculation, the focal spot size was 

chosen as w = 25 ~m and the location of the focal spot was at the 

center of the slab for y = 0, while for increasing y it moves towards 

the end surface of the slab. As we mentioned earlier in Sec. IlIA, 

-1 
for w = 10 CIU , all the significant far-infrared Fourier components 

are nearly phase-matched (6k £ < n). Therefore, the curve for 
z 

w = 10 cm-l in Fig. 11 agrees fairly well with that described by 

[1_exp(_y£/2)]2/(y£/2)2 for the phase-matched plane wave case. For 
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w = 100 
-1 

cm since not all the significant far-infrared Fourier 

components can be nearly phase-matched, the reduction of far-infrared 

output with increasing absorption is slower and cannot be approximated 

by the phase matched plane-wave form at small y. 

In some respects, the effects of y for y~ ~ 2 can be simulated 

-1 
by an absorptionless crystal with a length 2y • An increase of y 

increases the phase-matching angle and broadens the phase-matched 

peak in the angular distribution of the far-infrared output. It also 

makes (l',k) ,the optimum axial phase mismatch for maximum total 
a opt 

far-infrared output, more negative. This latter effect is quite 

-1 
pronounced for w = 100 cm as shown in Fig. 12. 

IV. Comparison with Other Models and with Calculations 
of Second Harmonic Generation 

We now compare the results of our detailed calculations with those 

obtained from two simple models for the case where the optical walk-off 

effect is negligible. One is the Gaussian distribution (GD) model in 

which we assume a Gaussian profile for the nonlinear polarization at 

the difference frequency. 

-+-(2)-+- ++(2) z z* 2 2 2 
P (r,t) = (X :fu

l
Co

2
)exp[-2(x +y )/w +i(k

l
-k

2
)z - iwt] (34) 

in the crystal slab where the pump fields are given by 

1,2 . 



-50-

',-. 

27 This is an extension of an earlier model used by Zernike and Berman 

26 -+(2) -+ 
and Faries et al. which assumes a uniform amplitude for P (r,t) 

throughout a cylinder with a finite radius. The other simple model 

is the usual plane wave model in which we assume that the geometric 

ray approximation is valid and that each beam can be described by a 

cylindrical pencil of rays with a single wave vector. 

From the GD model, we obtain for the lossless case a total output 

power at W of 

234 
TI w w 1~(2). & &*1202 

2 X • I 2 )(, 
4 c 

x 

w/c 

1: d~{kT/koz} (T{kT})~ G{bkz} (35) 

where ( T(kT) ) ¢ is the far-infrared transmission factor averaged over 

the azimuthal angle ¢ with multiple reflections at the slab boundaries 

taken into account, and C(~k ) describes the effect of phase mismatch. 
z 

They are given by 

with ~k 
Z 

I 
2(k +k ) 

o oz [

k (k + n2 k ) 2 
o oz 0 Z + 

k 2 +n4 k 2 
oz 0 Z 

(k + k ) 2 1 oz Z k 
k 2 + kz2 oz 

oz 

C(~k ) 
Z 

sin2 (~k 9../2)/(~k 9../2)2 
Z Z 

n w/c + ~k k and ~k kl - k2 - now/c. o a oz a 

(36) 
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-1 -1 
The output powers at 100 cm and 10 cm calculated from Eq. (35) as 

a function of ware shown in Figs. 13 and 14 respectively in comparison 

with the results of Eq. (32) from our more exact calculations. At 

-1 
100 cm , the only perceptible difference between the two curves occurs 

at small beam sizes and amounts to 6% at w = 13 ~m. 
-1 

At 10 cm , the 

two curves are virtually indistinguishable. Thus, the GD model appears 

to be a very satisfactory approximation. 

The output power from the plane wave model without boundary 

conditions is given by 

(37) 

The result calculated from Eq. (37) is also shown in Fig. 13. It is 

20% higher than the correct value at w = 0.02 cm. The deviation becomes 

much worse at smaller wand diverges as w approaches zero. This shows 

,that the plane wave model gives unacceptable results at small w because 

of its diffractionless approximation. With diffraction, the total 

far-infrared output power is decreased by total reflection of those 

Fourier components with large kT and by phase mismatch (described by 

C(~k ) in Eq. (35)) for other Fourier components. z 

The plane wave calculation is, however, simple and does not 

require numerical integration. It is therefore preferred when one 

wants to crudely estimate the output power. We can make the estimate 

more exact by multiplying the calculated result by a correction factor. 

Comparison of Eq. (35) and (37) shows that this correction factor is 

given by 
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(w/c (~) 
Jr dkT k o oz 

(38) 

We approximate (T(kT) >¢ C(6kz)/koz in the integral by (T(O) >¢/ko for 

37 ,-~ __ --.---~~ 
kT <kM and by 0 for kT >kM where kM is defined as kM = 126kc (now/c - 6kc /2) 

with 6k being the smaller of the two quantities 2TI/Q, and (n -/n2-l)w/c. coo 

Physically, at kT = kM, dP /d0, either has dropped to half of its peak value 

or has been cutoff by total reflection. The correction factor then becomes 

F 
2 2 

1 - exp(-kMw /4) (39) 

The output power calculated from FpPW using Eqs. (37) and (39) is within 

20% of the correct value. 

We now discuss similarities and differences between difference-

frequency generation (DGF) and second-harmonic generation (SHG). In 

-+ 
both cases, each pump field E. with finite beam radius has a distribution 

1 

of Fourier components with wave vectors spreading effectively over an 

angle 20 .• The output of DFG or SHG from a nonlinear slab is significant 
1 

only when part of these significant Fourier components within the angular 

spread 20. can satisfy the axial phase matching condition 6k = O. As 
1 z 

shown in Fig. 15, this happens for SHG only if 6k! :: 2k(w
l

) - k(2w
l

) ;:;" 0 

and 6k~ :: 2k(wl ) (l-coso l ) ;:;" 6k!, and for DFG only if 

6k~ :: kl -k2-k(w) ~ 0 and 6k~ :: k(w) (I-coso) ;:;" -6k~, where 20 is the 

angular spread of the significant far-infrared Fourier components which 

can get out of the crystal slab. We emphasize that for an efficient 

nonlinear interaction we must have 6k
S ~ 0 for SHG and 6k

D 
;:;" 0 for DFG. 

a a 
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The quantity 6k~ in SHG or 6k~ in DFG governs the qualitative 

behavior of the phase-matching curve P versus 

S before, the output is most efficient when 6k 
a 

S D range between 0 and 6k
R 

(or 6k
R
). Therefore, 

6k. As we mentioned 
a 

(or _6kD) falls in the 
a 

if 6k~ (or 6k~~) » 2rr, 

then the phase-matching curve has a broad peak; it rises sharply to 

S D 
the peak around 6k (or 6k ) = 0, 

a a 
S D 

then slopes downward as 6k ~(or -6k ) 
a a 

S D increases from 0 to 6k
R 

(or 6k
R

) , and finally in the case of DFG falls 

rapidly at a certain 6kD value because of the cutoff due to total 
a 

reflection at the boupdaries. Examples are shown in Fig. 4 for DFG 

with 6k~Q, = 80 and in Fig. 16 for SHG with 6k~Q, = 100. 31 Such a 

phase-matching curve is characteristic of SHG with strong focusing 

of the pump beam. In DFG, it occurs when the pump beams are more 

weakly focused because of large far-infrared diffraction. When 

6k~Q, (or 6k~) ~ 2rr the range of 6k! (or 6k~) for efficient output is 

much narrower, and the phase-matching curve now shows a central peak 

and secondary maxima and minima, resembling the well-known plane-wave 

phase-matching curve described by sin2 (6kQ,/2)/(6kQ,/2)2. Examples are 

-1 D shown in Fig. 5 for DFG at 100 cm with 6k
R

Q, = 4, in Fig. 9 for DFG 

-1 D S 
at 10 cm with 6k

R
Q, = 8, and in Fig. 17 for SHG with 6k

R
Q, 5.68. 

All these curves are, however, slightly asymmetric with a small 

shoulder on one side. S D This is because for 6k Q, < 0 (or 6k > 0), the 
a a 

phase-matching condition 6k 
z 

Fourier components. 

o is not satisfied for any of the 

There are several minor differences between the SHG and DFG phase 

matching functions. For 6k~Q, (or 6k~Q,) » 2rr, the phase-matching curve 
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D for DFG, as shown in Fig. 4, has a sharp drop around the value of 6k 
a 

where significant Fourier components of the far-infrared output begin 

to be totally reflected at the boundaries. In SHG, however, total 

reflection is never important and therefore as shown in Fig. 16, no 

D sudden drop of the output power occurs as 6k increases. Because of 
a 

the weaker diffraction effect, the phase-matching curve for SHG has, in 

general, more pronounced fine structure than that for DFG. 

v. Conclusion 

We have developed here the theory of far-infrared generation by 

optical mixing in a nonlinear medium, using an extension of a formalism 

developed earlier for second-harmonic generation by focused laser beams. 

The theory takes into account the effects of focusing, diffraction, and 

double refraction of the pumped beams and the effects of diffraction, 

absorption and reflections at the boundaries of the far-infrared 

output beam. Numerical calculations showing these effects are presented. 

Both the total power output and its angular distribution are calculated. 

We have found that focusing of the pump beams can greatly enhance 

the far-infrared output. In a crystal of 1 cm long, the optimum focal 

spot radius is roughly equal to or smaller than the far-infrared 

-1 
wavelength for output frequencies less than 100 cm The walkoft 

effect of the pump beams in birefringent crystals does not reduce the 

output by more than a factor of 2. Far-infrared absorption and boundary 

reflections are however extremely important. The former is often the 

factor which limits the output power. 
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" 

I 

We show that the usual plane-wave model which neglects the effects 

of far-infrared diffraction and boundary reflections does not give a 

correct description of the far-infrared output, especially for tightly 

focused pump beams. A simple model treating the non-linear polarization 

as a constant lie radius Gaussian distribution of radiating dipoles is, 

however, a good approximation to the real picture. We also compare our 

results with those of second-harmonic generation and notice a great 

deal of similarities. Most of the differences can be ascribed to the 

boundary effects including total reflection which are more important 

in the case of far-infrared generation. 
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37. For tightly focused exp[-w2ki/4] ~ 1 when kT < ~ , and this factor 

can be pulled outside the integral in Eq. (35) along with 
w/c 

Then, the remaining integral is J 
o 

kTdkTC (L1k )/k 
Z oz 

which has the value ~ TI/~ for thick crystals or high far-infrared 

frequencies and the value ~ (W/2c)[n(w)-~2(W)-1 ] for thin crystals 

or low far-infrared frequencies. 
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CHAPTER III. FAR-INFRARED GENERATION BY PICOSECOND 
PULSES IN ELECTRO-OPTIC MATERIALS 

The development of high power mode-locked lasers with pulse widths 

in the picosecond range has made optical rectification a feasible method 

of generating broadband radiation of high peak power (~ 1 KW), as 

1 
supported by the recent experimental results. Theoretically, 

Gustafson et al. 2 have calculated the rectified field for an infinite 

plane wave in the limit that the optical and far infrared phase veloci-

ties differ negligibly. They have also neglected reflection and 

refraction at the crystal boundaries. This letter reports a more 

realistic calculation which includes the various effects due to a finite 

beam cross-section, crystal boundaries, and the significantly different 

optical and far-infrared phase velocities. 

Consider a short laser pulse incident normally on a thin slab of 

electro-optic material. The slab has a transverse dimension much 

larger than the beam diameter, and we can assume that the laser pulse 

propagating in the slab in a single transverse mode is given by3,4 

E = 
~Ji, I tJi,. (r,t) with 

j J 

~Ji,j { (l+~~J.) exp [- --=-2 x_
2
_+ ...... y_2_ 

w (l+i~.) 
o J 

(n.z/c-t)2 
_.>LJ ____ + 

(i 

where w is the beam radius in the focal plane, a is the pulse width, 
o 

~. = (L + z/n.)/(w w
2
/2c), L is the distance between the focal point 

J J 0 0 

(40) 
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and the front surface of the slab, and z is the distance away from the 

front surface into the slab. The subindex, j, indicates the polariza-

tion state of the laser field. The other quantities have their usual 

physical meaning. 

The laser pulse induces in the slab a nonlinear polarization at 

difference frequencies of the form 

NL :e (X, t) 
NL 

X 
"'" 

(41) 

NL 
if we neglect the dispersion of the nonlinear susceptibility X The 

far infrared radiation field ~(£,t) generated in the slab can then be 

obtained by solving the wave equation 

4 'IT 3
2 

NL 
2 --2E (L,t) 

c 3t 
(42) 

with the proper boundary conditions. Here, we have also neglected the 

dispersion of ~. 

To solve Eq. (42), we use essentially the scheme of Bjorkholm. 4 

NL 
From the Fourier transform of ~ (r, t) and f (r, t) on x, y and t, we 

obtain the Fourier components ~ (~T'W'z) and fNL(~,w,z) respectively. 

We then use the Green's function method to find ~(~T'w,z). Although 

far-infrared radiation is generated in the slab in all directions, only 

the part which propagates in forward and backward directions with nearly 

normal incidence on the plane surfaces of the slab can get out of the 

slab because of the large refractive index of a crystal in the far 

infrared. If we are interested only in that part of the far-infrared 
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radiation, then we can use the Green's function for normal incidence 

as an approximation in finding ~(~T'W'z). Multiple reflections at the 

plane boundaries of the slab are clearly important, so that the solution 

should be proportional to a Fabry-Perot factor. For far-infrared field 

in the i polarization state, we find at the back surface of the slab, 

z = 9" 

. h5 
w1t 

(S) (S) . (w) 
F. [E. (kT,w,z=9,)-R.E. (kT,w,z=O) exp (lwn. 9,/c)] 
1~1 ~ 11 ~ 1 

where F. ~ (l-R.)/[l-R~ exp(i2wn~w)9,/c)] is the Fabry-Perot factor, 
1 1 1 1 

and Ri = (l_n~w»/(l+n~w» is the reflection coefficient for the i 
1 1 

polarization state. 

(43) 

Experimentally, the far infrared output from the slab is collected 

6 by a tapered light pipe leading to a solid-state detector. Since 

wave propagation in the light pipe has a cutoff arigle ~M' the total 

far infrared power seen by the detector is given by 

cos~ (44) 

To calculate P.(w) from Eq. (44) with the 
1 

help of Eqs. (40), (41), and (43), we use the following approximations. 

We assume that the cross-section of the laser beam remains unchanged 
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in traversing the thin slab. If both ordinary and extraordinary laser 

beams are present, then we also assume that walkoff of the two beams in 

the slab is negligible. Both assumptions are clearly good approxima-

tions when the slab is not unusually thick « a few mID.). 

often small, we also approximate coset> by 1 in Eq. (44). 

Since et> is 
m 

Then, if X~k 
~J 

is the only dominating nonlinear susceptibility in difference-frequency 

generation, we find, for a slab of thickness ~, 

7 
where 

D 

s 

2 
P.(w) = I.AIF.I M.DS 
~ ~ ~ ~ 

t;,. (z=O) 
J 

(w ) 
(l/c) [(w +w/2)n. 0 

o J 

(wo ) (w) 
(w -w/2)n. ± wn. ] 

o K ~ 

2 2 
exp (-w a /4) . 

(45) 
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The various quantities in the above equation have the following physical 

meanings. A is the effective cross-section of the beam at the slab. 

+ 
}[.k takes care of the phase mismatch in the difference-frequency 

1.J 

generation process, with 6kjk and 6k;k being the average momentum 

mismatches for far-infrared waves propagating in the forward and back-

ward directions respectively. D accounts for the diffraction effect 

due to the finite beam cross-section. S is the spectral content of 

the picosecond laser pulse. Finally, I.A gives the far-infrared power 
1. 

spectrum if all the other factors in Eq. (45) are unity. 

We now use Eq. (45) to calculate the spectra of the far-infrared 

output for two cases. In the first case, a 0.1 cm. LiNb03 slab is 

oriented with the c-axis parallel to the plane surfaces of the slab. 

A 2-psec. laser pulse at 1.06 y, polarized along the c-axis, is normally 

incident on the slab, so that X~ is the only nonlinear susceptibility 

responsible 

"-

along c and 

for the 
(w ) 

o * n. 
1. 

"- A "-

difference-frequency generation. With j = k = i 

(w) 
n. in Eq. (45), phase matching occurs only at 

1. 

w = O. The calculated spectrum is shown in Fig. 18. The dashed curve 

gives the spectrum without the Fabry-Perot boundary condition. The 

-1 
peaks at 5, 8.4, and 11.8 cm are the secondary peaks of the phase-

matching curve, which would have the major phase-matching peak at w = 0 

if it were not for the low-frequency cutoff. This low-frequency cutoff 

2 is mainly due to the w -dependent radiation effects, and gives rise to 

-1 
the first peak at 2 cm The diffraction effect (D) only makes the 

cutoff even sharper, but does not affect the spectrum significantly 

beyond the first peak. On the high-frequency side, the spectrum is 
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limited by the spectral content S of the input pul~e. With the Fabry-

Perot boundary condition included, the spectrum is then modified by the 

interference pattern, as shown by the solid curve with spikes in Fig. 18. 

For an input pulse of 1 - GWatt peak power, the total far-infrared 

output energy is about 0.1 erg. Our results here agree with those of 
(w ) 

Gustafson'et al.
2 

in the limit n~W) n. 0 and when diffraction and 
1 1 

boundary conditions are neglected. 

In the second case, the LiNb0
3 

slab is oriented with the c-axis 

tilted at 16.8° away from the normal of the slab and the a-axis is 

in the plane defined by the c-axis and the normal. The normally 

incident laser pulse is linearly polarized at 45° with respect to the 

NL plane such that only X
24 

is responsible for the difference-frequency 

signal with polarization perpendicular to the plane. We then find 

from Eq. (45) that the phase-matching conditions 6kjk = 0 and 6k~j = 0, 

for far infrared generation in the forward and the backward directions, 

-1 
respectively, can be satisfied at w = 15 and 7.5 em , respectively. 

The far-infrared spectrum is then essentially the superposition of 

the two phase-matching curves modified by w2S(w) and the boundary 

conditions. If the boundary conditions are neglected (R. = 0), then 
1 

only the far-infrared generated in the forward direction contributes 

to the spectrum as represented by the dashed curve in Fig. 19. With 

the boundary conditions, R. * 0, the far-infrared generated in the 
1 

backward direction now appears in the output. Its spectrum dominates 

over that of the far-infrared generated in the forward direction 

because of the high-frequency cutoff due to S(w). The total spectrum 
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is given by the solid curve in Fig. 19, where the spikes are again the 

result of Fabry-Perot interference. Diffraction has little effect in 

this case. For a laser pulse with a 1 - GWatt peak power, the total 

far-infrared energy generated here is 0.0064 erg. Both cases discussed 

above have been investigated experimentally. Preliminary results show 

good agreement with our theoretical calculations.
l 

The time dependence of the far-infrared pulse must also be 

understood, especially the features responsible for the oscillation 

periods in the spectra of Figs. 18 and 19. These oscillation periods 

are due to the following three characteristic times: the far-infrared 

round-trip time, the sum of the optical and far-infrared transit times, 

and the difference of the optical and far-infrared transit times. 

The far-infrared round-trip time, l = 2n.(w)2/c, is responsible for 
rt l 

the prominent Fabry-Perot oscillation period in the solid curves of 

Figs. 18 and 19. The sum and difference of the far-infrared and optical 

transit times, l± = (n.(w) ± n.)2/c, are responsible for the node 
l J 

spacing of the backward and forward phase-matching functions, 

respectively. Since the characteristic times are independent of the 

temporal pulse shape. we choose a square pulse to illustrate the 

significance of l±. We shall also ignore diffraction in the following 

discussion. 

Ignoring diffraction reduces Eq. (42) to a pair of scalar one-

dimensional wave equations, one for the far-infrared o-ray and another 

for the e-ray: 
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[_.L + n~ LJ 
2 2 2 E.(z,t) 

"I " 1 . oZ C at 

(46) 

A -+NL A A 2 "-
where Pi ~i·P (z,t)/[l-(ioz) ], i is the direction of the electric 

field, and n
i 

is the far-infrared refractive index for the 0- or e-ray. 

When the nonlinear slab is imbedded in a medium with an identical linear 

dielectric tensor (reflectionless boundary conditions), the solution 

of Eq. (46) can be written down immediately from the standard Green's 

function for an outgoing-wave:
8 

n 1 d 2"'" ,,2 _IN 'r '( , z-~z )" a (") :::: dz dt H t-t - _.- n. -- -- p. Z ,t 
o 

E. (z, t) 
1 

_00 c 1 n.c" ,2 1 
1 at 

J SI, dz I 2 If d (' --~p. z ,t 
n.C at 1 

-,-I_z-_z_'-,-I n.) 
c 1 

o 1 

(47b) 

(47b) 

where H(u) is the unit step function [H(u) - 0 for u < 0, and H(u) - 1 

for u ;;. 0]. 

The case in which an optical 0- or e-ray beats with itself is 

most easily understood by following a short pulse through the nonlinear 

slab. First, between its entry at z = 0 and its arrival at z = SI, the 

optical pulse creates the same transmitted and reflected far-infrared 

pulses as it would if the nonlinear medium filled the entire half-space 

to the right of the z = 0 interface. Since P. is proportional to the 
1 

optical intensity and dispersion is ignored, the solution of Eq. (46) 

for a single interface at z = 0 can be written down immediately from 

9 
the solution for a monochromatic plane wave. Its transmitted 
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inhomogeneous [E~(z,t)], transmitted homogeneous, and reflected 
1 

homogeneous far-infrared pulses are given by: 

E~(z,t) 
1 

r 
E.(z,t) 

1 

t 
E.(z,t) 

1 

P.(O,t-zn./c) 
1 J 

n.-n. 
~ J E~(O.t+zn./c) 
n

i 
1 1 

n.+n. 
~ J E~(O,t-zn./c) 
n. 1 1 

1 

for z > 0, 

for z < 0, 

for z > 0 • 

(48a) 

(48b) 

(48c) 

(EP, E
r

, and Et are zero in the half-spaces not described in Eq. (48).) 

