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ABSTRACT

Three investigations of difference frequency generation (DFG) of
far-infrared radiation by optical mixing are described: a theory of
DFG by monochromatic, focused Gaussian pump laser beams, a theory of
DFG by a picosecond pump laser pulse, and an experiment using ruby-pumped
dye lasers. First, the theory of far-infrared generation by optical
mixing of monochromatic, focused Gaussian beams in a uniaxial crystal
is developed, taking into account the effects of diffraction, absorption,
double refraction, and multiple reflections and total reflection at
the boundary surfaces. (Reflection and transmission coefficients of
a uniaxial crystal slab are derived by a new matrix technique.) Results
of numerical calculations are presented. Focusing the pump beams
appreciably enhances the far-infrared output despite the strong far-
infrared diffraction. In a l-cm long crystal, the optimum focal spot
size 1s approximately equal to or smaller than the far-infrared
wavelength for output frequencies less than 100 cm_ll Double refraction
of the pump beams is relatively unimportant. Both far-infrared absorp-
tion and boundary reflections have major effects on the far-infrared

output and its angular distribution. The former is often the factor



which limits the output power. We show that a simple model treating

the nonlinear polarization as a constant 1/e-radius Gaussian distribution
of radiating dipoles adequately describes the effect of pump-beam
focusing. We also compare the results of our calculations with those
for second-harmonic generation. Second, a theoretical calculation of
far-infrared power spectra generated by picosecond pulses in a nonlinear
crystal is developed. The results are illustrated with two practical
examples: LiNbO3 slabs oriented for rectification of the optical e-ray
and for beating of the optical o-ray with the optical e-ray. The

former is phase matched at O cm—l; the latter, at both the forward-(FCPM)
and backward-collinear phase-matching frequencies. The one-dimensional,
time-dependent electric field is discussed and then used to explain

the origin of the oscillation periods in the power spectra. Finally,

a series of experiments using a pair of ruby-pumped dye lasers and a
novel dual-frequency dye laser system is described. With these two
laser systems, continuously tunable far-infrared radiation in the
frequency range 20 to 190 cm_l was generated. TForward-, backward-,

and non-collinear phasematching in LiNbO3 at frequencies between 20

and 160 cm—1 were investigated; 90° noncritical FCPM was also observed
in Zn0 at 190 cm_l, CdS at 180 cmfl, and ZnS at 91 cm_l. The highest
peak power (~200 mW) and the broadest tuning range using a single

crystal sample (40 to 160 cm_l) were obtained with noncollinear phase

matching in LiNbOB.
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CHAPTER I. DIFFERENCE FREQUENCY GENERATION OF FAR-INFRARED
RADIATION AS A NONLINEAR OPTICS RESEARCH TOPIC

I. Introduction

For the purposes of this thesis, dptical difference frequency
generation is defined as a process in which two optical waves mix in
an electro-optic crystal to create a third electromagnetic wave at
their difference frequency. There are three fundamental reasons why
investigation of this process has been an active area of nonlinear
optics research for over a decade. TFirst, the generation process
itself differs from second harmonic generation (SHG) enough to require
a separaﬁe analysis. When the pump frequencies are a factor of ten
or more larger than the difference frequency as in typical far-infrared
generation experiments, the large diffraction angle of the difference
frequency wave compared to the pump waves can make the approximations
used to describe SHG inapplicable. Second, the dispersion of the DFG
susceptibility provides data on the low frequency excitations of the
nonlinear crystal (e.g., magnons and phonons) which do not contribute
to the optical or near-infrared SHG susceptibilities. Finally, DFG
is a means of transferring the tunability of optical lasers or
parametric osqillators into lower frequency regions where tunable
bright coherent sources have not yet been developed.

Since the 1920s, radio engineers have known how to generate coherent
radiation from a few kHz to 100 MHz or more. In the 1930s, the split-
anode magnetron extended radio frequency techniques to cm wavelengths,

and in response to the need for cm wavelength radar, the klystron,



the multicavity magnetron, and the traveling wave tube - invented during
the World War II years - extended the wavelength range to the millimeter
regime. After the war, these tgchniques were pushed into sub-millimeter
wavelengths so that now carcinotrons can reach 350 um.l At the other
end of the spectrum from the near-ultraviolet down through the near-
infrared, organic dye lasers have provided bright tunable sources while
parametric oscillators and spin-flip Raman lasers cover a region that
extends down into the medium-infrared.

The 30 to 500 cm—l (333 to 20 ym wavelength) part of the far-infrared
region has proved more resistent to the development of bright tunable
sources using either radio frequency or optical techniques. For decades
one of the best radiation sources for far-infrared spectroscopy has
been the quartz envelope high-pressure mercury arc lamp; when used in
Fourler transform spectroscopy, it is still the most versatile far-
infrared source. An ideal 5000°K blackbody of 1 cm2 surface area is
a convenient sourcé to compare with, since.between 30 and 70 cm_l the
high-pressure mercury arc radiates like a 5000 to 6000°K blackbody.