At z = 0 all three of these pulses have the time-dependence of the 

optical intensity, except for sign reversals. Next, when the 

inhomogeneous pulse arrives at the z = £ interface, it generates another 

reflected and another transmitted far-infrared pulse. At z = £ both of 

these pulses and the optical intensity have identical time-dependence; 

also, the reflected and transmitted pulses have opposite polarity from 

the corresponding pulse generated at z = 0 because the inhomogeneous 

pulse propagates toward the z = £ interface, but away form the z = 0 

interface. Finally, the homogeneous transmitted pulse from z = 0 and 

the homogeneous reflected pulse from z = £ arrive at and pass through 

the opposite surface. Since each of these pulses automatically 

satisfies the (linearly) reflectionless boundary conditions at the 

opposite surface, the transmitted (reflected) far-infrared wave is the 

sum of the transmitted (reflecte~homogeneous pulses from z = 0 and 

z = £. 
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Figure 20 illustrates this case for a 2 psec square input pulse 

and the crystal parameters of the calculation shown in Fig. 18. The 

two opposite polarity single-surface pulses discussed above are clearly 

present in both the transmitted (lower curve) and reflected (upper curve) 

far-infrared fields. The first pulse of the transmitted electric field 

coincides with the optical pulse at z = £ and the second follows it 

after a delay of the optical minus the far-infrared transit time. This 

delay of 9.5 psec causes the prominent 3.51 cm- l oscillation in both 

curves of Fig. 18. The reflected electric field at z = 0 (upper curve) 

is similar. The first pulse is the reflection off the input (z = 0) 

face of the slab while the second is the reflection off the exit (z = £) 

face. The time lag between the two pulses, T+ = 24.167 psec, generates 

a 1.38 cm-l oscillation period in the solid curve in Fig. 18 which, 

-1 
unfortunately, is obscured by the 0.99 cm Fabry-Perot oscillation 

period. 
-1 

However, the 1.38 cm period is clearly present in the spectrum 

of the sum of the forward wave and the first reflection of the backward 

wave that, for the 2 psec square pulse, is shown in Fig. 21. 

Figure 22 illustrates the time-dependence of the electric field 

generated by the beating of the o-ray and e-ray components of a single 

2 psec square optical pulse for reflectionless boundary conditions. 

The crystal parameters are those used for the calculation shown in 

Fig. 19. As in Fig. 20, there are two regions of approximately 2 psec 

duration separated by T+ in the backward wave at z = 0 (upper curve) or 

by T in the forward wave at z = £ (lower curve) which are due to the 

single surface nonlinear reflections or transmissions. The signal 
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between the two surface pulses i~ due to the interference of the 

radiation generated by the leading and trailing edges of the pulse; 

its amplitude depends critically on the pulse length and is largest 

when w±kT = (2m+l)n m = 0,1, ••• (see Appendix D). Both during and 

between the surface pulses, the time dependence is nearly sinusoidal 

with a frequency that is given approximately by the corresponding 

phase-matching condition 6kjk + o or 6kjk = o. 

The nearly sinusoidal time dependence is easily explained: Due 

to the different 0- and e-ray phase velocities, the square pulse creates 

a standing wave modulation, cos[(nj-~)wOz/c], of the nonlinear 

polarization (plus a propagating second harmonic modulation that 

doesn't concern us here) within the moving window determined by its 

duration. If the input beam were continuous wave, this polarization 

would have no time dependence and could not radiate; however, the 

motion of the pulse edges creates a time-dependent source. (In the 

one-dimensional plane wave case, only these edges radiate.) If we 

consider just the effect ~f the leading edge of the pulse on the far-

infrared wave at z = ~, the radiation arriving at time t was generated 

at the retarded time t' = t-(~-z')n./c at the point in space z' = ct'/n. 
1 J 

which the leading edge then occupied; thus, the relationship between 

the time of observation at z = ~ and the point of emission is 

t - ~n./c = z'(n.-n.)/c, and the contribution of the leading edge is 
1 J 1 

sinusoidal at the difference frequency w = w (n.-nk)/(n.-n.). This is 
o J 1 J 

approximately the frequency at which 6kjk o when n.-n. » n.-R • 
1 J J k 

Between the two surface pulses the velocity difference between the 
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leading (c/nj ) and trailing (c/~) edges causes a deviation from a truly 

sinusoidal field that is negligible unless the optical birefringence 

is large. 

We have neglected dispersion and absorption in the above discussion. 

They can, however, be easily incorporated in the computer spectrum 

calculations. The effects vary from crystal to crystal. In LiNb0 3, 

the absorption coefficient, a, in the far-infrared is roughly proportional 

to w2. (a ~ 18 cm-l at 30 cm-l).lO The decrease of the far-infrared 

power due to absorption is less than 20% below 10 cm-l We have also 

neglected the effect of possible frequency chirping of a mode-locked 

11 * pulse. This is not important here since, in the product E£jE£k' any 

phase modulation in E£j is almost completely cancelled out by the same 

* phase modulation in E£k' Finally, for a train of N identical mode-

locked pulses with a time interval T between pulses, the far-infrared 

spectrum of Eq. (45) should be modified oy the factor 

1 [l-exp(iNwT) ] / [l-exp(iwT) ] 12. The total far-infrared energy is 

increased by a factor of N. 
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CHAPTER IV. PHASE MATCHED FAR-INFRARED GENERATION BY 
DIFFERENCE-FREQUENCY MIXING OF TWO DYE LASER BEAMS 

I. Introduction 

The use of non-linear difference-frequency mixing of optical or 

infrared lasers to generate tuneable far-infrared radiation has been 

. 1-10 experimentally demonstrated many tlmes. Various combinations of 

lasers and non-linear crystals have been used: temperature-tuned ruby 

lasers with LiNbO
e

;1,3 grating tuned CO
2 

lasers with InSb,2 znGep
2

,4 

and GaAs;7-9 a spin-flip Raman laser and a CO2 laser with InSb;6 and 

10 grating tuned ruby pumped dye lasers with LiNb03 , ZnO, and CdS and 

with reduced (black) LiNb0 3 •5 Only the dye laser system has demonstrated 

output that can be continuously tuned over the entire 20 to 190 cm-l 

f . h . 1 1 10 requency range Wlt a slng e aser system. Although the ruby pumped 

dye laser systems have a low repetition rate, the results obtained with 

them suggest that a suitably chosen flashlamp pumped dye laser system 

could be used to generate a greater than 1 Hz repetition rate, 

continuously tunable, far-infrared source using a LiNb03 crystal; this 

-1 
source would operate from 20 to 160 cm with a peak power of at least 

a few milli-watts. 

This chapter describes the difference frequency generation of 

continuously tunable far-infrared radiation in the 20 to 190 cm-l 

frequency range using two distinct ruby-pumped dye laser systems. In 

the experiments described here, we observed far-infrared radiation in 

-1 
the 20 to 160 cm range with various phase-matching schemes in LiNb03 : 

forward collinear (FCPM), backward collinear (BCPM), and noncollinear 
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(NCPM). We have also investigated FCPM in ZnO, ZnS, CdS, and CdSe at 

selected frequencies as high as 190 cm-1 • The observed far-infrared 

power is summarized in Table 1. 

II. Synopsis of Plane-wave Theory 

A. Plane-wave Theory for Collinear Phase Matching 

Because our optical focal spot diameter of 3 mm was much larger 

than any of the far-infrared wavelengths that we investigated in LiNb0
3

, 

the plane wave theory of difference frequency generation (see Eq. (37) 

of Chapter II) adequately describes our experimental results above 

40 cm-1 When, as in our experiments, the optical absorption is 

negligible and only X~~) contributes to the difference-frequency signal, 

the far-infrared power can be approximated by 

P(w,8) 1 =--
4noc i

2noc 2 nw 
dE -4- I(w-I-E ,8) 

-2noc 
(49a) 

where 

(49b) 

x 11- exp(-a£/2) exp{i[6k(w,8)':"BE/C],Q,} 12 
2 2 [6k(w,8)-BE/C] + a /4 

is the intensity generated by two monochromatic lasers at their 

difference frequency w-I-E; a is the far-infrared absorption coefficient 

at W; 6k(w,8) is the phase mismatch for the nominal laser frequency 
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and the difference frequency w; B is given by either B = n - n 
- 1 

for 

FCPM or by B + = n + n
l 

for BCPM; 2a is the effective bandwidth of our 

dye lasers; 11 and 12 are the pump laser intensities; T, T
l

, and T2 

and n, n
l

, and n
2 

are the far-infrared, high-frequency o~tical, and 

low-frequency optical transmission coefficients and refractive indices, 

respectively; and e is the angle between the optical beams and the c-axis 

of the crystal. 

B. Backwards Collinear Phase-matching 

In crystals that have an optical birefringence sufficient to 

collinearly phase-match the difference frequency generation of a 

forward propagating far-infrared wave, there is also a range of 

frequencies in which the generation of a backward propagating or 

reflected difference frequency wave can be phasematched. This occurs 

because in the frequency range below the lowest infrared active TO 

phonon, the far-infrared refractive index is typically a monotonically 

increasing function of frequency and is usually greater than the 

optical refractive indices. This reflected difference frequency wave 

is similar to the reflected second harmonic wave generated in III-V 

semiconductors;ll however, since it is phase-matchable, the coherence 

length can be a substantial fraction of the crystal thickness rather 

than just half a second harmonic wavelength. 

If the forward, P
F

, and the backward, PB, collinearly phase 

matched powers are generated by identical pump laser beams in crystals 

that are identical except for their phase-matching angles, then 

according to Eq. (49) their ratio is the product of two factors: 
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1) the ratio of sin2
(e) at their respective phase matching angles, and 

2) the ratio of the mean values of their phase-matching functions 

averaged over the far-infrared linewidth. The ratio of the backward 

to the forward collinearly phasematched sin2e factors is (n+nl)/(n-nl ) 

when wI » w and when dispersion at the pump laser frequencies can be 

neglected. When the far-infrared generation process is phase matched 

at line center (s=O in Eq. (49)), PB/P
F

, including the above ratio of 

the sin2
(e) factors, is given by: 

where 

feu) - 12TIU 

-2TIU 

(50) 

Thus, BCPM is more efficient than FCPM for type II collinear generation 

of a far-infrared o-ray in LiNb03; in the limit of a large absorption 

coefficient, a, the power ratio is given by PB/PF ~ (n+n1)/(n-n1) which 

can be as large as a factor of two in LiNb0 3" 

C. Noncollinear Phase Matching 

The most general phasematching configuration is non-collinear 

phasematching; the forward and backward collinear phasematching 

configurations are, in fact, limiting cases of non-collinear phasematching. 

The general phasematched three wave interaction is described by the 

wavevector triangle shown in Fig. 23a. For our difference-frequency 

case the index I and 2 waves are optical beams and the index 3 wave is 

the far-infrared beam. The special case ¢ = ~ = 0 is forward collinear 
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phasematching with 6kfc = k
l
-k2-k

3 
= 0 while ~ = 0, ~ = TI is backward 

collinear phasematching with 6k
bc 

= k
l
-k

2
+k

3 
= O. By an elementary 

application of the law of cosines and half-angle formulas, we obtain 

for the angle between the two optical beams: 

(51) 

and for the angle between the far-infrared beam and the high-frequency 

optical beam: 

For far-infrared generation with optical or near-infrared lasers, the 

angle ~ is small because k3 is much smaller than either kl or k 2 • 

However, the angle ~ is often large. 

(52) 

Far-infrared generation with non-collinear phase matching is more 

sensitive to the divergence of the pump lasers than far-infrared 

generation with collinear phasematching whenever the angle, ~, between 

the pump beams is more than about twice their divergence angles. The 

far-infrared radiation is generated by the interaction of the various 

plane-wave components of the pump laser beams. Thus, for phase 

matched mixing of divergent pump laser beams, Fig. 23a illustrates the 

phase matched mixing of the axial plane wave components that are at 

the center of the far-field diffraction patterns of the pump laser 

beams, and Fig. 23b illustrates the mixing of this component of one 
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pump beam with a plane wave component at the edge of the main diffraction 

lobe of the second. The value, 6k', of the phase mismatch for the case 

when 6k and k3 in Fig. 23b are collinear is a measure of the effect of 

the pump laser divergence angle 0; its magnitude is the value of 16kl 

for the most nearly phase-matched plane-wave component of the far-infrared 

radiation in Fig. 23b, and it is given by: 

(53) 

where u = 4klk2 sin(0/2) sin(¢ + 0/2) and the approximation in Eq. (53) 

is valid when 16kl «k3 and 8 «1. In the collinear phasematching 

cases (¢=O), the range of the phase mismatch is of the order of 02 and 

thus a few milliradians of beam divergence can often be ignored. In the 

non-collinear case (¢ > 28), the phase mismatch becomes significant 
/ 

more quickly because it grows linearly with 8. 

III. Experimental Equipment and Techniques 

A. Laser Systems 

For many of the collinear and all of the noncollinear phase-

matching experiments, a conceptually simple system of two separate dye 

lasers pumped by a single Q-switched ruby laser was used. The active 

medium was a solution of 3,3'-diethylthiatricarbocyanine iodide 

(DTTC iodide) in dimethyl sulfoxide (DMSO) contained in a 1 cm Beckman 

spectrophotometer cell. 
12 

Each laser was arranged in Bradley's nearly 

longitudinally pumped configuration with a 312 rom-I blazed echelle 
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grating used in a sixth-order Littrow or back reflection geometry and 

a 70% reflectivity dielectric mirror to complete the laser cavity. 

The .5 J, 30 ns ruby pump pulse used in each dye laser generated about 

24 mJ of dye laser energy that was continuously tunable from about 

810 nm to greater than 840 nm. 

With this pump pulse, the dye laser output was insensitive to 

factor-of-two changes in dye concentration from our operating con-

centration (20% low-level light transmission at 600 nm). Although the 

low-level light transmission at 6943 A was less than 1%, the ruby laser 

saturated the dye absorption band since its energy burned black masking 

tape after passing through the dye cell. The only precautions taken 

with the dye solution were to cap the dye cell to keep moisture away 

from the hygroscopic DMSO solvent and to operate the laser in a 

darkened room to retard the degradation of the DTTC iodide by ambient 

I , h 13 19 t. To obtain a reasonable power output, the incident ruby light 

was plane polarized parallel to the grating rulings to match the maximum 

dye laser gain13 to the maximum reflectivity of our gratings. 

Figure 24 describes a more novel dye laser that was used for some 

collinear phasematching experiments. A 1 J, 30 ns ruby pump pulse 

provided a large gain for both the orthogonal linear polarizations 

selected by the intracavity Glan-Thompson prism.
14 

This prism makes 

possible the independent tuning and selection of a frequency for each 

polarization with two echelle gratings. To obtain good temporal overlap 

of and high power for the two frequency components, the net gains of 

the two arms of this dye laser were approximately equalized by 
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polarizing the ruby pump pulse either circularly or linearly at 45° to 

the transmitted polarization of the Glan-Thompson prism.
15 

The glass 

microscope intracavity beam splitter provided fine tuning of the relative 

gains of the two polarizations. Under our operating conditions, the 

output polarizations for each beam had no more than 10% of their energy 

in the undesired orthogonal linear polarization. 

An amplified Q-switched ruby laser pulse pumped the dye lasers. 

The oscillator consisted of a right angle prism Q-switch rotated at 

-1 
400 sec with a hysterisis-synchronous motor; a 4 inch long, 5/16 inch 

diameter ruby rod pumped by two water cooled linear flashlamps in a 

double ellipse cavity; and a glass resonant reflector with 25% 

fl " 16 re ectlvlty. The amplifier was a 4 inch long, 3/8 inch diameter 

ruby rod pumped by the same configuration of flashlamps as the oscillator 

rod. Both ruby rods were water cooled from a common tank to equalize 

their operating temperatures and to decrease the necessary delay between 

successive shots. The oscillator and the amplifier rods were pumped 

simultaneously to simplify the trigger-circuit electronics. The 

oscillator was Q-switched about 400 vs after the peak of the flash lamp 

pulse which was about 800 vs long. 

Since misaligning the amplifier rod increased the laser beam 

divergence and made its near field intensity asymmetric and non-uniform, 

the amplifier rod faces were aligned parallel to the oscillator resonant 

reflector and ruby rod faces; then, the oscillator and amplifier, which 

were less than four feet apart, operated as a coupled system. With 

new flashlamps, the oscillator and amplifier flashlamps discharged 
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550 J from a 360 Vfd capacitor bank and 750 J from a 395 Vfd capacitor 

bank, respectively. Amplifier flashlamp discharges of up to 1500 J 

were possible and up to 1100 J discharges were employed regularly. The 

oscillator flashlamp discharge energy was set to just below the 

threshold for multiple-pulses which was about 200 J above the threshold 

for lasing. Under these operating conditions, the ruby laser system 

generated about 1 J in a single 30 ns pulse. 

B. Far-infrared Optics and Detection 

To measure the far-infrared difference frequency signals generated 

17 
in our experiments, we used an InSb Put ley detector between 20 and 

95 cm-l and a Ge·.GalS h d' d b 95 d ISO -1 p otocon uct~ve etector etween an cm. 

The InSb detector was operated at 1.4°K in a 14.5 kG magnetic field. 

Both the low temperature and the magnetic field increased the 

responsivity and the signal-to-noise ratio of the detector-amplifier 

system by increasing the resistivity of the InSb sample. The magnetic 

field was also responsible for the high frequency end of this detector's 

19 response by tuning the InSb cyclotron resonance peak to approximately 

95 cm-l The rotary vacuum pump used to maintain the He temperature 

at 1.4°K was attached to the He dewar through a large reservoir to 

prevent modulation of the InSb detector's responsivity at the rotation 

speed of the pump. The Ge:Ga detector was operated at 4.2~K. 

In our forward collinear and non-collinear phasematching experiments, 

the far-infrared radiation was collected by a 1 cm diameter evacuated 

light pipe beginning approximately .5 cm from the non-linear crystal. 

The radiation propagated along a straight section of light pipe, 
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reflected off the flat brass mirror of a 90° bend, and then propagated 

down another straight section of light pipe to the detector; the Ge:Ga 

detector had a condensing cone at the bottom of the light pipe to focus 

the radiation onto the detector surface. Three .25 rum thick sheets of 

black polyethylene were used to filter out unwanted radiation including 

that of the dye lasers; one of these sheets also served as the outer-

most vacuum seal for the light pipe. No signal was observed when the 

non-linear crystal was removed and the dye lasers were fired directly 

into the light pipe. 

Both detector systems including their polyethylene filters were 

20 calibrated against the flat response of a Golay cell with a diamond 

window by conventional Fourier transform spectroscopy. A separate 

interferogram was taken with each of the 3 detector systems; the same 

mecury arc source, Michelson interferometer, and light pipe system were 

used for each interferogram. Each interferogram was digitally Fourier 

transformed and the frequency dependence of the responsivities of the 

Ge:Ga and lnSb detectors were determined as the point-by-point quotient 

of that detector's spectrum to the spectrum measured by the Golay cell. 

Differences in the product, An, of the area and collection solid angle 

of the detectors were assumed not to effect their relative frequency 

response. 

K. H. Yang2l determined the absolute responsivity of the Ge:Ga 

detector at 125 cm-l • He measured the response of both the Ge:Ga 

detector and the Golay cell to the mercury arc source through the 

Michelson interferometer at zero path difference;22 the ratio of the 
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-3 Ge:Ga to the Golay cell signal was 4.SxlO • From the responsivity 

IS -1 curve of the Ge:Ga detector, the amount of 125 cm radiation that 

would generate the same response was calculated to be 2/3 of the 

radiation incident upon this detector from the mercury arc lamp. By 

correcting for this and the 3 times larger An value of the Ge:Ga 

detector, we concluded that the ratio of the responsivity of the Ge:Ga 

-1 -3 detector at 125 cm to that of the Golay cell was 2.4xlO • Since 

(according to its manua1
20

) the responsivity of the Golay cell is 

S.3xl0
5 

V/Watt, the responsivity of the Ge:Ga detector is 2xl03 V/Watt. 

K. H. yang
2l 

also determined the noise equivalent power (NEP) of 

the Ge:Ga detector. He measured the electrical noise voltage of this 

detector at the 1.35 V bias voltage used in our experiments with a 

lock-in amplifier at several chopping frequencies at or above 2S0 Hz. 

Under his measuring conditions the contribution of the preamplifier of 

the lock-in amplifier to the observed noise signal was negligible. 

The 1.2xlO-7 v/IHZ noise thus measured gives a NEP of 6xlO-ll w/IHZ 

or 4.24 xlO-S Watts within the 500 kHz bandwidth of the detection system. 