(By 150 cm_l its effective temperature has dropped to 1000°K.2)
Although its total radiated power is 3.5 kW, only 0.54 W or 0.015%

of this power is in the 30 to 500 cm_.1 spectral region and only 0.13 oW
is ina 1l cm—_l bandwidth at 100 cm_l.

Many quantum electronic systems generate coherent far-infrared
radiation without using difference frequency generation. Glow discharge
S, and SO, molecular gas lasers3 provide bright

pumped HCN, H,O0, H

2 2 2

coherent continuous wave (cw) or repetitively pulsed sources. Since
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they are not tunable, they are of limited use for spectroscopy.
Optically pumped molecular gas lasers4 offer more promise as a
spectroscopic source. With a single TEA 002 pump laser, many organic
molecules can be made to lase - each at its own far-infrared wavelength.
Although these sources are not tunable either, the sheer number of

such wavelengths should make such a system useful for low resolution
spectroscopy of broad band transitions and high resolution spectroscopy
of line transitions (by means of a Stark shift, etc.). PbSe and
Pbl_XSnXTe semiconductor p-n junction lasers have been operated in the
far—-infrared.l The PbSe lasér has been pressure tuned from 455 to

i370 cm_l;s’6 éo a Pbl_xSnXTe laser system7 might be pressure tunable
over a significant part of the far-infrared. Stimulated Raman and
stimulated polariton scattering have also provided tunable far-infrared

3’

sources. Very recently, far-infrared radiation has also been

observed in the output of the InSb spin~flip Raman laser.g’lO
Relativistic electron beéms can also generate far-infrared
radiation at harmonics of the accelerator bunching frequencyll or at
a wavelength approximately equal to the Doppler-shifted period of a
spatially periodic magnetic field.12 The harmonics of the bunching
frequency can be generated, for example, as Cerenkov radiation in a
waveguide loaded with a periodic slow wave structure.l.l The Doppler
shifted schemes have been of more interest lately due to the possibility
of free-electron laser action13 and a potentially much larger tuning

range. Elias gﬁugi.lz have measured a gain of 0.07 per pass at 10.6 um

using a 70 mA instantaneous peak electron current, 24 MeV electron beam



in a 5.2 m long, 3.2 cm pitch, 2.4 kG helical magnetic field. Using

the same magnet with a 1 amp, 8 MeV electron beam, the output wavelength
and the galn per pass would be 95 um (105 cm_1 frequency) and e27,
respectively. Unfortunately, electron accelerators capable of reaching
relativistic energies are expensive to build and operate; thus, far-
infrared sources based on relativistic electron beams will probably

be feasible, if at all, only at laboratories that possess the necessary
accelerator for other purposes.

The experimental observations of far-infrared generation by
nonlinear optical difference frequency mixing can be sorted into two
groups by the spectral characteristics of the pump source. In the
first group of experiments, the Fourier components of a single broad
bandwidth laser form the pump source. With such a laser Zernike
and Berman14 observed the first reported nonlinear optical difference
frequency generation of far-infrared radiation in 1965. They illuminated
a quartz crystal that was cut for collinear phase matching at ~100 cmfl
with the broad bandwidth output of a free-running Nd+3:glass laser
and observed random difference frequency spikes. Yajima and Takeuchi15
reported observing the far-infrared radiation generated by a Q-switched

Nd+3:glass laser in LiNbO
15,16

3 in their paper on DFG by picosecond pulses.

Yajima and Takeuchi, Yang gg_gl.,l7 and Takeuchi gE_gl,l8 have

observed the self-beating of the frequency components of a picosecond

mode-locked Nd™3 : glass laser pulse in various crystals: LiNb03,15_l7

e,15’16 7 15

InT nSe, 'CdS,lS quartz,15 and LiIO0 these experiments

A
3,

have demonstrated a means of generating tunable far-infrared pulses
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a few tens of picoseconds in duration. More recently, Matsumoto and
Yajima19 have reported far-infrared generation in ZnTe, LiNbO,, and
ZnSe using the output of broad bandwidth ruby-pumped dye lasers.

The second group, which includes the majority of far-infrared
generation by difference frequency mixing experiments, uses two nearly
monochromatic pump beams. Such experiments have been reported by
over half a dozen research groups under a wide variety of experimental
conditions in the twelve years since Zernike and Berman's experiment.
Many different combinations of laser systems and nonlinear crystals

have been used to investigate the DFG process: CO, laser lines in

2
20-25 26-42

InSb GaAs and ZnGeP a CO, laser and a spin-flip Raman

2 2
44-49

laser beam in InShb; R, and R, lines from a specially constructed

1 2
. 50-52 .
ruby laser in ZnTe; temperature tuned ruby laser lines from a

pair of simultaneously Q-switched ruby lasers in LiNbO 23-57 a

3
53 . 58-60
quartz; ruby-pumped Raman lasers in GaP; and ruby-pumped dye

Zn0, ZnS, and CdS6l“63 and in reduced (black) LiNbO

nd

64

lasers in LiNbO 3¢

3
The most common experimental scheme uses collinear pump beams and

generates a far-infrared wave that propagates in the same direction

as the pump waves. Usually the mixing process is phase matched for

efficient far-infrared generation, but in a few experimentszo’25’28’50~52

phase matching was unnecessary; in most of these cases the coherence

length for far-infrared generation was longer than the effective sample

20,28,50-52
or to a large

length due to either a fortunate coincidence
optical absorption coefficient.64 Usually collinear phase matching is

attained through the dependence of the birefringence of uniaxial crystals



on their orientation. This mechanism doesn't exist in isotropic crystals,

so various ingenious methods have been employed to achieve collinear

phase matching: Nguyen and Patelzz’23 used a static magnetic field

to induce birefringence in InSb through the Voigt22 or Faraday23 effects;