The noise level of the operational amplifier with the detector replaced 

by its equivalent room-temperature resistor was .3 mV peak-to-peak 

compared to ~he 2 mV noise level of the combined detector-amplifier 

system. Thus, the detector-amplifier system was detector noise limited 

and the observed signal-to-noise ratio is relative to this detector NEP • 

. Based on the above NEP value, the observed signal-to-noise ratio 

of 66 (relative to the .7 mV rms noise) implies that about 4.9 mWof 

-1 
far-infrared power was generated at 125 cm in our FCPM experiment in 
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LiNb0
3

. To arrive at this number three corrections had to be made: 

First, the .75 mID black polyethylene filter used in the experiment, 

but not in the detector calibration, attenuates the 125 cm- l radiation 

by a factor of 8.65. Second, a factor of 3 attenuation due to the light 

pipe was experimentally measured. Finally, since the 30 ns far-infrared 

pulse generates an impulse response in the detector, the detector 

averages the pulse energy over its 2 ~s response time to record a 

signal corresponding to 30/2000 or 1/67 times the peak far-infrared 

power. 

C. Sum-Frequency Normalization 

Because of the low repetition rate of a ruby laser system, we 

resorted to sum-frequency normalization to reduce the shot-to-shot 

fluctuations in our measurements. In the collinear experiments, a 

fraction of the combined two-frequency laser beam was split off with a 

glass microscope slide and directed onto a polished (110) surface of 

a GaAs or lnAs crystal. Since both SFG and DFG are second order 

processes, the effects of power fluctuations and temporal overlap 

fluctuations are eliminated by this scheme. However, even with 

identical field distributions, the fluctuations in spatial overlap 

are not completely eliminated by this scheme as the·long wavelength 

of the difference-frequency signal causes the fields from neighboring 

hot-spots to interfere due to the large diffraction angle from each 

hot-spot as was discussed in chapter II. In the collinear experiments 

using two separate dye lasers, we located the sum and difference 

frequency crystals equal distances from the sum-frequency bearnrsplitter. 
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Since the latter followed all the beam combining and focusing optics 

in our system, each of the two fields at one crystal was proportional 

(as nearly as possible) to the corresponding field at the other crystal. 

Thus, for this group of experiments, spatial overlap fluctuations will 

be reduced for hot-spots that are large compared to the far-infrared 

wavelength. 

Discrimination of sum-frequency signals against second harmonic 

signals was achieved with Armstrong's scheme23 by making use of the 

43m crystal symmetry in which X .. k vanishes if i,J,k is not a permutation 
1J 

of 1,2,3. Linearly polarizing one laser parallel to the [001] direction 

eliminated its second harmonic signal. The second laser was polarized 

perpendicular to the [001] direction; thus, its second harmonic was 

plane-polarized along the [001] direction and was eliminated by a 

linear polarizer between the crystal and the photomultiplier. The [001] 

direction was made normal to the plane of incidence of the two laser 

beams to ensure that the above polarization directions were maintained 

inside as well as outside the crystal. 

Since we measured the frequency dependence of the far-infrared 

power, we needed a sum-frequency normalization that did not vary with 

the difference frequency, w, except through the product of the pump 

laser intensities. The novel use of SFG by reflection from a highly 

absorbing crystal eliminated one source of variation with w; the 

highly damped solution has no Maker fringes to make the sum-frequency 

signal a rapidly varying function of the input laser frequencies as the 

large phase mismatch of the reflection geometry is nearly constant 
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over the fractionally small tuning ranges used in far-infrared DFG 

experiments. Phase matching could also be used to eliminate the effect 

of Maker fringes, but it is impractical for our experiments because it 

requires a tedious adjustment of the orientation of the sum-frequency 

crystal each time the frequency of either dye laser is changed. Other 

experimenters have used sum-frequency generation by transmission through 

24 25 
a transparent crystal with a ground exit surface ' for this purpose; 

we could have used this technique with a crystal like KDP, but the 

collection of the output sum-frequency signal would have been compli-

cated by its poor colimation. Fortunately, the much larger sum-frequency 

susceptibilities of GaAs and lnAs compared to those of readily available 

transparent crystals compensates for the much shorter coherence length 

of the reflected wave geometry. -1 Because the 12,000 to 12,200 cm 

frequency range that our dye lasers were tuned through in these 

experiments is small compared to the separation between the dye laser 

-1 frequencies and band gap frequencies of GaAs (~10900 cm ) and lnAs 

(~2l30 cm-l ), the sum-frequency susceptibility of our normalization 

crystal was nearly independent of the difference frequency w; together 

with the lack of Maker fringes, this made the sum-frequency signal a 

good normalization against the frequency dependence of the dye laser 

power. 
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IV. Forward Collinear Phase-matching Experiments 

A. Experimental Measurements and Data Anal~sis for LiNb03 

Since the experimental data available in the literature on the 

-1 o-ray absorption coefficient of LiNb0 3 between 70 and 1000 cm is 

26 
based on a Kramers-Kronig analysis of far-infrared reflectivity data 

rather than a direct measurement and since sample-to-sample differences 

are possible due to impurities or slightly non-stoichiometric composi-

tion, we determined it at each frequency by measuring the far-infrared 

power as a function of wavevector ,mismatch. DeMartini has used this 

24 27 technique, known as momentum spectroscopy, , to measure the far-

infrared absorption coefficient and the difference-frequency suscepti-

b Olo f G P 24,25 
~ ~ty 0 a. However, we have used the birefringence of LiNb0 3 

to vary the momentum or phase mismatch while De Martini used the 

noncollinearity of the pump beams and the various plane wave components 

of his far-infrared radiation in the optically isotropic GaP crystal. 

We used seven LiNb03 slabs cut from a single Crystal Technology, 

Inc. boule with angles between the c-axis and the slab normal of 15°, 

25 0, 35 0, 45 0, 55 0, 65 0, and 90 ° (the a-axis. c-axis, and slab normal 

were coplanar). 
-1 

This permitted the frequency range 20 to 127 em to 

be spanned without the complications of angles of incidence over 20°. 

The surfaces were ground flat on a series of SiC abrasive papers and 

optically polished with 1 ~ diamond abrasive. For our experimental 

measurements these L'iNb0
3 

slabs were mounted on the axis of a rotating 

platform with their c-axes, their slab normals, and the laser beam 
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direction all perpendicular to the axis of rotation. At each frequency, 

-1 w, above 40 cm we measured the power as a function of the orientation 

of the crystal, p(w,e), over a wide enough range of e to determine its 

angular width and thus its absorption coefficient, a(w). 

To obtain the far-infrared absorption coefficient a(w) from a set 

of experimental measurements, {(P.,e./i=1,2, .•• ,m}, we used a nonlinear 
1. 1. 

least-squares fit. To make the computation tractable on a small 

computer, we neglected the E-dependence of the term of Eq. (49b) that is 

enclosed in braces and eliminated the terms that contain exp(-a~/2); 

since a~ » 2 at the frequencies at which we determined a, the latter 

approximation is valid in our experiments. We also replaced 6k(w,e) 

with 2n[6 + 6(e)] where 2n6(e) is the phase mismatch at the difference 
o 

frequency wand at the nominal laser frequency, e is.the angle between 

the laser beam axis and the c-axis, and 6
0 

accounts for the experimental 

uncertainties in the values of the nominal laser frequency and the 

angles e .• With these assumptions p(w,e) from Eq. (49) is given by 
1. 

-+ 
P(w,e,a) 

with I = a 2/l6n
2 

and ~ = (A,6
0

,1). We minimized the function 

2 m 2 
X (A,60 ,1) = \. 1 [P.-p(w,e.)] /(m-3) with respect to A, 6 , and I by 

L1.= 1. 1. 0 

the minimization process discussed in Appendix E. 

As we can see from Eqs. (49) or (54), determination of a from our 

data requires that the effective bandwidth, 20, of our dye lasers be 

measured. From Eq. (54) we can also see that, for a long crystal 

(54) 
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(at >~ 2), 0 is determined by measuring P(w,8) at a frequency where a 

(and hence I) 1s known. For any value of a, the minimum value of 0 

that can be determined from the angular width of P(w,8) is proportional 

to a/4nB sinceEq. (54) is nearly independent of 0 when both tan-l 

functions can be approximated by their arguments. For a crystal less 

than two absorption lengths thick, the finite thickness makes the width 

of P(w,8) even less sensitive to 0 as can be seen from Fig. 25. 

To measure the effective bandwidth or our dye lasers, we used a 

1.61 rom thick LiNb0
3 

sample that was cut from a Hansen Microwave Lab. 

boule with its slab normal at 16° to the c-axis. At a far-infrared 

-1 
frequency of 21 cm ,effective dye laser bandwidths smaller than about 

.8 cm-l could not be measured even with a crystal many absorption 

lengths thick. However, since our sample was less than two absorption 

-1 28 
lengths thick (a = 9.5 cm), the smallest measurable bandwidth was 

-1 
about 1.5 cm as can be seen from Fig. 25; this sensitivity to relatively 

narrow bandwidths is due primarily to the large difference (4.4) between 

the optical and far-infrared o-ray refractive indices. The results of 

our experimental measurement are shown in Fig. 26; they correspond to a 

3 cm-l bandwidth for our far-infrared radiation. 

B. Results of Forward Collinear Phase-matching Experiments 

The results of our measurements of the o-ray absorption coefficient, 

a o ' in LiNb03 are summarized in Fig. 27. The solid curve is a composite 

of Bosomworth's28 far-infrared transmission measurements for W ~ 70 cm-l 

and Barker and Laudon's26 Kramers-Kroenig analysis of their far-infrared 

reflectivity data for w > 70 cm-l Our results agree satisfactorily 
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with those of Barker and Loudon between 80 and 110 Crntl Between 40 and 

-1 
70 cm our values of a are significantly larger than the values of 

o 

Bosomworth. The difference is due to a weak, broad absorption peak 

d 65 -1 h b d h b . 29-centere near cm t at may e ue to two p onon a sorpt1on. 

-1 
Bosomworth's data also suggests the presense of a peak near 65 em , 

but his peak is much weaker than ours; perhaps this is just sample 

variation between his slightly greenish LiNb0
3 

crystal and our colorless 

sample. 

Figure 28 contains a comparison of our FCPM experimental results 

for LiNb03 (the circles) and the plane wave theory of Eq. (49) with the 

-1 
absolute power at 110 em treated as an adjustable parameter. Above 

-1 30 
40 cm this theory reproduces our experimental results satisfactorily 

given the multi-mode nature of our dye laser beams. However, the 

-1 
theoretical absolute power at 125 em is 22.5 mW, a factor of 4.6 larger 

than our measured power. 
-1 

Below 40 em the observed power falls off 

far more rapidly with decreasing frequency than is predicted by Eq. (49). 

The calculations shown in Figs. 29a and 29b strongly suggest that 

-1 
this reduction in the DFG efficiency below 40 em is due to the multi-

mode nature of our laser beams and the inherent misalignment of their 

hot-spots. These calculations used the more complete theory of Chapter 

II for single mode dye laser beams; for Fig. 29a the two dye laser beams 

were coaxial (a=O) , but for Fig. 29b their axes were 0.5 rom apart. The 

other parameters roughly approximate our laser beams and our LiNb0
3 

crystal: 300 kW in each dye laser beam, Al = 833 nm, w = .08 rom, 

z = 50 cm (2 mr divergence half-angle at half intensity and 3.3 rom 
o 
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2 (2) -6 
lie diameter at the crystal), £ = .65 mm, X, = 3.l8xlO .sin8M where 

8M is the phase-matching angle, nO = 2.257, no-nem = .08192, a cubic 

spline fit to the absorption coefficients in Table II, a 30° detector 

collection half-angle, and an axially phase-matched DFG interaction. 

-1 
The far-infrared radiation generated below 20 cm is reduced by more 

than a factor of 10 by the 0.5 mm separation of the laser beam axes. 

At a sufficient distance, z , from the focal plane, optical pump 
o 

beams separated by many focal plane radii diffract into each other and 

form a Gaussian nonlinear polarization centered at the midpoint between 

the two beam axes. Since geometric optics adequately describes the pump 

laser beams at such a distance from the focal plane, at the midpoint 

between the axes the Pointing vectors of the two laser beams, which give 

the direction of the local wavevectors, lie in the plane of the laser 

beam axes at equal, but opposite, angles ±a/2z to them. Thus, inside the 
o 

crystal the difference-frequency radiation is generated preferentially 

-1 
about a direction at an angle sin (k

l
a/k

3
zo) to the laser beam axes where 

kl and k3 are the optical and far-infrared wavevectors in the crystal, 

respectively. For the calculation of Fig. 29b this angle passes through 

-1 the total reflection angle at 24 cm ; thus, only above the far-infrared 

frequency w = ckla/zo ' is the far-infrared power improved significantly 

by placing the crystal for enough away from the focal plane that the 

hot-spots diffract into one another (as in our experiment). 

We have also extracted a rough measurement of the frequency dependence 

of Ix~~) 12 from our data. The results are shown in Fig. 30 together with 

I '1 ' 1 h ' 'II 1 1 ' 31,32 f 1 (2) 12 i a mu tlP e Slmp e- armonlC-OSCl at or ca cu atlon 0 X24 n 
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which we used the oscillator strengths, TO phonon frequencies, and line­

widths of Barker and Loudon26 and the Raman cross sections of Kaminow 

33 and Johnston. The agreement is satisfactory. Furthermore, the 

monotonically increasing \ X~~) \2 without a broad dip between 80 and 

-1 -1 
90 cm indicates that the 152 cm E-symmetry mode coptribution to the 

-1 (2) 
low frequency (say 1 to 10 cm ) X

24 
has the same sign as the sum of 

the contributions from the electronic and the remaining E-symmetry 

vibrational modes. 

Table I summarizes the far-infrared power generated in 1 mm thick 

samples of ZnO, ZnS, CdS and CdSe at their maximum phase-matchable 

frequencies (all samples had their c-axes parallel to the sample 

surfaces). The ZnO and CdS samples were pre-cut and rough-ground by the 

manufacturers; the two CdSe slabs were cleaved from bulk samples and 

rough-ground on successively finer grades of SiC paper. The final 

optical polishing of all these relatively soft samples was accomplished 

by hand lapping in a water slurry of 1 ~ A1203 abrasive. The ZnS 

sample was a long 1 rum wide strip that was optically polished by the 

manufacturer; this sample was not wide enough to accept all of the dye 

laser beam output, so the number reported in Table I has been corrected 

to estimate the output attainable with a crystal wider than the laser 

beams. 
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V. Bachlard Collinear Phase-matching Experiments in LHIb0
3 

A. ~'lodifications of rCP}! Experimental Apparatus for BCP}! 

I\Te have observed the phasematched difference frequency generation 

of a reflected far-infrared Have in Lit-iD0
3

. In spite of the 54% far­

-1 
infrared o-ray reflectivity, above 40 cm the laser input surface 

cannot be used as a mirror to reflect the far-infrared wave into a 

detec tor behind the crystal because the absorption coefficient is too 

large. To collect the radiation from the laser input side of the 

crystal, ,,'e added a short piece of brass light pipe and a right angle 

bend to the far-infrared collection optics used for the fon~ard 

collinear phasematching experiments. The dye laser beams passed 

through a 1/8 in diameter hole milled through the flat brass reflector 

of the right angle bend; the axis of the hole was parallel to the laser 

beams and at a 45° angle to the normal of the brass plate. This 

collection technique added about 5 cm of air to the far-infrared 

propagation path. 

B. Results of BCP~'l Experiment 

As is shmm in Fig. 28, our BCP}[ data do not agree y,'ith the simple 

-1 
theory of Eq. (49) since the predicted dip near 65 cm in Fig. 28 ",as 

not observed in our e;.:-periment. liTe believe that this difference is 

due to the frequency dependent losses through the 1/8 in diameter hole 

in the brass light pipe. As the far-infrared frequency increases, the 

far-infrared beam becomes more collimated around its nominal reflected 

direc tion; and ",hen phase matching occ urs near normal incidence, more 

far-infrared energy can escape through the hole at high difference 
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frequencies that at low ones. The added 5 cm of air in the propagation 

path will also modify the frequency dependence of the far-infrared 

signal due to water vapor absorption. The net result is extremely 

difficult to calculate and we will not attempt to do so. 

VI. Noncollinear Phase-matching Experiments in LiNb03 

A. Experimental Methods 

The experimental set-up is shown in Fig. 31. Two separate dye 

lasers were used; they were synchronized by pumping them with a single 

ruby laser pulse. The plane of incidence of the dye lasers on the 

LiNb03 sample was horizontal for experimental convenience. To maximize 

the far-infrared radiation generated, the non-linear polarization 

vector and far-infrared wavevector were made orthogonal by using 

vertically polarized dye lasers. The angle between the two dye laser 

beams was adjusted by rotating the right angle prism PMl and the 

intersection of the two beams was positioned at the input surface of the 

LiNb0
3 

crystal by moving this prism on a translation stage. The two 

dye laser beams were separately focused a few cm behind the LiNb03 

crystal. Sum frequency normalization was accomplished as shown in 

Fig. 31. Since the dye laser field configurations at the sum and 

difference frequency crystals were not similar, the sum frequency 

signal compensates for the power and temporal overlap fluctuations of 

the dye lasers but cannot be guaranteed to compensate for spatial 

overlap fluctuations even at high difference frequencies. 

Figure 32 is a top view of the single 4 rom cube LiNb03 crystal 

used in our NCPM experiments. (LiNb03 was chosen for this experiment 
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because of its large electro-optic coefficient and its availability.) 

In the shaded region, the nearly parallel dye laser beams create a 

difference-frequency polarization that radiates along the direction of 

the difference of the two optical wavevectors. To permit the far-

infrared radiation to leave the crystal with an acceptible reflection 

loss, we cut off the corner of our LiNb03 cube at an angle corresponding 

~o ~O = 68° so that the far-infrared radiation would be within 4° of 

normal incidence inside the crystal over the frequency range 1 to 

-1 -1 
150 cm ; at 160 cm the angle of incidence was approximately 5°. 

We chose our experimental geometry with all three electric fields 

polarized along the c-axis of our LiNb03 sample for three reasons: 

First, X33 and X24 are an order of magnitude larger than the other 

non-zero difference-frequency susceptibility tensor elements. Second, 

X24 yields a far-infrared o-ray while X33 yields an e-ray. The latter 

has a smaller absorption coefficient than the former; thus, the X33 

configuration is a more efficient far-infrared source. Finally, as can 

be seen from Eq. (52) when n
l 

= n
2 

and n3 is approximately constant, 

as in the X33 configuration, the angle ~ between the far-infrared and 

optical wavevectors is nearly independent of w
3

, and a single sample of 

LiNb03 with its corner cut off at a nominal value of ~o can be used at 

all frequencies of interest. If ~ varied significantly with w3, 

mUltipie samples would have to be used to avoid large losses due to 

total internal reflection. 
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B. Results of Nonco11inear Phase-matching Experiments 

To analyze our results, we have made use of the simple approximation 

of a plane wave far-infrared field that propagates perpendicular to the 

cut off surface of the cube. Since the 4 mrad divergence of the pump 

-1 laser beams creates a 140 cm range of ~k values, we averaged the plane 

wave power over this range using a uniform weight at each ~k. We actually 

used the plane wave formula for collinear phase matching with an effective 

length, ~eff' that is roughly the shortest distance along the far-infrared 

beam between points at which the phases of the nonlinear polarization 

are uncorre1ated. A value of ~eff = .05 cm gave a good fit to our data 

-1 -1 at 40 and 55 cm ; at and above 75 cm the calculated values are 

independent of ~eff due to the large absorption coefficient. This 

simple analysis fits our data amazingly well as can be seen in Fig. 28. 

The justification for treating the pumped region as a thin slab is that 

the coherence length of ~.05 cm is much shorter than our beam diameter 

of ~.3 cm so the exact shape of the non-linear polarization region be-

comes unimportant as the slab like first few coherence lengths dominate. 

For the case of coherent pump lasers, a more general plane-wave analysis 

that considers the shape of the pumped region has been given by Lax 

7 and Aggarwal in their work using a non-collinear phase matching geometry. 

VII. Discussion of Results and Conclusions 

A. Comparison with Raman Scattering Results 

Our experimentally derived ratios of the nonlinear difference 

frequency generation susceptibilities of LiNb03 , ZnO, and CdS at their 
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respective maximum phase matching frequencies are within 20% of 

independently computed values. The ratios obtained from our far-infrared 

" -3 -2 power measurements are d24(L1Nb03):d15(ZnO):d15(CdS) = 1: 9.lxlO :5.2xlO . 

B d d 1 f "1 f " "d" 34-36 f ase on reporte va ues 0 optlca re ractlve ln lces, ar-

"f d fl """ 26,37,38 R " " 33,39,40 ln rare re ectlvltles, aman scatterlng cross sectlons 

of all three crystals and based on the clamped linear electro-optic 

coefficient r
42 

of LiNb0 3 ,4l the computed32 ratios are 1: 1.0xlO-2 : 

-2 6.3xlO • Such close agreement is remarkable for far-infrared difference 

frequency generation experiments. 

Figure 33 displays the dispersion of the ionic, r , and electronic, 
q 

r e , contributions to r 5l for CdS at 80 0 K based on the Raman scattering 

data of Ralston et al. 40 and on Loudon's theory.42 Because the Raman 

scattering cross sections are proportional to the square of matrix 

elements while rand r are linear functions of the same matrix elements, 
e ' q 

there are four simultaneous solutions for rand r in-terms-of the LO 
e q 

and TO phonon Raman scattering cross sections; but one pair of these 

solutions differs from the other pair by only a sign. The magnitude 

of r is determined by the TO phonon Raman cross section; however, there 
q 

are still two possible magnitudes of r which are shown in Fig. 33 for 
e 

CdS. Our far-infrared measurements require that r is given by the 
e 

upper curve so that, for example, r 5l = re + rq = 8.7xlO-8 esu at 

1.064~. For ZnO at 5l45A, r is 2.04XlO-8 esu and r is .546XlO-8 
q e 

(or 3.35 xlO-8) esu based on the Raman data of Arguello et al. 39 and the 

f " "d" 'f B d 35 re ractlve ln lces 0 on. At 6471A, r 
q 

-8 is 1.69xlO esu and r 
e 

is 

-8 -8 43 
.97xlO (or 2.27xlO ) esu based on the Raman data of Callender et ale 
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Our far-infrared power measurements imply that the smaller value of r 
e 

-8 is appropriate so that r 42 = 2.59xlO esu at 5l45A. Fortunately, for 

this choice of r the linear combination of rand r that determines 
e e q 

the DFG susceptibility changes by only 2% between 5145 and 647lA; thus, 

we can use this shorter wavelength data to estimate the DFG susceptibility 

at our dye laser wavelengths (8100 to 8400A). 