Zernike21 temperature tuned the 9.6 and 10.6 U refractive indices of

InSb; Nguyen and Bridges44—48 used the free carrier concentration

(by selecting a properly doped sample) to set the plasma frequency

and hence the 9.6 and 10.6 y refractive indices of InSb; finally, Thompson

and Coleman,zg"31 the Bell Labs groups,26’27 and Bogatkin_gg_él.32

have used the waveguide dispersion of GaAs (or GaAs filled) waveguides.
In isotropic materials the most generally useful phase matching

technique is noncollinear phase matching (NCPM) in which a slight angle

between the pump beams is used to compensate for the higher far-infrared

refractive index. Of course, NCPM can also be used in birefringent

crystals. DeMartini,SS_60 the Berkeley group,62 and the National

Magnet Lab group34_42 have successfully employed this technique; the .

latter two groups have demonstrated that far-infrared generation in‘the

NCPM geometry can be very efficient. In particular, the Magnet Lab

group has developed a folded noncollinear geometry,39—_42 a modification

of the multiple internal reflection scheme first suggested by

Armstrong gg_gl.,és in which the pump beams propagate in a zig-zag

pattern down a long crystal with a rectangular cross section while

the far-infrared beam propagates parallel to the long axis of the sample.

This scheme has increased the far-infrared power that can be obtained

from mixing CO, lasers in GaAs by several orders of magnitude while

2
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preserving the convenient "one crystal works for all difference
frequencies" feature of noncollinear phase matching in an isotropic
crystal. With this efficient folded geometry Aggarwal EE_QL.Al’az

have generated continuous wave far-infrared radiation that is step-

tunable from 10 to 140 cm.—1 with less than a 100 kHz bandwidth at
significant power levels; at 100 cm'_l two 25W CO2 lasers generated
~.2 W of far-infrared power.

The largest group of theoretical papers on DFG of far-infrared
radiation have treated the two pump beams and the far-infrared wave
as diffractionless apertured plane waves. De Martini60 discussedvDFG
in an isotropic medium for a pair of plane pump waves with a common
plane of incidence when the nonlinear polarization vector is
perpendicular to this plane. He has included the far~infrared absorption
and the polariton dispersion of both the linear and nonlinear
susceptibilities as well as the single surface boundary conditions.66
Shen10 has discussed the connection between DFG and stimulated polariton
scattering due to the spin~flip Raman transition in InSb and has shown
uthat the interference between the resonant magnetic dipole and the
non-resonant electric dipole terms of the nonlinear difference
frequency susceptibility explains the asymmetry of the experimentally
measured25 dependence of the difference frequency power on the static
magnetic field strength. In an earlier paper, Brown and Wolff67 have
discussed the resonant magnetic dipole DFG process by itself.
Paraire gE_g;,56 have generalized the plane wave solution to treat

a wedge-shaped sample of a uniaxial crystal in the special case when



the ¢-axis is normal to the input surface and the pump wave vectors,
the surface normal vectors, and the c-axis are all coplanar. They
discuss generation of both far-infrared o- and e-rays, single surface
reflection and transmission at the output surface of the wedge, and
the dispersion of the nonlinear susceptibility.

Prior to the research discussed in chapter II, several models
which include diffraction effects have appeared in the literature.
In their experimental papers, Zernike and Bermanla‘ and Faries_gg_gl.53
used the far-field diffraction pattern of the nonlinear polarization
created by a uniformly illuminated cylinder with plane wave fronts
normal to the axis of the‘cylinder and included the effect of total
reflection at the exit surface. Our results show that this model or
its generalization to Gaussian beam illumination is a good description
of far-infrared generation when walk-off effects are not too large.
Boyd and Kleinman68 and Farie354 have given the nonlinear polarization
for DFG by interacting Gaussian beams, but they have not given any
results using this polarization. Abdullin gg_él.69 have also described
far-infrared generation by a pair of interécting Gaussian beams. They
restricted their treatment to isotropic media and ignored boundary
reflections; total reflection, and far-infrared absorption to emphasize
the physical explanation of the phase matched cone seen in our
calculations as Cerenkov radiation. (Note: Abdullin et al.'s power
formula is an asymptotic expréssion that is valid only when the Cerenkov

cone is significantly narrower than its opening angle.)
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The theory of DFG of far-infrared radiation by picosecond optical

pulses has been developed independently by Yajima and Takeuchils’l6

and by Morris and Shen.70 While we have emphasized the intensity
variation in fhe far-infrared radiation by considering the case of a
single coherent picosecond pump pulse, Yajima and Takeuchi have
expanded the pump beam as a sum of laser cavity longitudinal modes

to compare the power generated by a mode-locked (coherent case) pulse
to that generated by the random fluctuations of a Q-switched Nd+3:glass
laser or a broad bandwidth dye iaser.l9 ‘They have also included the
effect of optical dispersion which we have omitted for simplicity; for
LiNbO3 this merely displaces the phase matched frequencies or changes
the coherence length slightly, but for crystals like ZnTe in which

the difference between the optical and far-infrared refractive indices
is small, it can change the coherence length appreciably. Yajima and
Takeuchi have neglected the backward phase matched signa170 without
15,17

for LiNbO, cannot be understood.

which the experimental results 3

There are two review articles that deal with DFG. Shen's7l review
covers the status of far-infrared generation by optical mixing
research up to 1974; this paper is an excellent introduction to the
DFG literature. Warner's72 review article emphasizes up-conversion
and includes only a very sketchy treatment of DFG; it does, however,
discuss DFG at frequencies above the far-infrared.

In the subgequent chapters of this thesis, we describe three
investigations of far-infrared generation by difference frequency

mixing of optical or near-infrared laser beams in nonlinear crystals -
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two theoretical and one experimenﬁal. In chapter II we present a
theory of far-infrared generation by difference frequency mixing of

two monochromatic TEMoo mode laser beams and a series of computer
calculations based on this theory.73 We discuss the important effects
of a far-infrared diffraction angle that is much larger than the optical
diffraction angles: loss of far-infrared power to totally reflected
modes and variation of the phase mismatch from one faf—infrared plane
wave mode to another. We also discuss the effects of far-infrared
absorption and optical walk-off, and we présent the solution to the
crystal-vacuum boundary conditions for a uniaxial crystal in a matrix
form that foéuses attention on the physical reflection processes rather
than on the many\simultaneous equations. In chapter III we describe

a theory70 of DFG from the beating of the Fourier components of a
single picosecond pulse (or a mode-locked train of such pulses) using

a quasi-plane wave approximation. We discuss two types of DFG of
far-infrared radiation with pilcosecond pulses: (1) the propagating
wave analog of optical rectification in which an optical o-ray or e-ray
beats with itself and (2) the beating of an optical o-ray with an
optical e-ray in which spectral narrowing due to phase matching can
dominate. Both forward and backward propagating far-infrared waves

are generated by this process, and reflection off the surfaces of the
nonlinear crystal mixes the two waves. The theory predicts that, with
an appropriately chosen backward collinear phase matching frequency,
generation of the Backward propagating wa&e should be easily observable
in LiNbO, slabs less than several mm thick; this prediction and the

3

general features of our theory have been experimentally verified by



Yang, Richards, and Shen.17 In chapter IV, we discuss the exberi—
mental observation of far-infrared radiation from 20 to 160 cm_l

in LiNbO3 and at the maximum forward collinear phase matching frequency
in Zn0, CdS, and ZnS using two ﬁearly monochromatic dye laser beams.
Substantial signal-to-noise ratios are observed for forward collinear,
backward collinear, and noncollinear phase matched DFG in LiNbO3 and
for forward collinear phase matched DFG in Zn0O; of these, noncollinear

phase matched DFG in LiNbO, is the most efficient process. The direct

3
observation of bac¢kward collinear phase matched generation of a far-

infrared wave with nearly monochromatic laser beams in LiNbO3 is
indisputable verification of the origin of the low frequency peak in the
mixed polarization mode picosecond pulse experiment of Yang, Richards,
and Shen.l7 We also describe a novel dual frequency dye laser that

was developed for and used in some of these experiments. Appendicies A
and B describe some of the mathematical details of chapter II.

Appendix C describes the numerical methods used for the computer cal-
culations presented in chapter II and contains a listing of the
computer code. Appendix D gives the far-infrared field for the square
optical pulse case discussed in chapter III. Appendix E describes

the nonlinear least-squares fitting procedure used to obtain the
dispersion of the o-ray far-infrared absorption coefficient from our

experimental data. The remainder of this chapter describes the

connection between DFG and other nonlinear optical processes.
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II. Relatjonship Between Difference Frequency Generation
of Far-Infrared Radiation and Other Nonlinear Optical
Processes

Difference frequency generation, sum frequency generation, second
harmonic generation, optical rectification, up-conversion, parametric
amplification or oscillation, and the linear electro-optic effect are
all described by the second order nonlinear susceptibility tensor and
Maxwell's equations. These processes are all manifestations of a
single nonlinear optical interaction in different frequency regimes and
under different initial or boundary conditions. Parametric amplifica-
tion, parametric oscillation, and optical rectification have especially
close connections to DFG. When both parametric amplification (or
oscillation) and DFG involve the same set of three frequencies, they
differ only in their initial and boundary conditions. Drastically
reducing the intensity of the low frequency pump (signal) beam,
lengthening the nonlinear crystal sample, and enclosing the crystal
in an optical resonator for the signal or idler (difference frequency)-
waves converts a phase matched DFG experiment into a parametric amplifier
experiment. In the parametric oscillator, the signal beam builds up
from spontaneous emission noise at the set of cavity modes that are
most nearly phase matched.74 Optical rectification, when observed
through propagating waves, is the zero frequency limit of difference
frequency generation; however, in the more common experimental
arrangement opticai rectification is observed as an electrical pulse

across parallel capacitor plates and is thus the longitudinal or



electro-static solution to Maxwell's equations rather than the
transverse, propagating wave solution observed in DFG experiments.