B. Relative Merits of Forward-, Backward-, and 
Non-Collinear Phase Matching 

Since BCPM occurs at a larger angle ethan FCPM, DFG of a far-

infrared o-ray in crystals of the point groups 4, 4, 4mm, 42m, 3m 

(when sin3¢ = 0), and 6mm has a larger effective nonlinear suscepti-

bility, deff , for BCPM than for FCPM,as can be seen in Table III. For 

o-ray generation in 32, 6, and 6m2 crystals and e-ray generation in 

3m, 6, and 6m2 crystals deff is smaller for BCPM than for FCPM. For 

the other combinations of the optically uniaxial point groups and the 

generated polarization in Table III, the size of deff for BCPM relative 

to deff for FCPM at the same difference frequency depends on the 

nonlinear susceptibility tensor elements of the particular crystal and 

the angle ¢ at which it was cut, or it depends on the difference 

frequency through the factor cose sine (e.g., e-ray generation in 4, 4, 

422, 42m, 6, and 622 crystals). However, collecting the far-infrared 

radiation is more difficult in a BCPM than in a FCPM configuration; 

thus, even when, it has a larger deff , BCPM will probably be less useful 

than FCPM in any far-infrared source based on difference frequency 

generation. 
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Noncollinear phase matching offers three practical advantages over 

collinear phase matching. First, it adds cubic crystals in point groups 

43m and 32 to the list of phase matchable materials. Second, a single 

crystal sample can be used to cover a frequency range that would require 

several separately cut samples for collinear phase matching. And third, 

in some crystals, such as LiNb0
3

, it provides a more efficient far­

infrar~d source by eliminating the angular dependence of deff , using a 

larger nonlinear susceptibility tensor element than collinear phase 

matching, or using the far-infrared polarization with the smaller 

absorption coefficient. Nevertheless, in the final analysis each 

crystal must be evaluated independently to determine the best phase 

matching configuration for it. 

c. Difference Frequency Generation as a Far-infrared Source 

We have also verified that the dual-frequency dye laser system 

shown in Fig. 24 can be operated with a flashlamp-pumped Rhodamine 

6G dye laser, although the laser output was insufficient to generate 

detectable far-infrared radiation in the difference frequency experi­

ment. However, a flashlamp-pumped dye laser with 100 kW peak power 

(50 kW at each frequency) and a 1 ~sec pulsewidth would generate the 

same far-infrared signal for each pulse as our Ruby laser-pumped system 

with its 600 kW peak power and 30 nsec pulsewidth. Because flashlamp­

pumped dye lasers with 100 kW peak power can be operated at repetition 

rates above 1 Hz and beam expanding telescopes can be used to narrow 

the linewidth, difference frequency generation using the dual-frequency 

dye laser system of Fig. 24 is an attractive source for far-infrared 
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spectroscopy. With the same conversion efficiency as in our experiment, 

the system would generate a few nanoWatts of time-average far-infrared 

power at a 1 Hz repetition rate. 

There are at least two opportunities for significant research in 

developing difference frequency generation as a far-infrared source: 

(1) a search for new and better nonlinear crystals with larger linear 

electro-optic coefficients, lower far-infrared absorption coefficients, 

-1 
and high damage thresholds; (2) an experiment with a less than 1 em 

1inewidth TEM mode laser to verify the theory of Chapter II and 
00 

establish the maximum attainable optical to far-infrared conversion 

efficiency as a function of input power for each crystal. 
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Table I. Summary of the mixing experiments on five different crystals. 

Crystals Tunable range Power (Frequency observed) 

LiNb03 
20 to -1 127 em (FCPM) See Fig. 28 

20 95 em -1 (BCPM) >::: twice that of FCPM to 

40 to 160 -1 (NCPM) See Fig. 28 em 

* -1 -1 ZnO ~ 190 em (FCPM) 14 mW (190 em ) 
,,> -1 -1 CdS ~ 180 em (FCPM) 3 mW (180 em ) 

·l~ -1 -1 ZnS ~ 91 em (FCPM) 0.74 mW (91 em ) 

* -1 < 0.15 mWt (150 -1 CdSe ~ 150 em (FCPM) em ) 

* Crystal thickness 1 rom 
t Less than the detector noise level 
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Table II. Absorption Coefficients of LiNb03 (used for calculations in 
Chapter IV) 

Frequency o-ray Source e-ray Source 

0 0 0 

5 .50 a .31 a 

10 2.1 a 1.25 a 

15 5.54 a 2.8 a 

20 8.68 a 5.0 a 

25 12.5 a 7.5 a 

30 17.1 11. a 

35 49.6 13. a 

40 llO. b 18. a 

45 150. 23. a 

50 200. 30. a 

55 230. b 39. a 

60 300. b 50. a 

65 425. b 70. a 

70 460. 100. a 

75 480. b 130. a 

80 500. 175. a 

85 520. 230. a 

90 530. 260. 

95 545. b 288. 

100 610. 319. 

. 105 720. 352 . 

llO 845. b 386. 

120 610. 

125 1500. c 

140 1047. c 

160 1510. c 

a) D. R. Bosomworth, ref. 28 
b) our nonlinear measurements 
c) Barker and Loudon, ref. 26 
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Table III. Angular Dependencea of Second-Order Nonlinear 
Susceptibilities for Type II Collinear Phase Matching in 
Uniaxial Crystals. 

(a) Ordinary-Ray Generation 

Symmetry 
grou 

4 

4 

422 

4nnn 

42m 

3 

32 

3m 

6 

6mm 

622 

6 

6m2 

Eff ° Ii °bolo b,c ectlve non near susceptl 1 lty 

dlSsine 

(d14sin2~ - dlScos2¢) sine 

o 

dlSsine 

d14sin2¢ sine 

-(dllcos3~ + d22sin3~) cose + d24sine 

-d
ll 

cos3~ cose 

-d22sin3~ cose + d24sine 

d24sine 

d
24

sine 

o 

-(dllcos3~ + d22sin3~) cose 

-d22sin3~ cose 
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Table III. Continued. 

(b) Extraordinary-Ray Generation 

Symmetry 
group 

4 

4 

422 

4mm 

42m 

3 

32 

3m 

6 

6mm 

622 

6m2 

Effective nonlinear susceptibilityb,c 

d14sine cose 

[(d14+d36 )cos2¢ + (d15+d3l)sin2¢] sine cose 

d14sine cose 

o 

2 (dllsin3¢ - d22cos3¢) cos (e) + d14sine cose 

dllsin3¢ cos2(e) + d
14

sine cose 

2 
-d22cos3¢ cos (e) 

d14sine cose 

o 

d
14

sine cose 

2 
(dllsin3¢ - d22cos3¢) cos (e) 

2 -d22 cos3¢ cos (e) 

a) All walk-off,angles have been neglected. 
b) e is the angle between the normal, n, and the axis of symmetry, 3. 
c) ¢ is the angle between 2 and ;x3. 
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APPENDIX A 

The extraordinary ray assumed in Sec. IIA of Chapter II- actually has 

the form 

(AI) 

where 

2 2 2 
2(z-zO 0 ) [n2/{k2w2n 2] 

~ ,,-y em, 

unit vector parallel to the electric field 

of the e-ray for a normally incident laser beam 

and the remaining parameters are a$ defined for Eq. (1). This expression 

with zO.2x = ZO,2y is essentially the same as the one given in 

Appendix I of Ref. 31, but there the factors in the square brackets 

in the definition of 1;2x and 1;2y were approximated by 1. 

The nonlinear polarization p(2)(~,w) is obtained from Eq. (2) 

-+ -+ 
using the expressions of El in Eq. (1) and E2 in Eq. (AI). The 

-+(2) -+ -+(2) -+ 
transverse Fourier transform of P (r,w) gives P (kT,z). To obtain 
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-+(2) -+ 
the expression of P (k

T
, z) in Eq. (3), we made the fo11o\ving 

simplifying assumptions. First, we assumed wI w
2 

= \v. Second, we 

assumed a common focus for the two beams, zO,l z = 0,2x z = 0,2y zO° 

Finally, we assumed ;1 - S2x ~ Sl - S2y = 0. This last assumption is 

reasonable as long as 31 Sl - S2)' 31s -1 S2yl « rr/2. In our 

calculations, the largest value of 31s -1 S2) or 31;1 - ;2) is 1 for 

the case of w = 10 -1 
cm , w 25 ~m and ~ = -0.02. For all the other 
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APPENDIX B 

To derive Eq. (6), we first Fourier transform Eq. (4) and obtain 

-+-+ 2:r 2B- 2 -+-+ 
[k k - k 1 + w s/ c ] • E (k) 

The particular solution of Eq. (Bl) can be written in the form 

From the inverse transform on k , we then have 
z 

1 
2n dk 

z 

A straightforward, but tedious, application of the residue theorem 

finally leads to Eq. (6). 

(Bl) 

(B2) 

We also notice that Eqs. (6) and (7) are not the results of slowly 

varying envelope approximation. This is in fact generally true for 

the solution of optical mixing in the parametric approximation. For 

example, consider the simple case where the nonlinear process can be 

described by the wave equation 

2 2 NL 
4n(w /c)P (z) 

NL where P (z) ~ 0 only if 0 ~ z ~ £. Then, in the region 0 ~ z ~ £, 

the solution of the equation is 

(B3) 
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ik (Z-Z ') 
pNL(z')e 0 dz' + 

. -.~ 
l 

L
J(, NL -iko (z-z ') J 

p (z') e dz' 
o 

No slowly varying envelope approximation was made in the derivation. 

In fact, one can easily show that,with the complete expression of E(z) 

in Eq. (B4), the terms a2IE(z) IJaz
2 

and 2k aIE(z) IJaz are generally 
o 

comparable in magnitude. The usual slowly varying envelope approxima-

tion is actually equivalent to neglecting waves propagating in the 

opposite direction. 

(B4) 
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APPENDIX C 

computation Methods for Chapter II 

The results presented in section III of chapter II were obtained 

by numerically integrating Eq. (32) after substituting for IET+12 the 

{ 
-(+ +7 + -(+ -(+} 1 p 12 quantity (T+F+) (T+F+) 1,1 Eo+ where the term in braces is the 

upper left matrix element of Eq. (30) evaluated for the special case 

~ = ~ and E~+ is obtained from Eq. (22) for the special case 0 1 = y, 
A A +7(2) AA A (2) 
e 2 = x, X :yx = YXeff : 

where 

and 

2 . 2 
TIUll 

k c
2 

oz 

fR- 2 
Q(y,p,R-) = exp(yp2) J~ dz exp[-y(p+z) ] 

o 

(C1) 

(C2) 
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1 ~ 1/2 1/2 
Q(Y,P,R,) =2 l'n/y [Why p} - exp{-yR,(2p+R,)} W{iy (p+R,)} (C3) 

with W(s) = __ 2 __ exp(_~2) foo 2 exp(-u )du. [See W. Gautschi, SIAM J. 
lIT -is 

Numer. Anal. 2, 187 (1970).] 

Except for the factor IQ(Y,p,R,) 1
2

, all of the quantities in the 

integrand are simple to evaluate numerically. The function Q(y,p,R,), 

however, has some mathematical properties that must be circumvented 

to successfully integrate Eq. (32) on a digital computer. The first 

of these properties is that although W(Z) is bounded and analytic in 

the upper half of the complex plane, it diverges in the lower half-

plane as Im(Z) + _00. Such Z values can occur when Q(Y,P,R,) is 

evaluated for laser beams that are focused behind the exit face of 

the nonlinear slab; fortunately, for such problems Q(Y,P,R,) can be 

re-expressed as 

Q(Y,p,R,) * * * exp{yR,(2p+R,)} [Q{y ,-(p +R,),R,}] • 

In this form the signs of the imaginary parts of the arguments of W(Z) 

are changed; by choosing this alternate form when Re(~/~) and 

1/2 
Re[y . (p+R,)] are both negative, the magnitude of the largest negative 

imaginary part of an argument of W(Z) is reduced and often both of 

the W(Z) arguments are moved into the upper half-plane. The derivation 

of the above symmetry relation is straight-forward: 
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Q(Y,p,.Q,) 2 J.Q, 2 exp(.Q,p ) exp[-y(p+.Q,) ]dz 
o 

2 J.Q, 2 exp[-y(2p+.Q,)+y(p+.Q,)] exp{-y[z'-(p+.Q,)] }dz' 
o 

exp[-y~(2p+~)] Q[Y,-(P+~),~] 

~~ * * exp[-y~(2p+~)] {Q[y ,-(p +~),~]} 

There are two other parameter regions in which Q(Y,P,~) is 

diffic'ul t to evaluate on a digital computer. The first of these is 

I 
1/2 I 1/2 I the region in which both y p and I y '(p+n are very small. 

Because W(O) = 1 and Q(Y,P,~) involves the difference between two 

values of W(Z), Eq. (C.3) cannot be used to evaluate Q(Y,P,~) in this 

region on a digital computer with finite precision (14 significant 

digits on a CDC 7600). However, in the region defined by 

IRe(yl/2p) 1+ Irm(yl/2p) I + IRe[yl/2(p+~)] I + Irm[yl/2(p+~)]1 < .001 

the series expansion Q(Y,P,~) ~ ~[l - 1 y.Q,(~+3p)] is accurate to Detter 

than 1 part in 106 
(This region is simply one of many choices which 

keep the loss of significance [round-off error] and the inevitable 

difference between the series and the results of Eq. (e.3) [truncation 

error] at the boundary of the region to less than 10-6IQ(Y,p,~) I.) 

The final parameter region in which Q,(Y,P,~) is difficult to evaluate 

is the region where yl/2~ « 1 but yl/2lpl is large. Again round-off 

error is the source of the problem and a series expansion is the 

solution. When y~~ «1, the exponential function in the integrand 

of Eq. (C. 2) can be written exp [-y(p+z) 2] ~ exp( _yp2) exp (-2ypz) (1_yz2 + ... ) • 
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1 
When y 2 £ < .001, we evaluate Q(y,p,£) via the first term a the 

asymptotic expansion that is obtained from a term-by-term integration 

of Eq. (C.2) with exp[-y(p+z)2] replaced by this series expansion: 

Q(y,p,2) - exp(-2yp£) - 1 
-2yp 

The double integral in Eq. (32) was re-expressed as an iterated 

integral with constant limits via the change of variables for the 
2 2 -1/2 

inner (k ) integral: v = k [~/c) -k] • Both the inner and outer 
y y x 

integrals were evaluated with an adaptive three point Gaussian 

quadrature algorithm. For each k , the inner(v) integral was 
x 

adaptively refined until at least three levels of subdivision occurred 

and two successive estimates of its value differed by less than 

which was estimated with a trapezoidal rule on 100 intervals. The 

outer k integral was adaptively refined until two successive estimates 
x 

differed by less than .1% of its initial estimate. The existance of 

a phase matched or Cerenkov cone whose angular width was in some 

cases much smaller than its operning angle at large far-infrared 

frequencies (like 100 cm-l for a 1 cm long crystal) made this careful 

check necessary to be sure the peak of this hollow cone was sampled. 

A listing" of the computer program follows: 
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PROGkA'1 INfl<AI IRj,'"f-OUJ ,GFILE,TAPE2=IKIN, JAPE3=FDUT,TAPE6=GFJLE. INFR 20 
1 TAPElOO) INFR 30 

CCMPLEX H3,H4,H5,Hb,hl1.~ML~E,H5S (~FK 40 
CUMPLEX EU,EE,FCCZ,[GCX,ElS,EOEEl,EEl,EECl.EECX.AN2.~AC INFR 50 
LUGICAL P lNFR 60 
CUMMO~ ~OKKIlll,XCC.YuC.ZOO.wIDE,XTLL.DFREW,fR'L,Pl,P2,DKO,WOPO. INFR 70 

1 )\XI,PNLS(31,XNUlI2),XNfLl21,XUN0139,41,NT,XDNEU9,41,NTl, (NFl{ ao 
2 CuT,XO,YO,XLCC,~~.XLN,OFRQ.DK,~CP,XCN,XCA,XEDN,XEDA, INFR 90 
3 CLUW,DhIGH,NK,~TEP.ANAME,lSTAR.Hl.H2,H2P,H2PP,H2PPP, JNFR 100 
4 H3,H4,H~,H~P,H6,H7.hb,H9.HI0,Hll,blL,h13,HI4,XORS,XORC" lNFR 110 
5 AKXC INFr\ 120 
CuMM~N IJCI tKV,AK~I.FkC~,El,ECCZ,ELLX,ELS,ECEEl,EEl.EECZ,EECX, I~FR 130 

1 AN£: , .... AL INFR 140 
CCMMC~ IClNSTI C,PI,~~U~E,CCMPRI131 I~FK L50 
l-U,"Ii1uc< IARJAt;21 L62,U62,Ek,M,"I,NN,Al,t31,EP,MP,N,r.T INFR 160 
CUMMUN IPASSI ~IEL03,Ab2G,PC"ERl.AKX.AKY.CIRK.P INFR 170 
COM"·1Q;~ l;;kPHI HORIZ(1000),VtftTlI0001.VERTlIICOOI Il\F" 180 
CJIMLI\SIJN PH3(2),PM41£),Pb5121.Ph6121,PHllI2),Ph5S12l,PS~lONE(2l INFR 190 
E)cJIVALlNCf IPh.3.H3l,(PH4,H,.),IPh~.H5),(P~ib.H61.'flHll,Hl1I, INFR 200 

1 , P ri5 S, H? S I ,! P S f' CM • S Me f\ f:) 1 NF" 2 1 0 
OAIA C.Pl,CCMPH 1£.9~7~2~Etl0.3.1415927,5HPARAM,5hNTtiLU,5HNTBLE, INFR 220 

1 ~HPHASE, 4hFREQ,jHhID1H,~HABSH~,5HANGUL,5hTHICK,~HXDSPL,~HYOSPL.INF~ 230 
2 4hfLCC,3hENOI INFR 240 

DATA PSMG~E/u.,1.1 INF~ 250 
DATA I::;" lOBI INFR 26u 
DATA FIELD3 10.01 INFK 270 
U LI~ Et, S 1 L NIB E Tid 2 ) I NF R 2 B 0 
Hl,H2, ••• CLf\TAII\ flREClMPLTfC VALUES TC BE uSED dY RuUTI~E FIELD INF~ 290 

TriE~~ VALUES DU f\OT DEPEND eN AKX LR AKY AND THUS INFR 300 
REMAIN fixED DURING THE INTEGRATION TU FINO THE INFR 310 
PU"Ek GENERATED INFK 320 

DIRK IS 5TUkAGl FUR TrE DlkFCTIGN CU~II\E CF K f-eR THE JRA~SMlrTEU INFR 330 
RAY GN THE FAR SIDE OF THE CRnTAL INFR 340 

CALL DEvIC[(6rCREATf,4Hf-CUT,5CJOC) I~F" 350 
CALL OEVICE(6HCKEAIE,5HGFIlE,50uOO.IERR,M~D) INFR 360 
~i{ = UJl.(AKXCl-LCClr.O~K(lI)+1 INfR 370 
DLI 10 1=I,;-"R INFH 380 

10 huRK(1) = O.Q INFR 390 
LLlr~Jj:( = PIIUlO. INFR 400 
C LIN I w '" 2. * PI * C ! ~F K 410 
WRlTED,20011 I\H,I,LLJi",PR INFR 420 
CALL DOdCIOIIOHBOX T44 JM,IJ INFR 430 
CALL KEEP80(11 INFR 440 

20 ASSlu~ 2;) Te Ml INFR 450 
ASSIGN 3l TG M INFR 460 

21 kEAOI2.li.lOC) ANAME,ISTAf..,NR'{"OHKlIl.I=1,9l INFK 470 
uu Te Ml INFR 480 

25 DO 30 1=1,13 INFH 490 
IF( ANAME-LUMPR (I) I 30,35,30 INFK 500 

30 COhTINUE INFR 510 
ASSIGN 2:) lU M It\FR 520 
WRlTE13tlOOll INFR 530 

35 hRITE13,1002) A~AMl.JSTAR,NR,(~URKIJ1,J=1,9) INF~ 540 
GO TO M INF~ 550 

31 IFII-2) 4C,l3C,32 JNFR 560 
32 IFll-j) lLC;230,~O INFR 570 
40 f-R';l '" 2.*PI/ .. CIRK!1l*11.0E+81*C INFI< 5(10 

Df-REQ = lLNI~*WLRKI21 INFR 590 
WIDE = ",-ICRK(3) INFR 000 
PI ~nR~141 INFR 610 
P2 = "uR"'!5l INFR 620 
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)(uu r.ORK(61 
VOO .. O~K!71 
lOO = ~ORK(81 
XTll = r.CkK191 
ISw -= ISI1.0R.IIBI 
IFINR-21 2G.46.Z0 