The electro-optic effect is the DC field limit of the combined sum~
and difference-frequency processes which are degenerate when one
mixing frequenc& is zero (i.e. when the optical input and output
waves have the same frequency). When absorption at the pump and at
very low far-infrared frequencies is negligible, the second order
susceptibility (discussed below) obeys a permutation symmetry65’75
and the optical rectification and electro-optic effect susceptibilities
are equal,

A brief description of the pertinent part of nonlinear optical

> 77 will clarify these interrelationships.

susceptibility theory76
Since nonlinear optical effects are observed with high photon flux
laser beams, we can use the semi-classical theory of radiation to
describe the growth and propagation of the nonlinearly generated
eiectric fields. Furthermore, because we are only concerned with
effects induced by external fields, the electromagnetic field is
described by Maxwell's equations in which the induced current density,

= . . , 76,78
J, can be expanded in a multipole series

._).
3=-E+cvxb1—~($-8)+... &D)

> > <>
where P, M, and Q are the electric dipole, magnetic dipole, and

electric quadrupole polarizations, respectively. Although each of these

terms can have both linear and nonlinear contributions, I shall discuss
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only the electric dipole polarization term, 3§/Bt, as this is
sufficient to illustrate the phenomena that are related to difference
frequency generation. To further simplify the discussion, I shall
make the customary dipole or local field approximation in which P
depends only on the history of g at the same point in space.

When the applied fields are much smaller than the atomic fields
seen by electrons in the medium, the polarization ?(;,t) can be
expanded into a power series in the applied electric field g(?,t).
Each term of this series has associated with it a response function

<(n)

tensor, R , such that

> _ (n) >
Pp.(f,0) = 2. PV (F,0 )
with
0 0
Pf“)(}’,t)=2:. Z[ dt, . f drt R(n). (Tye o vyl )
i 3q 3w 1 w D i,Jl. <3y 1 n
.+.
&, (T,t41,)...8, (r,t+r) . (3)
i 1 i, n
. - 2(n) . . L
Since the part of R that is antisymmetric in the exchange of any
two of the pairs (jl,Tl).. .(jn,Tn) does not contribute to %(n)’ the
<>
tensor R(n) can be rendered unique by requiring that it be invariant
under all the permutations of the pairs (jl,Tl) .. .(jn,Tn);76 this

property is called the intrinsic permutation symmetry.

The dipole susceptibility tensors are simply the Fourier transforms:

of these dipole response tensors:



¢(“)(w;wl ,...,wn) = f_oo d’l'l. .. f_oo dTn R(n) (Tl,...,’l'n)
X exp[—i(wlT1 e wnTn)] o (4)

. >(n) , ,
Then, the Fourier transform of P (t) is given by:

f(n)(w) = qfdwl..._[dwn S(w-wl—...—wn) g(n)(uu Wy ,...,wn):

EE(wl) .. .E(wn) (5)
with ‘
Et) = fE&w exp(-int) dv
and
B(t) = [Pw) exp(-iwt) du

(The dependence of F3 and 3 on ; has been omitted to simplify the

notation.) The tensor ¢§n? . (wsw,,...,0 ) is invariant under
153q9se0esdy 1 n
any permutation of the pairs (jl,wl) ‘e (jn,wn) due to the intrinsic
<>
permutation symmetry of R(n), and it also obeys the additional permuta-
. 65,75
tion symmetry:
(n) ; (n)*
N L (03w ee,w ) = L (W Wy e ) 6
¢1,Jl,...,3n( > >“n ¢Jl,...,Jn,l( 1’722 >~0) (6)
(n)

<>
Furthermore, since the fields g(t) and f(t) are real valued, ¢

satisfies the further symmetry relation
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<(n)

¢ .(w;wl,---,wn)* = g(n)( i

*
. ;—wl,...,—wn) . v (7)

Although Eq. (5) also describes the mixing of the Fourier components
of a mode~locked or other broad bandwidth laser, the second order
nonlinear optical frequency mixing processes are most simply discussed
using monochromatic laser fields. For a single monochromatic laser with
g(w) = glﬁ(w—wl) + g:&(w+wl), only second harmonic generation (SHG) and

optical rectification (OR) are caused by $(2) and
> _ 9(2) . . _
P) = 97 (20 50,0 88 8- 2w)

+ 242 (030,50, ) :glii’l" (W) (8)

where from Eq. (8) on I shall omit those terms which are merely the

negetive frequency counterparts of some explicitly displayed term.

3(2)

With two monochromatic laser beams, becomes

3(2)(w) - 2%(2)(w1_w2;w1,_w2);§1§: d(w—wl+w2)
+ 20D (ph sy ,0) EE, SGmw-w) ©)

+ SHG and OR terms.