46 ASSIGN 3J TG Ml 
A'>SIGN 47 TO M 
GO TO 21 

47 XNul 111 .. URK III 
X~CLI21 = I1LRKI21*.5 
XNFLlll = "ORKllI - WCRt<IJI 
I\UPO = WLlRKI3I 
DKO = WUkKI91 
XNELI21 nORKI21*.~ 
XXI "ORKI41*1.E-t 
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PNL~131 ~~RTI .. ~RKI51**2.~JRKI61**2.r.CRKI71**ZI 
P'IIlSlll ... OKKI:>I/PNLS(3) 
PNLSIZI "ORKlbI/P~LS(3) 
P~LS(3) .. GKKI71/P~LSI31 
CuT = nORKIS) 
IS .. = ISI1.Uk.(2BI 
GO TO 20 

130 K = 3 
Jl = 3*NK 
1'>\1 = ISW.uR.(4E) 
ASSIGN 3.> TO f'l 
ASS I GN 1.31 TO M 

131 lJU 132 1=1.3 
L = K.[-3 
IFlwuKK(Hl-2IJ b~tl36tl35 

135 XONOIL,11 rlOKKI3*1-21*CUN[11 
XO~0IL,2) .. CRKI3*1-1) 

132 XONOIL,3) wCKKI3*11*.5 
NT = Jl 
K = K.3 
IFIK-Jll 21.21,137 

136 NT = l-l 
137 nR[TE161 CO~t>RI21,NT.(HCRIlI[ltI=1,l9) 

C~LL SPLICE"H,XCNull,IJ,XDNCI1,31,XDNCII.411 
IoiRITE(6) IIXCf'..OII.Jltl=I,NTI.J=L,4) 
P = .FALSE. 
KK = 0 
DO 138 1=2,NT 
00 138 J=I,5 
KK KK.l 
U3 = XUNJIl,lI-XCNCI \-ltl) 
01 = .2*U3*FLCATIJI 
u2 = .2*Ll3*FLCATI5-J) 
HJRllIKK) = IXO~Cll-l,l )+UIIICONIW 

138 vERTIKKI -= 2.*Ii<DNCII,3I*:.Jl+XDt\GII-1,31*u2 
1 Ul*U2*IXDNOII-1,4)*IU3.U21.XDNOII,41*(U3.Ull 1/6.1/U3 

CALL GRAPHIK~.9rALPhA-GRD ,16HFREQUENCY (CM-ll , 
1 28HO-RAY AB50RPTICN CGEF IC~-l I I 

GO TO 20 
230 K = 3 

Jl -= 3*NR 
ISw = lS~.UK.llaB) 
ASSIl..'l J~ TO M1 
A5SIGc. 231 TLl M 

231 DO 232 1=1,3 
L = K+I-3 

INFK 630 
INFR 640 
INF~ 050 
INF-!' 660 
I NF R 610 
INFR 680 
INFK 690 
I~FK 700 
INFR 710 
INFR 720 
INFR 730 
INFH 740 
INF K 750 
It-<FR 760 
It\FR 770 
II'<Fk 780 
INFK 790 
(I"FR 800 
It-.FH 810 
INFR 820 
INFR 830 
1 Nf- R 640 
INFK 850 
INFR 860 
1 NFK 870 
INF R 880 
1NFR 890 
INFK 900 
I NF R 910 
INFR 920 
INFH 93G 
INFK 940 
I NF K 950 
INFR 960 
INFK 970 
(NFH 9BO 
INFR 990 
INFRIOOO 
I NF.<1 0 10 
INFRI020 
INFRI030 
INFKI040 
INFRI050 
INFiU060 
INFRI070 
INFHI080 
INFRI090 
(NFRIIOO 
I NF RIll 0 
INFRllLO 
INFRIlJO 
I NFR1l40 
INFR1l50 
INFRl160 
(NFRl170 
INFHl180 
INFR1l90 
INFR1200 
I NF Rl21 0 
INFRl220 
INFR1230 
INFR1240 



!FIWCRKI3*1-2)) 235,236,235 

235 XUr-.f.IL,l) 
X0NE I L ,2 ) 

232 XJNEIL,3) 
Nfl -= Jl 
K = K+3 

~JRKI3*i-2)*LChl~ 

roORK 13* I-l) 
.. CRKI3*1)*.5 

!FIK-Jll 21,21,237 
236 Nfl -= L-l 

-122-

237 "RIH:(6) CiJMPRI31,NTlolHCRlLIl),I-=lrl9) 
CAL LSi' L 1 C E I 1'\ T 1 , X UN [ I 1 , l) , X 0 N E{ 1 , 3 I , X 0 N E ( 1 , 4 I ) 
,";RlTEI01 IIXCNEiI,Jld=1,NTI),J=I,4) 
p = • F Al SE • 
KK = 0 
DC 238 1=2,NTl 
OJ 238 J=1,5 
KK KK+l 
UJ = XONE( 1,1 )-XCNtI 1-1,1) 
Jl = .2*U3*~LCAIIJ) 

U2 -= .2*U3*FLCAT(~-J) 
HORIZIKK) = (XG1'\I::II-1,l)+Ull/CCNih 

230 vERTLKKI -= 2~*(XOM(f,3)*Ul+XC"'Ell-l,3)*U2 
1 Ul*U2*IXDNI:I l-l,4)*IU3+U2)+XDt-;E(I,4)*IU3tUl) 1/6.)/U3 
CAll GR~i'H(KK.~bAlPHA-~XT,ILHFREQUE"'CY (lM-l1 , 

1 2tlHc-RAY AbS('RPlIGi\1 CLEF (CI"-lI ) 
GO TO 20 

50 1~IISW-(178))120,~~,120 
521,1< -= wO:<i\(3) 

P = .TRJf. 
0lU'" = .~(JRK(I) 

JfJlGH -= "ORK(2) 
xo -= XOO 
YO = YOO 
XlUC -= lOO 
1.02 -= o. 
IF(YO.NEoO.) Co2 -1. 
JFk.) -= LlFRbJ 
Bi'j = wlOt 
Xll~ = X ILL 
WOP -= ro"lli'O 
OK = DKO 
STEP -= (O~IGH-DLCh)/hCkK(3) 

Nk = Nk+l 
WRITEI3,ICC41 STEP,CUMPR(II 
CAll S~TEPS 

CALL CkIE:--JT 
10nT" I 
GU TO 1120,120,120,60,70,80,9G.I00.110.14C.150.160.120),1 

60 CALL PHASE 
to CO''iTINUE 

OK -= OlLw 
DO 61 l=I,NR 
HLlR I Z I I) = OK 
CALL OklENT 
CAll SET CGN ( I I 

62 VtOkT(!) "PO ... ERIP) 
VERT1I! I -= PG~Et{1 

61 UK = UKl-Sl[P 
ASSIGN iJ"" Te M 
GLl I Ij 168 

6'1 CON'INUE: 
CAll GkAPH(NK,IO~P.M. CI.RVE , 

122HPIiASE MIS"'1ATCh 11./CM),23rlPOWEI< GENERATED (WATTS) 

ir\FR12,0 
INFR1260 
.I';FR1270 
jl'.FR1280 
INFR1290 
INFH130U 
INFR1310 
INFR1320 
INfIl1330 
INFR1340 
INFR13':J0 
INFR1360 
INFR1370 
I NF RUBO 
I NFR 1390 
II'.FR1400 
INf R141 0 
INFR1420 

. INFH143Q 
I NF '<1440 
It.FK1450 
INFR1460 
INFR1470 
I~FrH480 

INFK14YO 
INFR1:>00 
It.FR1510 
INFRI :>20 
INFR1530 
I t-.F ,<1540 
INFR1550 
INFR15Q() 
INFR1570 
INFR1580 
II\FR159Q 
INFR1600 
J NF Rl b 1 0 
INFRlb20 
I NF RU,)J 
INFR1640 
1 NF K 10 5 0 
INFRJ.600 
lI';fR1610 
I NF K1680 
I NF R1690 
INFR1700 
INFK1710 
INFR1720 
INFRl730 
INF/{1740 
I NF R 1750 
INFRI700 
I NF HI 710 
INFIU 780 
INFR1790 
JNFf<lllOO 
INFR1810 
INFK1820 
INFRll130 
INFR1840 
INFR1850 
INFRlb60 
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GU TO 20 
C 70 CALL FREe.; 

, t; r:. J .I . ;,} U 5} 
J " r': ... 
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C ~ON-PHAS~ M~TC~AelE FREQUENCiES HAVE THE TGTAL RADIATED POWER 
C COMPUTED fOR THE GPTIL AXiS PARALLEL TC THE LASER BEAMS 

10 CLlNT li .. UE 
DO 12 l=l.NR 
DFR~ = ULGft*CCNI~ 
HOKIZII) : DlDw 
CALL SUf:PS 
CAll CKI EI'<T 
CALL ::.f.TCUf\iII) 
VERTII) = PU~EKIP) 
vERT1II) = PCnERl 

72 DLOw = OlUw+STEP 
ASSIGN 7:; TU t-' 
GU TG ltdl 

79 COrn INUE 
~AlL GRAPHINR.IJhP.M. fR[Q. , 

1 17HFRf~JENCY 11/CM),2jbPUwE~ GENf.RATED IwATTS) 
GU TJ 20 

C 80 CALL WIDTH 
80 LUI'<TiNUE 

Il., = DlU" 
DU 81 1= 1 • Nk 
HO~llll) = bw 

CAll SE lCUN I I ) 
VERTII) = POwEKIP) 
VERTllll = PC~ERI 

81 011 = a,,+ SHP 
AS..>IGN 39 TO M 
GO TO ibd 

89 CUNTINuE 
CALL GRAP~II'<R,1C~SPOT SllE 

1 35HL~::.FR bEAM ~IDTh IE**-2 PCINTI (eMI 
2 23HPOWiR GE~ERATEC (nATTS) ) 

GO Tll 20 
t 90 CALL AbS~U 

90 CUN I I N~E 
DLl 91 l=i,NR 
Hl1RIZII) = DLUfi 
X:)A = .~ *DlO;; 
CAll SETCJNII) 
vERTII) = POftER(P) 
VERT1(1) = POwER1 

91 DLew = ULUw+STEP 
ASSIGN ''1'; TO M 
GO TO 163 

99 CONTINUE 
CALL GRA~H'NR,10HAIlSLRPTION 

1 23HABSOKPTICN COE~. (l/CM) 
GC TC 20 

C 100 CALL ANGJl 
100 CUNTINUE 

p = • FAL SE. 
CALL SE TCUN ( 1) 
Al = AilS (DFRG:/C) 
AKY = o. 
0l";w1 = DLU ... 
OU 101 I" i , NR 
AK,X = AI*SI~(DLCwl*CONDR) 

, 
,23HPOftER GENERATED (wATTS) 

C AVOID SINGULARITY IN TERMS CALCULATED BY FIELD. 
IF(ABS(AKX).LT.1.0E-~ul AKX=1.CE-40 

INFR1810 
INFk1680 
INFR1/j90 
INFk1900 
J NF k1910 
INFR1920 
INFR1930 
INFR1940 
INFR1950 
INFR1960 
I I'<f R 19 70 
I NF R1980 
I f\F K 1990 
INFk2()00 
INFR2010 
INFK2020 
INFR2030 
INFR2040 
INFi<2050 
lNfR2060 
INFR2070 
INF R2080 
I"'FR2090 
JNFR2100 
INFR2110 
I~FK2120 

INFR2130 
INF R2140 
INFR2150 
IM'R2160 
INFR2170 
INFR2180 
INFR2190 
I NF R2200 
I I'.F K221 0 
INFR2220 
INFR2230 
INFR2240 
INFR2250 
INFR2260 
I Nf R22 70 
INFR22/jO 
INFR2290 
Il'<FR2300 
I NF R2310 
INFR2320 
INFR2330 
INF R2 340 
INFR2350 
Il'.FK2360 
INF R2310 
INFR2380 
INFR2390 
INFR2400 
INFK2410 
INFR2420 
INFR2430 
I NF R2440 
INFR2450 
INFR2460 
II'.Ff<2470 
INFR2480 



HOR Il I I I = DLO,1i. 
V[KTIII = FIELCIP)*HI 
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VERTIII = VERTIII*ICFRQI**2/CONlw*DIRK 
101 uLL~1 = OLG~1+51EP 

A::;SIGN IJ6 TO M 
GCJ Te 16t1 

lOb CONTINuE 
CALL GRA~HIN~,lJHP~k LIST •• 
Ij2HA~GLE IN PLA~E OF INC. (CEGREES) ,20HPC~ER PER STERADIAN 

AKX = 1. [-40 
uu 105 1=I,NR 
AKY = AI*SI~IDl(h*CCNDRJ 

C AVOlu ::;1~~uLARITY IN TEKMS CALCULATEC BY FIELD. 
I F I A G S ( A r< Y I • LT. 1 .0 f -40 I A K Y = 1. 0 E - 40 
HuRllII) = llLO ... 
VEKTIII = FltLLIPI*HI 
VERTIII = VEKTIIJ.IllFkQI**2/Cu~I~*DIRK 

10j DLGrl = OLC~+STEP 
ASSIGN 109 Te M 
GU TO 166 

109 CONTINUe 
CALL GRAPr'NR,lCHP~R GIST. 

Ij5HANGLE PERP. Te PLANE OF INL. ID~G.1 

GO 'U 2,) 
C lla CALL TrlllK 

110 CJNTINJE 
!-i,ACT = "OKKI41 
XLi'; = DLL.r. 
OIJ III i=l.NK 
IF'ISTAk.E'J.IH) Xlec 
CALL Sf:Tlu.', I I I 
HO"IZIII = XL~ 
V[kTIII = PO~EkIPI 
VERTl I I I = PCr.ERl 

111 XL~ = XL~+STEP 
ASSIGN 119 TG M 
GU TO lad 

119 CU,~TI;\lLJE 

CALL GKAPHINR,10ML~NGIM , 

,20HPO~ER PER STERADIA~ 

1 IlHLENGTh leM) ,23H?nh~R GENERATED (~ATTS) 

GO TO 20 
C X llISPLACEM~NT 

140 CONTINU!: 
Xv = OLe;," 
DO 145 l=l,NR 
CAll SETCGNI I I 
VCKTlII = POrlEl<lPI 
VERTill1 '" PCwERl 
HQR II ( I I = X a 

145 XO = XO + ~TEP 
A.lSIGN 146 TO M 
GO TO lull 

146 CALL GRApr'NK.IUrX-CI::;PLALE,22HtifA~ CEhTEk SHIFT (CMI, 
1 23HPUWER GENEI<ATEC (~ATTSI I 

GO TC 20 
C Y DISPLACEMENT 

150 CONTINUE 
Co2 = -i. 
YO " DLU ... 
DO 155 1=1, NI< 
CALL SE:TCONI I I 
VERTIII = POrlERIP) 

INFRZ490 
I NF RZ 500 
INFRZ510 
INFRZ520 
INFR2530 
INFRZ!>40 
It-.fR2550 
Ir-.FRZ560 

llNFR2570 
lr-.FRZ580 
INFH2590 
INFf<Z600 
lr-.FR2bl0 
INFR2b20 
INFR263C 
If';FR2640 
INFR2oS0 
1 f';F RZ660 
I NF I<Z610 
INFRZb80 
INFr{2690 
1 r-.f 1<2 700 

IINfRZ710 
I NF k2 720 
INFkZ730 
INFR2140 
It-.Fr(2150 
INFR216J 
INFR2770 
Il\Fk2780 
INF H2190 
I NF R2 800 
INFR2dlO 
INFR2820 
INFR2830 
INFR2840 
INFR2d50 
INFk2860 
INFR2870 
If';FR2880 
INFi<ZB90 
INFRZ900 
INFI<2910 
I NFf<Z 920 
INFf<2930 
INFR2940 
INFR2950 
INFK2960 
INFR2910 
INFR2980 
lr-.fKZ990 
INfR3000 
INFi<3010 
If';FR3020 
INFR30JO 
INfR3040 
INFR3050 
I NfR3 000 
INFR3070 
INFR30BO 
INFR3090 
INF .. 3100 



o u 

VEkTl I II = PChERl 
HllRIZI II = Y0 

155 YO = YO + STEP 
ASSIGN 156 TO M 
Gll TO 16 l:! 

j 
,f~ 
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» 

1~6 CALL GKAPHINR.1ChY-DISPLACf.22h~[A~ CE~TER SHIFT ((MI. 
1 23HPll~tR GENERATEU I~ATTSI I 

GO TO 2J 
160 CLlj\jrINUE 

XLOC " lJLOh 
DC 161 l=l.NR 
HJR1l1 II = XLOC 
CALL 5E nON I I I 
VERTIII = POriERIPI 
VERT1III = PG~ERl 

161 XLOC = XLOC + STEP 
ASSIGN 162 TO M 
,,0 W 168 

162 CALL GRAPHINR.10HFOCUS LOC •• 23HFCCAL PT. LCCATION (CMI. 
1 23rlPOWEk GENEKATEC I~ATTSI 

GO TO 20 
120 v.RITEI3,10031 ItlS .. 

ENO FILE 6 
CALL PN I Ll I I BE T A I 

C GET FIELD lE~GTr 
c LOCATE ~LOCK f(~ 100*5 ETC. AS AN l~uEX FCR ARRAY IBETA 

luETA = 1t3t:TA+MIID-LCClleETAIOII-2uOB 
C LUCATE THE .. ORC CC~TAIhING ThE fiLE lE~GTh 

lLiETA = I It3ETAIIDETAI.A~U.777777t3I-LGC(IBETA(011 
C GET FILE LENGTh 

IBETAIZI = ISRlIt'ETAIIP,ETAI,3f:1.A~D.77777777B 
C ROJNO LE~GTh TO ThE NEAREST .GE. 512 WORUS 

l~tTA121 = ISLlISR((IBtTAI21+77751.SI.S1 
C SET-UP THE FILE NAME I~ BETA ~ORDS fUR A GCB CALL 
C THE LEADING ~LANKS ARE NECESSARY - R FeRMAT aCES NOT SUPPLY THEM 

IJETAlll = lOH GfILE 
C S .. ITCH ThE FILE NA~E FPGM CHIP DISPLAY ceDE TO ASCII 

CALL ShrTCHI3HCTA.IBETA.11 . 
CALL GUbI1200B.IERR.0.It3ETAI 
CALL DEVICEI6HCLOSER,5hGFILEI 
CALL PLOiE 
CALL EXIT 

C ROUTI~E TO PRINT THE CALCULATED CUkVE PRIG~ TO CRT PLOTTING 
1b8 WRITE(3.10071 

DO 169 l=l.NR.l:! 
K = 1+7 
IFIK.GT.NRI K=NR 
wRITll3.10051 hCIHZIII.IVEf<.TIJI.J=I.KI 

169 CUNTINUE 
WIU IE (3 tl 007 I 
WRITEI61 COMPk(ICPLTI,Nk,HOkIZI1I,5TEP.Xu.YO,XLOC,BR,Pl,P2. 

1 f~QL.XXI.PNLS.XNUL.XNEL.XL~.DFRQ.WCP.DK. 
2 XCN.XCA,XED~.XEDA 

WRITE (61 (VEKT' I 1.1=1 .NI'I 
IFI.NeT.PI GC Te M 
DO 170 1=1.NR.8 
K = 1+7 
IFIK.GT.NRI K=NR 
.. RI TI:: 13.10051 HCR I L Ill. (IIER Tl' J I. J= I, K I 

170 CONTINUE 
IORI IE (3 tl OC7 I 
~RITE(61 (VERT1III.I=1.~RI 

INF R3lLO 
INFR3120 
I NFR3130 
INFK3140 
INfR31~O 

INFR3160 
INFR3170 
I NFR3180 
INFR3190 
INFR3200 
I NF R3210 
INFR3220 
INFR3230 
INFK3240 
INFR3250 
INFR32 ... 0 
INFk327u 
I NF R3280 
INFK3290 
INFR33uO 
INFR3310 
INFR3320 
1 NF R3 330 
INFR3340 
INFR3350 
INFR3360 
INfR3370 
It\F,0380 
I NF R3390 
INF K3400 
1 NF 1<3410 
INFR3420 
INFR3430 
INF R3440 
It.FR3450 
INF R3460 
1~FR3470 
1~FR34&0 

INFR3490 
INfK35JO 
INFR3510 
INFR3520 
I NF K3 530 
INFR3540 
INFR3550 
INFR3560 
INFR3~70 

INF r<35tW 
INFR3590 
INFR3600 
It.FR3610 
INFR3620 
INFR3630 
INFr<3640 
INFR3650 
INFR3660 
INFK3670 
1 NF R3680 
INFR3690 
INFR3700 
INFR3710 
INFR3720 



* 

GLl TG M 
1000 FOkMATIA5,Al.I2,9I-U.ll 
1001 FORMAT 117H CAkC REJECTEC 
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1002 FQR·>iAT 11H ,A:>,Al,lX,t2,9E.l2.4 /I 
1003 FLlR~AT I1111 Ill- ENG-Cf-JOB ,2I5/1Hll 
1004 FOKMATI/15H STEP SIIE IS ,Ell.4,17~ PKUCEU~RE IS 
laOS FORMATI E12.4,8EI3.41 
1007 F,H(MATIII 
2001 FJRMATI2I20,912X,A51/4GX,412X,A511 

E;~iJ 

"ChER 
POWEf<IQ';';,i1 

,A5/1 

FLlRTRAN 
FuNCIIC,"J 
COMPLEX 
C..JMPLfX 
lU"ICAl 

H3,H4,h5,1-6.Hl1,$MCNE.H5S 
lU,EE,ECCL,EOCX,ECS,ELEEI,EEI,EECI,EECX.AN2.~A( 

f' 
CCMMuN WORKllll,XGC,Y~C,ZOO,hlDE,XTLl,DFRE~,FRCl,Pl.P2,UKO,WOPO, 

I X X I , Pi. l ~ I 31 • X I'. L l (.2 I ,X NEll 2 I • X Lll'. C 13 '1 ,4 I ,/Ii T , X ON t I 39 ,4 I , rlif 1 , 
2 CUT,XJ.YO,XlOC,Bh,XlN,Dfk~,CK,~CP.XGN,XDA,XEON,XEUA, 
3 CLuh,ChlGt-,NP.,STEP,ANAME,lSTAR,HI,h2,H2P,H2PP,H2PPP, 
4 H3,H4,H~,H5P.H6,H7,hB,~9,H10,Hll,HI2,HI3,H14.XURS.XORC, 

? AKXC 
COMMON 13CI ~KV,AKVl.fk~S,EC,ECCl,EUCX.EOS,EOtEl.EEI.EtCI,EECX, 

I AN2,"AC 
COMMCN ICCNSJI (,PI,S~u~E.C(~PR(131 
COMMON IARGA621 L62,Ll62,ER.~M,~N.AI,Bl,EP,MP.N.hT 
CUM~CN IPASSI I-IELC3,A62G,PCrlERl,'KX,AKy,CIRK,P 
(UMMCN IGRPHI HLRIIIIOvOI.VERTII0001,VERTIIIGCOI 
DAT4 CbL,C62.tR,MM,NN,EP,MP,N 10 •• I.,I.E-3,0,20,1.E-3,0,2QI 
JAIA E~S.NtST2 1.001,4al 
u1 = AdSICFRQ/C*CLTI 
Ai = -51 
MPkEV = ,'1M 
1'1.~ = 0 
NESTl = 2*~EST2 
NEST = ,,<ESTlt1 
AKY o. 
Al<.X = Al 
OKX = IHI-AII/FLGAT(NESTI 
UEST = .5*fIElOIPI 
0,) 100 l=l,NESTl 
AKX = AKX+CKX 

100 UEST = UE~l + flfLD(PI 
AKX = lH 
UEjT ~ .5*IUEST + .5*FIElDIPII 
Ej{ = ERS*UESl 

~ CON = C/(PI*ID62-Cc211*h1 
PUWEK = CCN.AGll~~~) 
IFIMPREV.NE.MM) hRITE(3,10001 MM 

1000 FJkMATI2x,17,2L~ ~L~CTIC~ E~ALUATIC~S 
RET URN 
END 
fuNCTICN FUNtA,EI 
COMPLEX H3,H4,h5,hb,hl1.SMO~E,H5S 

COMPLEX EC,EE,FCLl,EOCX.ECS,EOEEI,ttl,fECI,tECX,AN2,WAC 
LOGICAL P 
COMMON wORK(111,XCC,YOC.IUO,hIOE.X1LL,DfKE~.FR~L,Pl,P2,DKO,WLlPO, 

1 X X 1 ,I' N LSI 3 I ,X N G L Ii ) t X N t L I 2 I , X 0 t\ 0 I 3 'I, 4 I ,N T , X ON E ( j 9 , 4 I ,N T 1 , 
2 C~T,XO,yu,XLCC,5~,Xll'.,CFRQ,C~,hCP.XO~,XO"XEON,XEOA, 
3 OLUh,OHIGH.N~,~TEP,ANAME.ISTAR,Hl,H2,H2P,H2PP,H2PPP, 

4 H3.H4.H~,H5P,hb,H7.h~,H~,hl0,hll,h12,h13,H14,XuRS,XOR(. 

5 AKX( 
(OMMCN IBCI AKV,'KVI.FR~S,tO,EGCZ.ECCX.EGS,ECEEI,EEI,EECl,EECX. 

II'.FR3730 
INFR3740 
INFR3750 
INFR3760 
INFR3770 
I f'1F ~3 780 
INFK37<JO 
[NFR3800 
INFR3810 
INFR3820 
INfk3830 
INFR3d40 
INF R3d50 
INFR3860 
INFR3870 
INFK38bJ 
INFR3890 
INFK3900 
INFRj910 
1 NF K3920 
iNFR3930 
INF'{3940 
INFK3950 
1 I'.F K3 960 
INFR3970 
INFRHI;lO 
INFK3990 
I NF R4000 
'NF Ki.O 1 0 
INFK4020 
INFR4030 
INFR4040 
INF R't050 
INFR4000 
Il'4FR4070 
I~FR40t!O 

INFR4090 
Ulf'{4100 
• ...r~4110 
INFR4120 
INFR4130 
INFfl.4140 
INFR415J 
INFR4160 
INFR4170 
INFR4180 
INFR4190 
INFR4200 
INFR4210 
INFR4220 
INFR4230 
INFR4240 
INFR4250 
INFR42bO 
INFfl.4270 
INfR4280 
INFtt4290 
INFI<4300 
INFR4310 
lNFR4320 
INFR4330 
11';FR4340 



o 3 ,} n i 
J.~ i Q ' "~~ ~ 

, 
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1 AN2,I.AC 
COMMrN ICUiISTI (,PI,S~(jMtCC~"RI131 
Cu,'1,-ILN IARGA6£1 (;bi,LJ62,[k,MM,NN,Al,bl,EP,MP,N,WT 
tOMMON /PASSI FIELO~,A62G,P(wERl,~KXtAKy,C[RK,P 
COMMON luRPHI HOklZ(1000),VERTI10CC),VERTlI10001 
AI<.X = tl 
[rIABSIAKXI.LT.1.E-401 AKX = 1.E-40 
AKY = hT*A 
FUN -= HElUIl'1 
RETJRN 
END 
FUNCTlUN AGIIQQ) 
Cu~MUN IARGADZI C2,U2,EPS2t~2,NMAX2,AA,BB,EPS,M,NMAX,WT 
DIMENSION SAIZI20I,$tllZ(20I,SU12(20I,Sh121201,$V12(201, 

CrVL(20),B12ILul,SFVZ(iul,SfL2(2UI,Sfh2(ZOI,SAGIZ(ZOI 
OATA (TEM=0.7745S666~241481 

OAIA ITE~1=O.2254C333C75e521 
JATA I(Ul=0.555555~55555561 

CAIA IC02=0.~8EE8H8tH838891 
AGIT=O. $N=-l $~=AA $8=b8 $BMA=B-A $BPA=B+A 
VJ=0.,*aPA $UO=0.5*TEM*o~A $WO=~O+VO $UO-=VO-UO 
FuO=AGI2(UUI 
FVO=AGJ21VOI $fhU=AGI21~Ol $M=3 
AGS=IL02*FVO+(Ol*IFUOtF~Oll*O.5*B~A 

EPSR = EPS*AGS , 
70 N=N+Z IIFIN.lE.NMAXI 71,7Z 
12 WRITE Ij,~~) N,A,a 
99 FU~MAI IllH N A~l) INr~~VAL ,llO,SX,2EI6.7,7H CLTERI 

N=N-2 
GU TO 13 

71. Nl=N+l $SAI2INll=Al=A+TE~I*6~A $hl=A+O.Z*BMA $U1=A+Al-wl 
~aI2INll=rll=rlPA-Al 'SllZI~ll=UL=Wl+Wl-UO 
Sw12INl'=hZ=Bl-L2+Al ISk121NI=w3=Bl+wl-A 
SUIZINl=J3=Bl+Ul-A $SV12INll=VG $SVIZINI=nO 
SFVZ(Nl)=fVO $SFvZI~l=Fh0 $S612IN)=6 
SAlZI,\jl=Bl 
FiJl=AG121Ull Hv.l=AGI2IWl) $FUZ=SFu2(t-;1l=AGIZIUZI 
FUJ=SFUZINI=AG12IU3) $FnZ=S~v.21Nll=AG[2(WZI 
Frl3=SF~LINI=AGIZI~31 $~=~+6 

AGll=ICQZ*FUG+(Ol*IFUl+Fhlll*0.5*tAl-A) 
AulZ=SAvlZINl)=ICG2*FVO+(;Ol*IFU2+FI.Z)I*C.5*IBl-All 
AG13=SAGI2(~I= (COZ*F~0+COl*(FU3+F~311.0.5*'B-Bll 
AGI=AGll+AGlZ+AG13 
WRITE 13,34) Al,Bl,AGl,AGS 

34 FORMAT 12X,lOHINTEkVAL ,ZE16.1,13H EST[MATES ,2E16.11 
C ABSOLUTE ACCURACY 

IFIAdSFIABSFIAGII-ABSrIAGS)).lE.EP5RI 13,14 
C RELATIVE ACCURACY 
C IFIAtlSf-(IAE5FIAGlI-ArlSHAGS))/AGI).lE.EPSI13.74 

74 AGS=AGII $8=A1 ~VO=LO SJO=ul IhO=wl $FVO=FUO 
FUO=FJl $FhO=F~l $BMA=B-A $BPA=B+A $GU TO 70 

73 ~=N-l $lFI~.LE.OI 75,16 
76 AGIT=AGIT+AGI ~AGS=SAG12INI $B=SB12'~1 $A=SA12(NI 

BMA=B-A $BPA=B+A $\IO=SV1ZINI $UC=SUIZtNI 
~0=:>w12(NI $fVO=SFV2(NI $fUC=SFUZINI $FWO=SFW2(NI 
GO TO 11 

75 AGI=AGli+AGI SRETUkN 
END 
FuNCTION AGIZ(PI 
CC~~CN IARGAbZI AA.BB,EP:>,~Z,NMAX.kADZ,RAL.EC,M~.NC,WT 

DIMENSIUN SA12120I,SBIZIZO),SUI2IZ0),SWIZI20I,SVIZ(20I, 
CFV Z (20) , Fi lZ 1 Z G I , Sf V 21 ZO I , SF U I 20 I , 5h2' 20 I , S fiG 12 (20 I 

INFR43~O 

I I\F R4360 
INFR4370 
INFR4380 
INFK4390 
INFR4400 
[NFR4410 
INFR4420 
INFR4430 
[NFR4440 
INFR4450 
INFR44bO 
I~FR4470 

1",FR44tlO 
INFR4490 
INFR4~00 

INFR4510 
INFR4520 
IIItFR4530 
INFR4540 
INfR4550 
I NF R4560 
INFR4570 
INFR45!l0 
INFR4590 
INFR4600 
INFR4610 
1 "'F R4620 
INFR4630 
INFR4640 
INFk4b50 
INFR4660 
INFR4670 
[NFR46BO 
I NF R46'i0 
[NFR4100 
I NFR4 710 
INI-R4720 
["'FR4730 
I NFR4 740 
[NFR4150 
INFR4760 
I NFR4 710 
INFR4180 
INF R4190 
INFR4800 
INFR4810 
1 NF R4820 
INFR4830 
INFR4840 
INFR4850 
INFR4660 
INFR4870 
INFR4880 
INFR4890 
INfR4900 
INFR4910 
I NF R4920 
INFR4930 
INFR4940 
INFR4950 
If'.FR4960 



c 
c 
c 
c 

c 
c 
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DA1A ITEM=O.77~5S66b9241481 
DATA ITEM1=u.2254C333C7~6~21 

CATA IC01=0.55~555555555561 
DATA IL02=u.88€SStlU€88d8891 
~T = SyRTlkAC*RAL - ~*PI $ISn=O 
AGIT=O. $N=-l SA=AA SB=68 $e~A=B-A SBPA=B+A 
V0=Q.5*SPA $~O=O.5*lfM*tl~A $~O=~O+VO SUO=VO-UO 
F00=FJNIUO,P) $F~O=f~~lvO,PI $F~O=FUNI~O,PI SM2=3+M2 
AGS=ICJ2*FVO+COl*IF~0+F~011*005*BMA 

70 N=N+2 $IFI~.LE.~MAXI 11,72 
72 wR I H 13,991 N, A, rl 
99 FORMAT 117h ~ A~U I~T[KVAL ,IIO,5X,2E16.7,7H INNE~I 

~=~-l 

GO TC B 
71 Nl=N+l $~A12INl)=Al=A+TEM1*6MA $hl=A+0.2*bMA SU1=A+AI-Wl 

SrlllINl)=Bl=8PA-Al $SL12INl'=U2=Wl+wl-UO 
SrllZ(Nl)=h2=Bl-L2+Al $S~12(~I=~J=Bl+rll-A 
~Ull(NI=U3=81+Ul-A $~V12INll=VO $SV12INI=hu 
SFV2UH )=FVO SSFV2INI=FhO $StlldNI=d 
SAIZII.I=el 
fJl=FUNIU1,PI $Fhl=F~N(Wl,PI $FU2=SFU21~11=FUN(U2,P) 
FU3=SFU2IN)=FUNIU3,P) SFhl=SF~2INll=FUNlw2,PI 

F~3=SF~2(NI=FL~(h3,PI $MZ=M2+t 
AGll=ICOZ*FUu+COl*lfUl+Fwll)*0.5*IAl-AI 
Au12=SAG12INll=IC02*FVU+COl*IFU2+F~ZII*0.5*IBl-All 

AG13=SAG12(NI= IC02*FwO+COl*(FU3tFh3I)*0.5*IB-Bll 
AGI=Aull+AG12+AG13 
WRITE 13.341 Al,bl,~GI,AGS 

34 FURMAT 12X,lOHINTEMVAL ,2E16.7,13H ESTIMATES ,2EI6.7 
1 , 7 H 1 ~ N E R ) 'I 

AdSOLUTE ACCUMACY 
1 H ( ( ABS HAllS F ( AG I I-A B~ F( AGS ) ) *>oIT ) • LE. EP S I. ANU. I 1 Sloi. NE .01 1 73,14 
RELATIVE ACCURACY 
IF (I ArlSF I I A65F( AGI I-AuSI' I AGSI I IAGI I .LE .EPS) .AND.' I Sw.NE.OI) 73,74 

74 AGS=AGII SB=Al $VO=UO $UO=Ul S~C=~1 $FVO;FuO 
IS~=l 
FJO=Ful $FhO=F~l SBMA=8-A sePA=B+A $GO TU 70 

73 N=~-l SlFIN.LE.OI 75,16 
7& AuIT=AGIT+AGI SAuS=SAuIZINI $8=S812(N) SA=SAIZINI 

rlMA=B-A SBPA=tl+A S~O=SV12'NI $LO=SLI2(NI 
~J=SW12INI $FVO=SfV2INI $FUC=SFUZ(NI SFftC=SFW2INI 
1.>0 TO 71 

75 AGI2='AGIT~AGII*wT $kETUR~ 

E"<D 
~UtlRUUTINE GMAP~ING,RG,RX,RYI 

COMPLEX H3,H4,H5,Ho.Hl1,SMG~E,H5S 
COMPLEX EO,EE,ECCl,EOCX,EGS,EOEEl,EEI,EECl,EECX,A~2,WAL 

LOGICAL P 
C ':"~MOi. 

1 
RURK'1!I,XCO.¥UO,LOO,~IDE,XTLL,CFRE"FR~L,Pl,P2,DKO,WOPO, 
XXI,PNLSI)I,XNOLIZI,XNELI2I,XUNOI39,4),NT,XDNEI39,4I,N TI, 
CUT,XO,YO.XLOC,B~,XL~,OFR~,CK,hCP,XGN,XOA,XEGN,XEUA. 

ULLn,DHIGH,NR,STEP,A~A~E,I~TAR,Hl,H2,H2~,H2PP,H2PPP, 

h3,H4,H~,H5P,H6,H7,hU,H9,r.10,H1I,H12,hI3,H14,XLRS,XOkC. 

AKXC 

2 
3 
4 
5 
CO~MGN IECI AKV,AKVI,fRCS.~C,EOCl,EOCX,ECS,ECEEI,EEI.EECl,EECX, 

1 AN2,~AC 

COMMC~ ICONSTI (,PI,S~O~E,CCMPMIIJI 
COMMeN IARGA6Z1 C62,C62,Ek,MM,NN.Al,tll,EP,MP,N,~T 
CGMMCN IPA~51 fIEL~3.A62G,PC~ER1,~KX,AKy,DIRK,P 

CJMM~N IGRPHI HORILI1000),VERTIIOOOI,vERTI11000) 
u I ME NS 1 UN ~H3 12 ) ,PH4 12 I ,P H 5 121 ,PH6 12 I • PH 11 (21 • PH5 S I Z I • P SHONE I 21 
I: QJ I V AL E NC E (P H3 , 1-13 I, I PH4, 114) , (PH5, H51 , I P 116, Hb) , I P Hll ,H 111, 

INFR4970 
INFR49BO 
INFR4990 
If'iFR5000 
INFR5010 
INFR5020 
INFR5030 
INFR5040 
INFK5050 
INFR506u 
INFR5070 
INF.<5080 
INFR5090 
INFR5100 
INFR5110 
INFR5120 
INFR5130 
INFR5140 
INFR!>150 
INFR5160 
I"'FR5170 
INfR51BO 
I~FM51"0 
I NF R5200 
INfR5210 
INFK5220 
1~FK5230 

INFR5240 
I NF 1<52 50 
INFR5260 
INFR527J 
lNFk5280 
INFR5290 
INFR5300 
I"'Fi<5310 
INFR5320 
INFKS330 
j~FR5340 

INF R5 350 
INFR5360 
INFR5370 
INFR53BO 
INFR5390 
INFR5400 
INFR~410 

INFM5420 
INFR5430 
INFR5440 
INFR5450 
li~FR54bO 

INFR5470 
I NF R5480 
LNFk54<'}O 
INFR"OO 
It\FM5510 
INFR5520 
I ~F R5530 
INFK5540 
INFR5550 
INFR5560 
.I NFR5570 
INFR5580 



C 
C 
C 
C 
C 
C. 
C 
C 
C 
C 
C 

C 

0
, u :: , 

~ 
<;) , 

~(:: ;"p (:) U ) 

-129-

1 'PH5~,H5S),IPS~L~~.S~U~~) 
Yi~AX = O. 
UJ 10 l=l,NG 
Yi'~AX = A'1AXlIY"1AX,VFRTlII) 
IFIP) Y~Ax = AM.X1{YMAX,VERTlllll 

10 CONTINUE 
CALL MA~SIHORIZl11.~Okll(NG).0.,YMAX) 
CALL SETCHll.,1.,1,0,3,0.O) 
CALL (.RT6CDIRG) 
CALL ScTCHI32.,1.,0,C,2,0,O) 
LALL LKIt!(CIRX) 
~ALL SETCHl1.,3Z.,O,O.L,I.01 
CALL CKTHCOli<Y) 
CALL TRA~E(HUkIZ,VERT,~G) 

IFI~I ~ALL TRACEIHCRIl,vEKT1.~GI 
CALL SETCrI65.,33.,1,C,1.u,OJ 
FR~D = UfRQ/IZ.*PI*CI 
fRWll = ~R~L/12.*PI*CI 
~RITE I1CO,10GOI P1,P2,~W,XO,YO,XLOC.XLN,~GP,DK,XNOl, 

1 X~EL,X[N,XCA,XEC~,XEDA,XXI,FK~D,FK~LL 

1000 Fu~~ATI~HPI =,Ell.3/6~P2 =,E11.3/6HB~ =,E11.3 
1 /6HXO =,E11.3IbHYO =,E11.3/tHXLUC =,Ell.3 
2 lorlXLN =,tll.3/6h~UP =,Ell.3ItHCK =,El1.3 
3 IbHNJL =,El1.3/6HACL =,El1.j/tH~EL =,El1.3 
4 16rlAEL =,E11.3/6h~OC =,E11.3/tHAUD =,t11.3 
5 /6HNEu =,El1.3/6HAEO =,El1.3/tHXXI =,E11.3 
6 /6HDfRQ =,E11.3/6HfK~L =,E11.3) 

CALL FRAME 
RETURN 
END 

SU8ROUTINt 5PLI(FI~P,XT,YT,SPI 

GENERATION UF THE SPLIN~ INTERPOlAlICN COEFFICIENTS 

Nt> IS THE ~LJMEEI< Of' IXT,YTI PAIRS 
XT IS THE F~A OF TABULATED INUEPENDE~T VARIABLE ARRAY 
YI IS THt FWA OF TAbULATED DEPENDENT VARIA8lE ARRAY 
SP IS THE ARRAY LF SPlI~E CLEFFICIE~TS 

I 

PAKAMlTER N1 SHOULC Bl SET Te ~AXIMUM NP Te BE USED 
ULOC~ SSSS ~ILL IHE~ tiE OIME~SILNEO FOR 2~I{Nl+LI ~URDS 

DIME~Slor~ XTIZ) ,YTIZ) ,~P(21 
CUM~ON/SSSS/~{40,40),BI40,401,Y(401,S{40),TI401,V'401 

/liT = NP 
Wild) -= 1./3. 
W{l,2) = 1./6. 
Y(1) = IYT421-Ylllll/IXT{ZI-XTI111**2 
wINT,NT-Z) = -1./IXTI~l-11-XTINT-211 
WINT,NT-l) = 1./IXTINT-11-Xl{NT-2)1+1./(XTINl'-XlINT-111 
~'NT,NT) = -l./IXTINTI-XTINT-lll 
YINTI = O. 
NTP=NT-1 
OLl 30 K=Z,NTP 
wIK,K-l) = IXTlKI-XTlK-ll)/t. 
WIK,K) = (XTlK+U-XlIK-ll)/3. 
WIK,K+1) = (XTIK+1'-XTIKI)/6. 