The linear electro-optic effect is described by the mixing of a laser
field, gl’ with a DC field, gdc’ which can be obtained from Eq. (9)

: *
by setting w, to zero and replacing (§2+§2) with gdc:



0 o 0 98 g
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3(2) _ 592y, . . _
Peo (w) = 2¢ (wl,wl,O).glgdc S (w wl) . (10)

The tabulated electro-optic coefficients, rijk’ are expressed in-terms-of
the induced change in the inverse of the linear dielectric tensor
R3d
e(gac) so that in the principal axis coordinate system of a crystal:
9

> -1
o= = (e, )17,
rle a&dc,k e dC)]lj

e Ry + 810D (s ,0)E

B&d K 1°%1° dc 13 (11)

= —8ﬂ8;i(0)€ (0)¢( )(wl,w ,0) .

Throughout the remainder of this thesis, I shall use Bloembergen's

©(2)

notation for the susceptibility ¥ for historical reasons and because
it eliminates the miscellaneous factors of two in Eqs. (8), (9), and (10);

in this notation

t

©(2)
= & &
Py = 2 Xy iy ay) 18 () & () 8wy -w,) (12)
and the peak electric field at w1¢0 is 2!g(wi)|. The relationship

<>
between the two notations and between them and the d tensor of Boyd
and Kleinman68 which is used in the SHG tabulations of the Landoelt-—

. . 79 R
Boernstein series are summarized below:
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@) _ e2) _ <)

SHG 2deng = ¢SHG (132)
;éi) _ 435;? _ zgéi) (13b)
;éi) _ géi) _ Zgéi) (13c)
e(zi - zg;i){ _ 275;1){ (134d)

When the optical frequencies are far from the electronic resonances
of the material, Raman scattering from its simultaneously infrared and

Raman active far-infrared elementary excitations is responsible for

©(2)

the dispersion of ¥ for DFG. Although spin-flip transitions,lO

©(2)

magnons, plasmons, etc. can also lead to dispersion of Y , TO phonons

©(2)

cause the dispersion of ¥ in all of our experiments. In section IV

. . 71 . . .
of his review paper, Shen =~ has given a clear, concise derivation of

©(2)

the dispersion of ¥ due to Raman scattering from polaritons associated

with a TO phonon mode. He starts with Maxwell's equations for the high
frequency pump (wl), low frequency pump or Raman Stokes (mz), and

difference frequency (w3 = ) electromagnetic fields, a damped

©17%
simple harmonic oscillator (SHO) equation for the TO phonon mode, and

nonlinear coupling terms that can be derived from the phenominological

energy density:

ERWOE ) + E*(w3)-§£2):ﬁ<wl)ﬁ*(w2)

-t
it
Pwo)
—~
)
[SS]
~

(14)
+ 6*(w3)°z°g(w3) + c.c.



The nonlinear polarization at the three frequencies w (i=1,2,3) and
the force on the SHO are given by the equations 3( )(wi) = BF/BE (wi)
and f(w3) = BF/BG*(wB), respectively. Solving the SHO equation for

a(wB) and eliminating 6(w3) from the three Maxweli's equations. Shen

obtains the Raman Stokes and difference frequency wave equations:

(VeVx - (wz/c)z[g(mz) + 4#;&3):E(wl)ﬁ*(ml)}}ﬁ(wz)

(15)
%
= s /AP B W E 0y
3
Wil - (wy/e) E () Blwy) = (4ml/e H%P Fw)E () (16)
where80
© <> * o 2 2 .
e(wB) = Em(w3) + 47k A/(wo—m3—1w3rj
<—>(2) <—>(2) ok < 2 2
= N ° - - r
X + A f/(m0 Wy 1w3 )
o <%
X(B) = ff /(w - +1m M)
&> 9 o <—>(2)
Fog fixed wy >>’m3, the tensors A, f, ¢ _, and ¥ ~° are all nearly
independent of w3 unless wl is close to an electronic transition of
the crystal. As can be seen from Egqs. (15) and (16), far-infrared
reflection experiments determine X through g(O) and Zm, and Raman
scattering experiments measurements determine ? through ;éB). The
linear electro-optic coefficient determines ;(2) (w W 3y 50 ) through
' < )

Egqs. (11), (l3c), and the permutation symmetry of Y ; together with
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“(

X and ? this determines xwz) (If its dispersion can be neglected,

*(2)

X, ~ can also be determined from the results of SHG experiments.)
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In the definitions of €(w3), , and Xg s the "+" means sum
% N
over the index that corresponds to 3». Also, the index of XéB)

which is not summed over in Eq. (15) is the index of the first %

>%
that corresponds to E (wz).
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CHAPTER II. THEORY OF FAR-INFRARED GENERATION BY DIFFERENCE
FREQUENCY MIXING OF MONOCHROMATIC LASER BEAMS

I. Introduction

Far—infrared.generation by optical mixing has recently received
increasing attention.l It has the potential of providing a coherent
tunable far-infrared source which compliments far-infrared molecular
lasérs. The most commonly used scheme is that of difference-frequency

generation (DFG) by mixing of two laser beams in a non-centrosymmetric

crystal. With dye ].asers,z_3 CO, lasers, or spin-flip Raman

lasersl7—20 as the pump beams, DFG can provide a far-infrared source

2

discretely or continuously tunable from 1 cm_l to 200 cm—_1 or more.
The output linewidth can easily be less than 0.1 cm—l as determined
by the pump laser linewidths. In most cases, the output is in pulses
with pulsewidths between 10 nsec and 10 usec, but CW operation has

" recently been achieved.