30 YIKI = IYTIK+11-YTIt()I/(XTIK+1'-XT(KII-{yTlKI-YT(K-1II/lXT(KI-
1 XTIK-lI) 

CALL MLRI40,NT,~T,~,y,SP,B,S,T.VI 

RETJRN 

l/1iFI<5590 
l/liFK5600 
INFR5blO 
INFR5620 
INFR5630 
INFR5c.40 
INFk5650 
INFR5660 
INFR5670 
INFR5680 
INFR5690 
INFR5700 
INFR5710 
I NF R5 720 
INFR5730 
INfR5740 
INFR5750 
INFR5760 
INFR5770 
INFR5780 
I NFR5790 
INFR5800 
INfR5810 
JNFR5820 
INfk5830 
INFR5d40 
INFR5850 
INFR5860 
INFR5870 
I NF R5880 
INFR5890 
INFR5900 
I NF R5910 
INFR5920 
INFR5930 
INFI{5940 
INFR5950 
INfR5960 
INFK5970 
INFR5980 
INFR5990 
INFR6000 
1 /liF R6010 
I/liFR6020 
INFR6030 
INFR6040 
INFR6050 
INF R6060 
INFR6070 
INFR6080 
I Nf Rb0911 
INFR6100 
INFR6LlO 
INFR61LO 
INFI<b130 
INfR6140 
INFR6l::iO 
INFR6160 
INFR6170 
INFR6180 
I NF R6190 
INFR6200 
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E,'~D 

SJe~OUIINE SEIEPS 
COMPLEX H3,H4,H5,H6,Hll,SMONE,H5S 
CJMPL~X EO,E~,ECCL,EOCX,EOS,ECEEI,EEI,EECl,EECX.AN2,~AC 

LOGICAL P 
COM~DN wORKIll),XCO,YOC,lUO.~IDt,XTll,DFREQ,fR~l,Pl,P2,OKO,wOPO, 

1 XXI,PNlSI31 ,XNOl(2),X~Fl'21.XONO(39,41,NT,XONEI39,41.NTl, 
2 CUT,XO,YO,XLOL,Bh,Xl~,DFRQ,DK,~CP,XDN,XO.,XEDN,XEOA, 
3 ClO~,DHIGH,NR,STEP,'NAME,ISTAk,Hl,H2,H2P,H2PP,H2PPP, 
4 H3,H~,H~,H5P,H6,H7,H8.H9,HI0,Hll.H12,H13,H14,XORS,XORC, 

5 AKXC 
COMMUN 16CI AKV,AKVI,fR(S,EC,ECLL,ECCX.EOS,ECEEI,EEI,EECl,EECX, 

1 AN2.hAC 
LGMMlN ILtNSII C,~I,S~O~E,L[~PR(131 
CJ~MON IARGAb21 C~2,U02,ER,~M.NN,Al,Bl,EP,MP,N,wT 
COMMON IPASSI fIElC3,A62G,P[wERl,~KX,AKY.DlkK,P 
COMMeN IGRPHI HORIZIIOOO),VERTIIOOOI,VERTIIIOOOI 
o I ME t-; S I 0 f\J PH.j( 21 • PH4 I 21 , PH5 ( 21 • PHd 2) • PH II 121 • PHS S 12 I , P SMCNU 21 
E <.)J I V Al to N C E I P H 3, H 3 I , I P 1-<4, H 4) , I PH 5, H 51 , I P H6, H61 , ( PH 11 ,H 11 ) , 

1 IPH5S,H5SI, IPSMUlI.l,SMLJ~[) 
50 DO 53 J-=2,NT 

U2 -= XONOIJ,1I-AH~ICFkt.;) 

IFIJ2) 53,54,54 
,3 Cu,,<TIr.UE 

J = NT 
54 u1 = ABSICFR~)-XCNuIJ-l,ll 

ul = XONUIJ,11-XChLIJ-1,11 
XJN XDNOIJ,21 + U2/Uj~IXONO(J-l,21-XONOIJ,2)1 
XJA = IXDNC(J,31~Ul+XDNu(J-I,31~U2-

1 ul*lL*(XCNC(J-l,41~Iu3+U21+XCNL(J,41*'U3+Ull)/6oI/U3 

DO 153 J=2,NI1 
U2 : XDNEIJ,ll-AUSICfK~1 

[Hu21 1~3,l:'4,l54 

153 ClJl~TINUE 

J = N 11 
154 UI = ABS(DFk~I-XUhEIJ-l.ll 

U3 = XDNEIJ,ll-XDNEIJ-l,ll 
~EuN =XDNEIJ.21 + u2/L3*IXD~EIJ-l,21-XC~EIJ,21) 
XEDA IXDNEIJ,31*UI+XONlIJ-I,31*U2-

1 Ul*U2*IXLNEIJ-l,4)~IU3tU21+XCNEIJ,41~IU3+UlII/6.I/U3 

RETURN 
E:~D 
SUuRUUTINE OkIE~T 
CCMPLEX h3,H4,H:.,Ho,Hll,SMC~E,H5S 
CUMPLEX ~O,EE,EOCZ,EOCX,EOS,EGEEJ,EEI,EECI,EECX,AN2,wAC 

lGvlCAl P 
Ct:M .. "ON 

1 
~ORK(lll ,XCO,YCC,ICC,hlOE,XTll,CFRE"FR(l,Pl,P2,CKO,WOPO, 
XXI,PNLS(3) ,XNOlI21,XNElI21,XUNCI39,41,NT,XONEI39,41,NTl, 
LUT,XCtYO.XlOC,H~,XLN,DfkQ.CK,~CP,XCN,XCA,XECN,XEOA, 

DLOh,DHIGH,II.R,STEP,A~AME,ISTAR,Hl,H2,h2P,H2PP,H2PPP. 
H3,H4,h5,H5P,h6,H7,h8,b9,hlO,Hll,HI2,H13,H14,XURS,XORL, 
AKXC 

2 
3 
4 
5 
COMM~~ IBCI AKV,AKVI,~RCS,EC,E(Cl,ECCX,EOS.ECEEI,EEJ.EECI,EECX, 

1 AN2,wAI.. 
COMMeN ICCNSTI (,Pl,S~OhE,CO~PR(131 
CJMMON IARGA621 C62,D62,ER,MM,NN,Al,Bl,EP,MP.N,hT 
CUMMCN IPASSI FIELC3,A62G,PCWERI,~KX,AKy,(IRK,P 

COM~ON IGRPHI HORILIIOOO),VEkTII0001,VERTl(1000I 
o PIE NS ION PH 3 121 ,PH4 I 21 ,PH5 I 21 • PH 6 121 , PH 11 (21 • Ph5 S (21 , PS MONE 121 
EUJIVAlENCE (Ph3,H3),(PH4,H41,(Ph5,H51,IPH6,H6I,(PHll,Hlll, 

1 IPH5S,H5Sl,IPS~ONt,SMONEI 
G = 'IFRQl - IXON~OF~Q t OK*CI/XNOlIIII/IFRQl - OFNQI'.*2 - 1. 

INFk6210 
INFR6220 
INFRo230 
I NF k6240 
llliFR625Q 
INFRb26Q 
INFH6270 
INFN62~0 
INFR62'1Q 
INFH6~OO 
INFR6310 
INFR6320 
H.F1<633J 
JNFR6340 
INFRo3,J 
Jf'.FH6300 
INFR637D 
Jf'.FR6380 
INFR6390 
I NF R6400 
INFR6410 
INFR6420 
INFR643ll 
II'tFR6440 
INFR6450 
I NF R64bO 
[NFH6470 
INFR6480 
INFR6490 
INFR6500 
INFR6510 
INFRo520 
INFI<o530 
INFR6540 
I NF Ro 5 50 
ItIoFkb560 
INFR6510 
INFK6580 
INF ;{6590 
INFR6600 
INFR6610 
INFR6620 
INFR6630 
INFR6640 
INFR6650 
INFR6b60 
INFK667Q 
1 NFR6680 
INFRt.6<.i0 
INFR6100 
Il\Fk61l0 
INFR6720 
I r..F R6 730 
[NFR6740 
INFR6150 
INF~6 760 
INFRb 770 
INFRo7dO 
INFR6790 
INFR6800 
INFR6810 
I~FR6820 
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iF IABSI~I.LT.I.t-101 GC TO 59 
C FJOGf CRySTAL UKIENTATIC~ Te [LIMI~ATE PLL~RILATIUN 
C DEPENDANT EfFECTS fO~ NCN-l£KO WALK-CFF A~GLES. FOR LARGE 
C ~ALK-OFF ANGLES T~E [-RAY IS NEARLY PHASE-MAT(HtO AT LOw 
C FRE~uENCIE5 IN nHICH CASE THIS IS A BETTER APPRGXIMATICN 
C TriAN 0SlNG JUST THE O-RAY DFG AT THE ((RRECT URIEN1ATION. 
C FuR LARGE FRtQUEN~lES h~ERE THE ORIENTATIGN ANGLE IS LARGE 
C THt EFFECT OF THIS CHANGE SbCULo tiE SMALL. 

XOi{;:. = 1. 
XORe = o. 
XNELI1I = XNULlll*SCRTIG+l.1 
GLJ TO oJ 

59 XORS = 1. 
XJRC -= o. 
X,~El 111 = X~CU 1 1 

60 W;UT[ (3.10071 Xf'.;ELlll,G,XORS 
1007 FJRMAT 131~ UPTICAl E-RAY INDEX Of REF. ,E12.~,5H G 

1 U3.':i,9H XI.IL = ,1:13.51 
KETLJRN 
END 
SUbR~UTINE SETC[~(KKKr 

CJMPLEX H3,H4,h~,Hb,Hll,SMC~E,H5S 
COMPLEX EO,EE,ECCl,tuCX,ECS,ECEEI,EE1,EECl,EECX,AN2,WAC 
L~GICAl P 
COMMC~ hCRKIll"XCC,YOC,lOO,hlDE,XTLL,CFRE~,FR~l,Pl,P2,DKO,WOPO, 

1 XX1,PNlS(31,XNOl{ZI,XNELIZI,XDNUI3S,4I,NT,XoNE{39,41,NTl, 
2 CUT,Xu,YO,XLOC,E~,XLN,CFRO,CK,~DP,XDN,XOA,XECN,XEoA, 

3 OLLW,DHIGH,NR,STEP,ANAME,ISTAR,Hl,H2,HZP,HZPP,H2PPP, 
4 H3,H4,H5,H5P,hb,H7,Hd,H9,hlO,Hll,HI2,H13,HI4,XCRS,XORC, 
5 AKXC 

COMMUN IBCI AKV,AKVI,Fk~S,EC,ECCl,EGCx,EOS,~CEEJ,EEJ,EECl,EECX, 
1 ANZ,r.A( 
~C~MCN ICONSTI (,PI,S~O~E,C(~PRII31 
C~~~ON IARGA62/ C62,~62,ER,M~,NN,Al,BI,EP,MP,N,wT 
CJM~ON IP.SSI F1ElC3,A62G,PCrlER1,AKX,AKY,DIRK,P 
COMMU~ IGPPHI HURliIIOOOI,VEkTIIOOOI,VfRT1IlOOO) 
DIMENSIUN PH3(ZI,PH4121,Ph5121,PHbIZI,PHllI21,PH5SIZI,PSMONEI21 
EJJIVALENCE IPh3,H31,{P~4,H41,IPH5,H51,(Phb,H61,(PH11,Hlll, 

I (Pd5S,H~SI,IPS"'LI\E,S~LJ~EI 
AKV = OFRQ/C 
MVl = 1./AKV 
FRQS = AKV*AKV 
HI IPI*xXI*(OFRQ/CI**2*4./CI**2*Pl*P2*1.E+19 
H2 = -.L5*(8W**Z+4.*IXLOL.*UIBW*FRQLl 1**2) 
T7 = C/IFRQl*B~**ZI 
HZP -= -IXC*XUtYO*YOI/(B~.BWI 

HlPP = -l.*Tl*xu*XlOL 
HZPPP = -Z.*T7*YO*XLOC 
H5P = YO*T7/XNOl{11 
H7 XlUC*T7*C/IXNGLIll *FRQLI 
H9 = T7*.5*C/(FRQL*XNLLI11**ZI 
Ak = XDN*CFRQ/C 
HII = CMPLXIAk,XLAI 
HIZ -= Hll*CMPlXIREAl(Hll,,-AIMAG(HI1'1 
H~ = Hll*C/ABSICfRQI 
H3 = Hll*Hll 
H14 = (C/CFR~I**2 
EE = LMPlXIXECN,XECA*C/A6SICFRCII 
Et = H*EE 
EO = H3*H14 
EEl l./EE 
EOS = fO*EO 

INFk6830 
I"'FR6840 
INFR68~O 
INFRbtluO 
INFR6870 
INFR68BO 
INFt<bH90 
INFR6900 
lNFRb'illO 
INFR6920 
1 NF k6930 
JI'.FR6940 
INfR6950 
INFR6960 
INFR6970 
[NFR6980 
INFRb990 
INFR7000 
I~F,{7010 

INFR70l0 
INF R7030 
Il'.FR1040 
INFR7050 
INFR1060 
INFR7070 
INFR1080 
INFR7090 
INFK7100 
INFR1110 
INFR1l20 
INF R7130 
iNFR1l40 
INFR71~') 

INFK7100 
INFR7110 
INFR7180 
J NFK1l90 
INF R7200 
INFR7210 
JNFR7220 
INFR7230 
INFR7240 
INFR7250 
INFR7Zo0 
INFR7270 
INFR7280 
INFk7Z90 
I NF 1'<7300 
INFR7310 
INFR1320 
INFR1330 
INFR7340 
INF R 7350 
INFk73bO 
INF R73 70 
INFR73dO 
lNFR1390 
INFR7400 
INFR7410 
INFR7420 
INF R1430 
INFR7440 
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AK ~ wOP INFR7450 
AN2 = 1./IXORS**Z/LE+XGRC.*2/l01 INFR74bO 
EUEEI ~ A~2*A~2*EEI/EC INFK7470 
"AC = (EEI-l./ECI*XOKS*XGRC*AN2 INFR7480 
EOCX EC*XORS INFR7490 
E0CL EL*XURC INFR7500 
EECX EE*XORS INFR7510 
EELl ~E.XORC INFR7520 
AKXC T7*XLCC/HZ*AM.XIIABSIXOI, ABSIXO+AR*XLN), ABSIYOII INFK7530 
Hli :: AP.*17/XI';CLlll INFR7540 
Hlu = .5*(AR/Bhl**2 lNFR7550 
H5S~ A~*1.5*SMONt -T7*XLOCI lNFR75bO 
H5 = H5S -XO*T7/XNCLIll lNFK7570 

L T.~EL THE FXTR'-GRCI~ARY INDEX CF REFRACTICN fUR. kAYE INFR1580 
C PRUPAGATING AT AN ANGLE 'KCSINIXORCI FROM THE OPTIC AXIS INFR7590 
~ FGR THt. CASE (IF NEGlEGIbLE AbSlRPT ION. INFR7600 

TNEL = S ... RTll./lIXURS/XI\[UIII**2+IXCRC/XI\CUlll**211 INFR7610 
R :: OK • kEAllhll) It-.FR7b20 
Al = XNOL(ZI+XNEL(21 + XO*AR/(~h*BWI lNFR7430 
Hb .: CMPLXIR,AI I INFK7640 
H13 :: I-PNLS(11*XO~C+Pt-.lSI31*XCRSI INFR7650 
HI = Hl*14./IIXNlILllI+l.I*ITNEL+1.))I"'*2 INFR7obO 
IFIKKK.I';E.lI RElUKN INFR7670 
w~IT[ 13,20021 ~1,h2,PH3,Ph4,PH5.PHb,H7,H8,H9,HIO,PHll.H12,H13, INFR7680 

1 HI4,T7,AR,(I-.CRKIJI,J=1,41,lJFkW,b .. ,XORS,XORC, . INFR7690 
2 XLI\,XOI~,XDA,H2P,HZPP,HZPPP,PH5S,H5P JNFti.7700 

ZOOZ FURMATIZ6H DUMP UF PRESlT VALUES - IIIX,8E14.411 lNFR7710 
RETJRN lNFR7720 
ENO II\FK7730 
FuNLT1UI~ FJl:LCIPI FLA 10 
LOMPlt.x Hj,H4,H5,Hb,hll,SMOI\E,~5S FlA 20 
CO~Pl~X EU,EE,FOCI,EOCX,EUS,EOEEI.E~I,EECI,EECX.AN2.WAC FLA 30 
lLlilCAL P FLA 40 
~OMMON nORKllll ,XCO,YOC,IOO,~I~l,XTLL,DFREC,FRCl,Pl,PZ.DKO,WUPO, FlA 50 

1 XXI,PNLSI31,XNOLIZI,XNEl(21,XDNOI39,~I,NT,XDNEI39,41,Nrl, FlA 60 
2 CUT,xu,¥O,XlUC,u~,XlN,DFkQ,CK,wOP,XCN,XOA,XEDN,XlOA, FLA 10 
3 OLCh,ChIGH,NR,STEP,AI\AME,ISTAR,Hl,HZ,H2P,HZPP,H2PPP, FLA 80 
4 H3,H4,H5,H5P,H6,H7,~a,~9,HI0.Hll,HI2,H13,H14,XCRS.XORC, FlA 90 
5 AKXC FLA 100 
CJ~~UN IHCI AKv,AKVI,FRCS,EC,ELCI,FCCX,EGS,ECEEI,EEI,EECl,EECX, FLA 110 

1 AN2,I'>AC HA 120 
CGMMeN ICOi~STI l,Pl,Sfo'Ol\E,CCMFIU131 FLA 130 
CuMMCN IPASSI FIElC3,A62G,PC~ERl,AKX,AKY.CIRK,~~ FlA 1~0 
CO~MUN IGRPHI HOkllllOOOI,VERTllOOCI,VEKllllOCOI FlA 150 
DIMENSION PH312),PH412I,PH5IZI,PH6121,PHll(ZI,PH5S(21,PSMONEI2) FLA 160 
E~uIVALENCE IPH3,HJI,IPH4,H41,IPH5,H51,(PH6,H6),IPHll,Hll'. FlA 170 

1 IPH?S,H5SI,(I'SMCNE,SMONEI HA 180 
COMPLEX CRP,ORM,AP,AM,8P,HM,RI',RM,PP,PM,Tfo'T,UMT,FMT,AMMT,DP,DM,OF FLA 190 
CGMPLEX GP,CM,EP,E,."AKLlP,A~LEI',AKICM.AKlE,."EPTl,EPT2,EPT3, FLA 200 

1 FMTl,EMTZ.EMT3,[Pl,Lfo'l.EPl,[ML,GRPJ,GRMT,AKIEl,AKIE2. FLA 210 
2 GEM,GEP,Q,TZ,Tl FLA 220 

DIMENSIuN UPI31,CMI31,EPI31,EMI31,AKTV(21 FLA 230 
DIMENSION CRP(4),URMI4),API4),AMI4),BPI41,BMI41,RP(4),RMI41,PP(2I,FLA 240 

1 PMI2I,TMTl41.UMTI~I,FMTI41.A"'MTl41 fLA 250 
lOGICAL CEBUG,QC FLA 260 
OAT A ICNT 101 flA 210 
OIMEt-;SliJN PTlIZ),PT2IZ),PT2CI2) HA 280 
EQJIVALENCE IAKIOP,Tl,PTI),IT2,PT21,IPT20,JZOI,(PT20,J21'. FlA 290 

1 IPT2012),T221 H'\ 300 
COMPLEX Tl,T2.T3,T4,T6,T20 FLA 310 
DIMENSION TT4121rTT3121 HA 320 
EJ0IvAlENCE IT4,TT4,Rll.(TT4/21,SI',IT3,TT3,R2),(TT3121,S21 FLA 330 
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EQUIVALEt-.Cf IPT2,R31,IPT2(21,S31 FLA 340 
DIMENSION PAKl[PI2I,PAKlEMI21 FLA 3~0 
EJUIVALENCE If'Tl,R4I,If'T 1I21,S41 FLA 360 
EQLJ!VALEt-.CI: It'AKZEP,R5,~KlEPI"PAKlE:P(2I,S51 FLA 370 
EJLJIVAlENCE IPAKlEM,Ro,AKlE~I,IPAKlEMI2I,Sol,IPT2,R31,IPT212I,S31 flA 380 
COMPLEX ~OFl fLA 390 
ICr-.T = ICNT+l fLA 400 
JErlJG = IILN1.LE.~11 fLA 410 
LJ = AKY**2 FLA 420 
AKX$ = AKX*AKX FLA 430 
V = U+AKXS FLA 440 
OIKK = S~RTI1.-V*HI41 FLA 450 

C 11 = THE l (CMP(NE:NT CF K IN TI-E CRYSTAL FLA 460 
AKlJP = CSWRTI~3-VJ FlA 470 

C T2 = 2.*GA~MA*ETA FLA 480 
T2 = SMONE * ITI-hb I + ~'7*V - H5*AKX +H~P*AKY FLA 490 
IFIUEBuGI ~RITE13,23011 L,V,PT1,PT2 FLA 500 

C T5 GAMMA FLA 510 
T5 He*AKX +H9*V + HIO fLA 520 

C T3 GAMMA**.5 FLA 530 
T3 S~kTIT51 FLA 540 

C T4 GAMMA**.5*ETA FlA 5~0 
T4 T2/12.*T31 fLA 560 
TI0 = ~2P+H2PP*~KX+~2PPF*AKY-2.*~IMAGIAKlCPI*XLN FLA 570 

C FIELD = THE SQUARE: 01- THE MOCULUS CF THE fIELD GENERATED FLA 580 
C AT THE fAK Er-.D uF THt CRYSTAL ~/C BCUNDARY CONDITIONS flA 590 
C 1,'IATCHlt-.G LIr-.fAR ,"'tOIA) At-.D ... /0 THE [Xi' ABSORPTION TERM flA 600 