A serious limitation of far-infrared generation by optical mixing
has been the attainable average power, although so far as spectral
power per unit solid éngle is concerned it is already better than a
blackbody source at 5000°K.l While focusing of the pump beams may
increase the far-infrared output, it is not clear how tight the
focusing can be before the detrimental effect of far-infrared diffraction
sets in. No adequate theoretical calculation of nonlinear far-infrared
generation with focusing and diffraction properly taken into account

has been reported. Experimentally, on the other hand, a tight focusing

geometry has so far been avoided. As a result, the full potential of
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nonlinear far infrared generation has not been assessed.

In the literature, the plane-wave theory was often used to inter-
prete the results of far-infrared generation experiments.z’6’7’11’12’21_25
The theory assumes a single spatial Fourier component for each
monochromatic wave so that the nonlinear process is characterized by
a single phase matching relation. However, when the pump beams are
focused to a spot comparable in size to the far-infrared wavelength,
far-infrared diffraction is impoftant and the spatial Fourier components
of the output extend over a large cone. Each Fourier component now
has its own phase matching relation with respect to the pump beams.
Since it is not possible to phase match all the Fourier components
simulténeously, focusing of the pump beams does not improve the far-
infrared output power as much as the plane-wave theory predicts.

The plane-wave theory also assumes a single transmission coefficient
for the far-infrared output across the boundary surface. Actually,
with the far-infrared output extending over a large cone, the trans-
mission coefficient is different for eaéh Fourier component and falls
to zero at the total reflection angle. Thus, the real output can be
considerably less than what the plane wave theory predicts. Finally,
the plane wave theory often ignores the reduction in output power due
to double refraction which can be significant for small spot sizes in
crystalline media.

Improvement in the calculations of far-infrared generation by
optical mixing has Been achieved by Faries et al.26 using the far-field

diffraction theory for a distribution of oscillating dipoles induced



by the pump beams.26”28 They used an average transmission coefficient

for the far-infrared output across the boundary and excluded the
contribution from the totally reflected modes. The effect of double
refraction was, however, ignored. As we shall see later, in the absence
of double refraction, this approach in fact gives a remarkably good
estimate of the far-infrared output.

In this paper, we present a more rigorous calculation of far~-
infrared generafion by optical mixing. It proceeds by first calculating
separateiy each Fourier component of the output field and then
evaluating the output power by summing over the Fourier components.
The effects of focusing, absorption, phase matching, and dquble
refraction can all be properly taken into account. For the sake of
simplicity, the pump beams are assumed to be of single mode with
Gaussian profiles. Our approach is essentially the same as that used
by Bjorkholm29 and by Kleinman et al.30 for second-harmonic generatioﬁ
by focused beams.

The main difference between second~harmonic (or sum—frequency)
generation in the visible or near infrared and difference-frequency
generation in the far-infrared is diffraction. Validity of the scalar
Fresnel approximation for the pump beams guarantees its validity for
the sum frequency but not for the difference frequency. Because of
its much longer wavelength and hence stronger diffraction, the far-
infrared output extends over a much broader cone. Thus, the phase
matching condifion varies much more appreciably among the output

Fourier components in difference-frequency generation (DFG) than in
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sum-frequency generation (SFG). All the Fourier components can often
be nearly simultaneously phase matched for SFG but not for DFG. An
accurate description of DFG also requires knowledge of the differénce—
frequency transmission coefficients over a very broad output cone.

The body of the paper is organized into the following sections:
Section II describes the theory of DFG by monochromatic Gaussian laser
beams which is valid even when the pump focal spot size is smaller
than a far-infrared wavelength. This theory is developed from a
generalization of the non-linear polarization used by Boyd and
Kleinman31 and by Faries.28 Section IIIL contains thevresults of
numerical calculations obtained from this theory. First, we present
the results for the ideal case of no double refFaction. Then, we
discuss briefly the reductions in attainable power due to far-infrared
absorption and double refraction. Finally, in Section IV, we compare
our results with the results of three other calculations: a simple
plane wave calculation, a far-field diffraction calculation assuming
a constant 1l/e radius Gaussian distribution of induced dipoles, and