IFiOEtiLJGI WfdTt(3,23041 13,T4,110 flA 610 
DEL = XlN*T3 fLA 620 
IFIABSIDELl.U.I.O(Jlll CC TL 200 fLA 630 
FIELD = t'1/14.*IREALIT31**2+AIMAGtT31**211 fLA 640 
T3 = uEl + T4 fLA 650 
IFIShlfTIIR1.~NC.K2.A~O.4000000000COCOCCOOOObl,1).EQ.1I 3CO,400 fLA 660 

200 Tv = Il.-EXPI-R3*Xlt-.I*(MPlXICGSIS3*XlNI,-SINIS3*XLNIII/IT1*T21 flA 670 
IF IIAB~(Sll+ABSIS2I+A[jSIR11+ABSI"211.LT.1.E-31 FLA 680 

1 T6 = XLN*(1.-0El*IT4 + .33333333333333*DEl)I/TI fLA 690 
FIElu = EXP{h2*v+TIOI*IRlALITLI**2+AIMAGIT61**21 FlA 700 
~U TO 210 FLA 710 

300 T10 = TI0 - 2.*CEl*(Otl~2.*PEALIT41) FlA 7£0 
T6 -CUhJGIT31 fLA 730 
T3 = -CuNJ~IT41 fLA 740 
T4 = T6 fLA 7~0 

400 FIELD = FIElD*EXPlh2*V+TIJI FlA 760 
T20 = (T4-T31*IT3+141 FlA 770 
T6 = I~OFll-S1,Rl'-EXPI1211*C~PLX'C(SIT22I,SlhlT2211 FLA 780 

1 *WOFll-S2,H211/Tl flA 790 
IF I(AHS{Sll+A[jSIS21+ALSIRlltAB~(R211.LT.l.E-3) FlA 800 

1 Tu = UEL*ll.-UEl*IT4 + .33333333333333*DE:LII*1.12d3191b7095~1/Tl flA 810 
FJELD = FIELC*IHEALlTbI**2+AIMAGlTcl**21 FLA 820 

210 IFIUEDU~I WRITE13,23041 kL,S2,Rl,Sl,T6 flA 830 
IF(JEt3UGl .. RITEU,23071 T3,14,FlElD flA 840 
TOP1 = XCHS*AKY FlA 850 
TOP2 = -XCRC*AKY fLA 860 
TJP) = XURC*AKX rLA 870 
OPl21 = TOP3 - XGHS*AKlOP fLA 880 
OPL = 1./CSQRT(CPI21*CPI21+UI flA 890 
OPIll GPL*TCP2 FLA 900 
UPI21 OPI21*CPL FlA 910 
UPI31 = GPL*TCi'l fLA 920 
AKLVP = AKV*CIRK fLA 930 
AKT = S~RTIVI fLA 940 
AKTVll) = AKX/AKl fLA 9~0 
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AKTVI21 = AKY/AKT FlA 
APll) = -OPlll*AKTVI21+0PI21*AKTVlll FlA 
APIZI =IAKlO~*IAKTVlll*OPlll+AKTVIZI*OPIZII - AKT*CPI3It*AKVl FlA 
ORP'l'= IA~lVP-AKlOPI/IAKlVP+AKICPI F~A 
ORP 121 = I-AKlLP+AKIVP*~C II I AKICP+AKIVP*ECI FlA 
~AA = EXPI-XlN*S~1 FlA 
TPER = 1I1.-KEAlIUKPIlIII"'2+AIMAGICRPIlIl""21 flA 

1 II1.-ILAA*IREAl'LRPllll**2+AIMAGICKPlltl**ZII**2t FlA 
2 *IREAlIAPIlll**2+AI/lAGIAPIlH**n . flA 

TPl Ill.-KEALll'KPI2111**2+AI/lAGICRPIZII**ZI FlA 
1 111.-ILAA*IKEAlILkPI21I •• Z+AIMAGIORPI211**~II**Z) flA 
2 *'REALlAPI2II**2+AI,...AGIAPIZII**ZI FLA 
~= PNlSlll*OPlll+PNlSIZI*G~121+P~LSI31*OPI31 F~A 
fIELD = FIElC*IKtAlIQI**Z+AIMAGI~I**ZI FLA 
FIEL03 FIElD*REAlIAKLCPI*AKVI FlA 

1 *IREAlIOPI111**2 + AI/lAGICPI111**Z FLA 
2 + R£ALIOPI211**Z + AI~AGICPI211**Z FLA 
3 + REALILP(311**2 + AI,..AGICPI311**21 FLA 

FIELD FI~LO*ITPER + TPLI*OIRK FlA 
IFI.NOT.CEdUGI RETURN FLA 
~RITE (3,10031 AKX,AKY ,AKXS,V,AKZ[P,TCPl,TCP2,1CP3,OP,OPL, FLA 

X AKTV,AKT FLA 
WRITE 13,10011 CRP,AP,FIELO,FIEL03,CAA,TPER,TPL FLA 
RETURN FLA 

1001 FORMAfllbH DATA ANC VALLE~ I gH eRP = ,SE13.51 fLA 
19H Ai' = ,8E13.5/9H FIELD = ,8E13.51 FlA 

1003 FJkMAT( 6H AKX =,EI3.5,6H AKY = .EI3.5,3X,EI3.5,3X,EI3.51 FLA 
1 9H AKluP = ,5El3.5/9h CP = ,8El3.51 FlA 
4 9H AKTV = ,3El3.~111I FLA 

2301 FJRMATI20H FIElC CEBUC ~RINT ,10X,6E15.41 FLA 
230Z FJKMATIIH ,E14.4,ZE15.41 FlA 
230lt FJ~MATI()E15.41 FLA 
2307 FJR~ATI5E15.41 fLA 

END FLA 
* FORTRAN CO~PLEX ERRLR FU~CTIL~ FLA 

COMPLEX FUNCTIL~ nOFIIU,VI FlA 
C CQ~PLEX ERROR FU~CTION ~.G~UTSCHI ALGORITHM 363 FLA 
C CU~M. ACM VUL 12 NO 11 NLV 1969 PAGE 635 FLA 
C EFFICIENT CCMPUTATIC~ OF THE COMPl~X ERROR FUNCTION FLA 
C nALTER GAUTSCHI SIAM JR. NUMERICAL ANALYSIS VOL 7 NO 1 FLA 
C MARCH 1970 PAGE 187 THEORY ~UMERICAl CEVELCPMENT RESULTS fLA 

REAL IM,lMHJDA FLA 
INTEGER CAPN,B FLA 

C WIl'=EXPI-I*IIEkFCI-IZI l=X+IY )to. YtO. ACCURACY 10 OECFLA 
Ol~E~SIJN 00CI21 FLA 
blUIVALENCE IDOC,nCFl,RU'(00CI21,11(1 FLA 
X = ABSIUI FlA 
Y = ABSIVI FLA 
IFIIY.LT.4.291.A~D.IX.LT.5.331)~5,1 FLA 

55 S=I 1.-Y/~.291*S~RTFll.-X*X/Z~.41) FlA 
H=1.6~S $r2:h+h SCAPN=6+Z3*S SNU=9+21*S SGO TO Z fLA 

1 H=O. f,CAP/',=O SNU=8 FlA 
2 IFIH.GT.O.I LAMeDA=~Z**CAP~ FLA 

1 F I 1 H • E (J .0. ) • OR • I LA., bOA. E <.l .0 • I 154,3 F LA 
~4 8=1 SGO TO 4 FLA 
3 B=O FLA 
4 Rl=R2=Sl=SZ=0. f,~~l=~U+l $00 5 NKL=l,NUl $N=NUI-NKL $NP1=N+IFLA 

T1=Y+H+NP1*Rl $T2=X-NP1*RZ $C=.5/ITl*Tl+T2*1ZI $~I=C*Tl FLA 
R2=C*T2 $IF'(~.GI.O.I.ANO.(N.LE.CAPNI153,5 FlA 

53 Tl=LAM~DA+Sl FLA 
~1=Rl*TI-R2*S2 $S2=~Z*T1+~1.S2 SLAMBOA=LAMBOA/H2 FLA 

5 CO~TINUE SIFlb) 52,B FLA 

960 
970 
980 
990 

1000 
1010 
1020 
IP30 
1040 
10!>0 
1060 
1070 
1080 
11)90 
HOO 
1110 
1UO 
1130 
1140 
1.150 
1160 
1170 
11 dO 
1190 
1200 
lZ10 
1220 
1230 
lZitO 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
HOP 
1410 
1420 
1430 
1440 
1450 
1460 
lit 70 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
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52 ItMP=Rl $TEMI"=R2 $GG Te c;c; 
8 TEMP=Sl$T~~M=S2 

99 IFIY.EQ.O.1 5'1,'1 
~~ KE=EXPFI-X*XI $GL IC 6 

9 KE=1.1283191~10'1551*TEMP 
6 IM=1.12Uj19167C9551*TEMM 

7 

IFlv.LI.U.1 wUFl = -CL~JG(wLFl/ + 2.*EXP(V*V-X*X/* 
1 CMPLXICCS(Z.*X*VI,SIN(2.*X*V)/ 

1'1 = IM*SlGN(l.,LJ) 
RE T JRt, 
ENO 

FLA 1580 
FLA 1590 
FLA 1600 
flA 1610 
FlA 1620 
flA 1030 
FlA 1640 
FlA 1650 
FlA 1660 
FlA 1610 
FLA 1680 
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APPENDIX D 

The plane wave square pulse laser fields are given by 

E,Q,(z,t) =Lp E,Q,p(Z,t) with 

E,Q,p(Z,t) = &,Q,p 2cos[wO(t-znp/c)] 

= 0 

o < t-zn Ic < '[ 
p 

otherwise. 

(Dl) 

If we make the simplifying assumptions that only the beating of optical 

polarizations j and k to generate far-infrared polarization i has 

non-zero tensor elements and that the optical pulses still overlap 

at z = ,Q" then the solution to Eq. (42) is 

00 

-+ L -+(s) -+(s) E.(t,,Q,) = (l-R
i

) [E. (t ,z=,Q,)-R.E. (t -n.,Q,lc,z=O)] 
1 , m=O 1 m 11m 1 

(D2) 

E~S) (t,z=,Q,) = 
1 

o 
-+ -1 

-E. (n. -n.) cos (w . t ) 
1 1 J -J r 

o 

} 

o 

t < t 
r j 

tj < tr < min(ti,tk+T) 

ti < tr < t k+'[ 

tk+r < t < t. 
r 1 

max ( t. , t
k

+'[) < t < t . +'[ 
1. r 1 

t.+'[ < t 
1 r 
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and 

E~S)(t,Z=O) = 
1 

o 
+ -1 

-Ei (ni+nj ) eos(w+jt) 

o 

where 

and 

E. 
1 

_ 8n <+NL + + = -- X :E9.,.E nk (1-o·k /2) 
n i J Yv J 

n.±n 
1 P 

t - t - n.Me 
r 1 

(p=j or k) 

t = n 9.,/e (q i, j, or k) 
q q 

n. = n. (W ). 
J J 0' 

ni > nj ~ ~ has been assumed. 

t < 0 

o < t < min(T,ti+tj ) 

t.+t. < t < T 
1 J 

T < t < t.+t. 
1 J 

max (T , t i +t j) < t < t i +tk +T 

ti+tk+T < t 
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APPENDIX E 

Determination of the Least Squares Fitting 
Parameters ~ and Their Covariance Matrix 

2 The minimization of X was based on a local lineqrization of 

+ + + + 
P(w,e,a) on the three components of a: P(w,e,a

n
+l ) ~ P(w,e,a

n
) + 

+ + + 
V+P(w,e,a )o(a +l-a ). ann n 

+ 
When a was sufficiently close tp the solution 

n 
+* a , the standard linear solution of the resulting equations was used. 

+ + 
Whenever this procedure gave a step, a +l-a , at an angle greater than 

n n . 

cos-l(.Ol) = 89.4° to the gradient (after scaling the components of ;) 

+ 
V+P(w,e,a ), a step along the above gradient was taken instead of the 

a n 
+* normal calculated step. After the solution, a , was found by iterating 

the above procedure, the variance of the absorption coefficient was 

obtained by the standard linear Least squares fitting method (see 

B. W. Lindgren, Statistical Theory, (MacMillan, N.Y., 1962), p.386f) 

+ +* 
from the local linearization of P(w,e,a) about a using the assumption 

that the variances of all our power measurements P. at a given far-
1 

2 
infrared frequency were equal to a (w), a value measured near the peak 

p 

of each phase matching function. 
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Let M == (Y y) 
Y 

Y = 

, ) 5 
, 
~ 

q 
~1 

-+ 
P1-p(W,eba*) 

-+ 
P2-P(w,e2,a*) 

:J ) ,J 
.. ~. 'f 

-139-

ap ( e *) ap ( e -+*) ap ( e -+*) aA w, 1,a , al'.O w, 1,a , at w, l,a 

Then following Lindgren: 

2 
or if M = a (w) I, then 

y p 

where X and Yare the transposes of X and Y, respectively. The matrix 

Xx is adequately approximated by the matrix inverted at the last step 

2 -+ ~ -+-+ 
of the iterative solution since V-+x (a) = 2XX' (a-a*). 

a 
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FIGURE CAPTIONS 

Fig. 1. Wavevector diagram for reflection of a plane w~ve incident 

from the vacuum side on the plane interface between vacuum and 

uniaxial crystal half-spaces: (a) crystal fills the right 

half-space; (b) crystal fills the left half space and (c) an 

equivalent diagram with the crystal on the right (Therefore~ 

Fig. l(b) is equivalent to Fig. 2(c) below.). 

Fig, 2. Wavevector diagrams showing (a) boundary transmission and 

Fig. 3. 

fig, 4. 

Fig. 5. 

Fig. 6. 

reflection of ordinary and extraordinary waye~ and its 

decomposition into (b) and (c) which describe two simpler 

cases of linear transmission and reflection of waves at an 

interface. 

Angular distribution of far-infrared power output at w 

with the axial phase mismatch at its optimum value l1k 
a 

-5.1 -1 a near optimum focal spot radius w ;= 25 cm , ]Jm, 

walk-off angle S = 0, and a crystal length ~ 1 cm. 

Far-infrared power output at w 100 
-1 

a function cm as 

l1k R., 
a 

assuming a = 0, s = 0, w = 25 ]Jm and R. 1 cm. 

Far-infrared power output at w = 100 -1 a function cm as 

l1k ~ assuming a = 0, s = 0, w = 0.2 mm, and ~ = 1 cm. 
a 

100 

a zero 

of 

of 

-1 cm 

. -1 
Far-infrared power output at w = 100 cm as a function of the 

focal spot radius w for various walk-off angles S, a = 0, and 

~ = 1 cm •. The calculation was done by always adjusting the 

axial phase mismatch l1k to its optimum value for maximum 
a 

power output. 
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Fig. 7. Angular distribution of far-infrared power output at w = 10 cm-l 

-1 
for 6k = -4.0 cm ,w = 25 ~m, ~ = 0, a = 0, and ~ = 1 cm. 

a 

Fig. 8. 

Fig. 9. 

-1 
The azimuth ¢ is defined by ¢ = tan (y/x). 

-1 
Far-infrared power output at w = 10 cm as a function of 

6k ~ assuming a = 0, ~ = 0, w = 25 ~m, and ~ = 1 cm. 
a 

-1 
Far-infrared power output at w = 10 cm as a function of the 

focal spot radius w for various walk-off angles ~, a = 0, and 

~ = 1 cm. The axial phase mismatch was always adjusted to its 

optimum value in the calculation. 

Fig. 10. Angular distribution of the far-infrared power output at 

-1 w 10 cm for various walk-off angles ~ assuming w = 25 ~m, 

a 0, ~ = 1 cm, and the optimum value of 6k (~). All curves, 
a 

were computed in the ¢ o plane. 

Fig. 11. P(a)/P(a = 0) versus a showing the reduction of output power 

Fig. 12. 

due to far-infrared absorption. For each point on the curves 

-1 -1 
for w = 10 cm and w = 100 cm ,w = 25 ~m, an optimum 

value of 6k , and an optimum location of the focal plane 
a 

were used in the calculation. A corresponding curve 

calculated from the plane wave model is also shown for 

comparison. 

Optimum values of 6k ~ versus the absorption coefficient a 
a 

for the case of Fig. 11 with w = 100 cm-l where 6k is the 
a 

axial phase mismatch. 

Fig. 13. Comparison of the results of the Gaussian distribution model, 

the plane wave model, and our present calculation for 

-1 w = 100 cm ,a = 0, ~ = 0, and ~ = 1 cm. 
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" Fig. 14. Comparison of the results of the Gaussiqn diptribution model 

-1 
and our present calculation for w = 10 cm ., ex = 0, Q, = 0, 

and Q, = 1 cm. 

Fig. 15. Phase-matched wavevector diagrams for (a) second harmonic 

generation and (b) difference frequency generation. 

Fig. 16. Second harmonic power output as a function of 6k Q, when 
a 

6kSQ, = 100. [After Boyd and Kleinman, Jour. App1. Phys. ]2, 
R 

3597 (1968)]. 

Fig. 17. Second harmonic power output as a function of 6k Q, when a 
S 6kRQ, = 5.68. [After Boyd and Kleinman op.cit.] 

Fig. 18. The far-infrared spectrum computed from Eq. (6) for a 2 psec. 

(full width at half-maximum) Nd laser pulse normally incident 

on a l-mm LiNb0
3 

slab. The crystal is oriented with the 

c-axis parallel to the plane surfaces of the slab and the 

-6 laser pulse is polarized along the c-axis (X
33 

= 1.57xlO esu). 

The other parameters used in th~ calculation are w = 0.017 cm. 
o 

(corresponding to a 4-mrad. divergence of the laser beam), 

(w) 
L = 135 cm., n. 

1 
5.05 and n~wo) = 2.2. The solid apd the 

1 

dashed curves are computed with and without boundary conditions 

respecti vely. 

Fig. 19. The far-infrared spectrum computed from Eq. (6) with the 

same laser parameters as in Fig. 1. Here, the" l-mm slab is 

oriented with the c-axis tilted at 16.8° away from the normal 

of the slab, and the a-axis is in the plane defined by the 

c-axis and the normal. The laser is polarized at 45° to the 
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NL -6 
plane, so that only X24 = 1.54 x 10 esu is responsible for 

the difference-frequency signal with polarization perpendicular 

A A A 

to the plane. With i = j (along the b-axis) and k being the 

directions of polarizations of the ordinary and the extra-

A 

ordinary light propagating along z respectively, we have 

n~w) = 6.6, n. (wo) = 2.2, and n (wo) = 2.193. 
1. . 1. k 

Fie. 20. The electric field for the optical rectification case (as in 

Fig. 18). The optical input is a 2 psec square pulse and 

linear boundary reflections are ignored. Upper curve: field 

that travels back toward the laser (z < 0). Lower curve: 

field that propagates in the direction of the laser beam 

(z > Q,). 

Fig. 21. The spectrum of the sum of the lower and first reflection 

of the upper curves in Fig. 20 illustrating the interference 

of these two fields. 

Fig. 22. The backward (z < 0; upper curve) and forward (z > Q,; 

lower curve) wave electric fields for the o-ray, e-ray 

mixing case (as in Fig. 19). The optical input pulse is a 

2 psec square pulse and linear boundary reflections are 

ignored. 

Fig. 23. Wavevectors in non-collinear phase matching: (a) the phase 

matched case - k. = n.w./c; w3 
1. 1. 1. 

frequency generation. (b) The unmatched case. 
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Fig, 24. Dual-frequency dye laser system. The RQby laser be~m was 

circularly polarized with a quarter-wave plate. The twq 

output frequencies could be independently tuned from 8100 to 

8400A . 

. Fig. 25. Far-infrared bandwidth versus angular width of the phase 

matching function for 1.61 mm (solid line) and 1 cm (dashed 

line) thick LiNb03 samples used to generate o-ray far-infrared 

radiation in a type II collinear phase matching configuration 

-1 
at a 21 cm difference frequency. 

Fig. 26. Experimental measurement of the phase matching function for 

our 1.61 mm thick LiNb0
3 

sample at 21 cm-l The solid curve 

-1 is the theoretical phase matching function for a 3 cm 

far-infrared bandwidth. 

Fig. 27. O-ray absorption coefficient of LiNb03 • The solid curve is a 

-1 
composite of Bosomworth's (below 70 cm ) and of Barker and 

-1 
Loudon's (above 70 cm ) o-ray absorption coefficients. 

Fig. 28. Far-infrared peak power generated in LiNb03 versus difference 

frequency for three phase matching methods. The solid curves 

are the plane wave theory including the calcuLated dispersion 

of X24 (collinear) or X33 (non-collinear). 

Fig. 29. Calculated far-infrared power vs. frequency for FCPM in LiNb03 

with monochromatic lasers neglecting the dispersion of X24' 

The lower curve includes the exact boundary conditions 

discussed in chapter II; the upper curve is the power in the 

absence of all reflections. (a) Coaxial pump laser beams; 

(b) Laser beam axes .5 mm apart. 
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Fig. 30. Dispersion of Ix;z) 12 in LiNb0 3 . The circles are our 

experimental measurements. The solid curve is a multiple 

simple-harmonie-oscillator calculation based on the Raman 

cross sections of Kaminow and Johnston and the TO phonon 

oscillator strengths, frequencies, and 1inewidths of Barker 

and Loudon. 

Fig. 31. Dye laser system used for non-collinear phase matching 

experiments in LiNb03 . 

Fig. 32. Schematic of the LiNb03 cube used for our non-collinear 

phase matching experiments. 

Fig. 33. Dispersion of the electronic, r , and ionic, r , contributions 
e q 

to the linear electro-optic coefficient r
42 

of CdS from the 

Raman scattering data of Ralston et a1. 
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