the second harmonic generation calculations of Boyd and Kleinman.31

II. Theory

A. Nonlinear Polarization

We assume that the pump beams are monochromatic with Gaussian TEMoo

mode. If focusing and diffraction of the pump beams are not too strong,

the focused pump fields in a slab medium can be written a828’3l



T 2 2
&i (x--ai - CiZ) +y
- 5 + ik,z -~ w,t 17
i wi(L+41E,) * -

for 0 < z < 4, where the subindex i denotes the i—th beam; W, is the
e_2 beam radius in the focal plane which is located at z = in; the
beam axis intersects the front surface of the medium at x = a; and
. . . _ 2
y = 0; the quantity Ei is defined by Ei = 2(z in)/kiwi with
ki = wini/c, 0, being the refractive index; finally,Ci is the walk-off
angle given by 1 sin(20,) nz(n“2 —n--2 ). if the beam is an
i 2 i iem,i o,i
extraordinary ray propagating in a uniaxial medium along a direction
at an angle 0 with respect to the optical axis where n , and n ,
0,1 em,i
are respectively the ordinary and extra-ordinary refractive indices at
= 90°, The derivation of Eq. (17) involves some approximations which
can easily be justified as shown in Appendix A. 1In the following, to
simplify the calculations in practical cases, we can assume that the
largely overlapping pump beams are focused to the same spot size at the
same point with w, = w, §, = £ and z,, = z . This is a good approxi-
i i 0i o}
mation when the refractive indices of the pump beams are not very
different, as is true in all practical cases which have been investi-
gated.
The pump fields now induce a nonlinear polarization at the far-
infrared frequency in the medium. We consider here only the case of
DFG in a uniaxial crystal as an example although the formalism can be

easily extended to more general cases of optical mixing. The nonlinear

polarization at the difference frequency w is then given by
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- W

D Ew = X P W =0, - ) B GuplE ey (18)

©(2)

where ¥ is the second-order nonlinear susceptibility tensor. We

> >
assume that El is an ordinary ray and E2 is extraordinary. The

e 3(2) o

nonlinear polarization P "’ (r) dan be readily found by substituting the
expression of Ei of Eq. (17) into Eq. (18). For convenience of solving
the wave equation later, we are however interested in the transverse
2>(2

Fourier components of B The transverse Fourier transform gives

2> _1 (7 3(2) > e
P (kT,z) = 5 J;oo dxdy P (r) exp( 1kxx 1kyy)

2(2), ?léz ~% 2 exp{i[(kl—k:)Z—kx(ai~CZ)/2]}

(a-22)" 1 5,
X exp |- —-‘2‘—5_‘——— -3 kTW (l+€ ) - 5 k (3— Cz)g (19)
w

= ~ ~ .
where kT = xkx + yky and we set a, = 0. For economy of notation, we

omit explicit mention of the argument w.

B. Solution of Wave Equations

Far-infrared generation by optical mixing 1s described by the set

of wave equations
[V % (Vo) - W2/ EEE 0 = anw?/cHP ™ (20a)

Ve [EB(F,0)] = ~417 « BT, 0) (20b)



. . . NL .
where the nonlinear polarization P acts as a driving source for the

nonlinear process. For DFG in a uniaxial medium PNL = P(z)

given by

Eq. (18). Since the normal to slab boundary planes is %, the easiest

method is to Fourier transform the x and y variables in Eq. (20) and
, > 32

to solve for each Fourier component E(kT,z) separately, The

B2 &

corresponding source term for E(ﬁT;z) is 4ﬂ(w2/62) T,z) with

-> >
P(z)(kT,z) given by Eq. (19).

The general solution for E(ﬁi,z) consists of two parts, the
homogeneous solution and the particular solution respectively. The

homogeneous solution is well known. For ordinary and extraordinary

polarizations respectively, it can be written as

>h > .
Eoi(kT’z) = &Oio+ exp (ik i,z. z)
B, (f,2) = & (ik ) (21)
orKps2) =8, e exp (ik , *2z
where the subindices + and - denote forward and backward propagating
1/2
waves respectively with the same KT’ and koi g = ] wno/c) - kTZ]

with a similar expression for k 2" To find the particular solution,

b

let us first assume that the nonlinear slab is imbedded in a linear
medium with an equal linear dielectric constant. Thus, reflection and
refraction at the crystal boundaries can be ignored. The boundary
effects will be taken into account later. As shown in Appendix B, the

particular solution for E(ﬁT,z) is then given by
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PR e R s 4 Bm) b 4B @ D
E (kT,z) Eo+(kT,z) o, + EO_(kT,z) o+ Ee+(kT,z) e,

(22)
P /7 N 2,22 ~ _(2) >
L —
! Ee_(kT,z) e_ (4ﬂne/nonem) z P, (kT,z)
where oo is the refractive index for extraordinary ray propagating
perpendicular to the optical axis,
P 7 2ﬂiw2 ’ ~ 2(2) > ikoz(z-z')
= ———— ' 1 '
Eo— (kT,z) Czk o, P (kT,z e dz
oz Yo
R Y11 . N (2) - ik (z-z")dz'
Y (K ,z) = 6 P (k.,z"e
T 2 T
c k
Z
P 2ﬂiw2 ’ ~  =2(2) lke+ z(z—zv)
EY (k,.,z) = e P (k_,z")e ? dz!
e+ T cz(k ) +
ez’ eff o
2
., 2 ik (z-2z"'
Ep (KT’Z) =_.z._2.’].T.1'_(9.__._._._ f g_n_P)(Z)(ET,Z')e e~,z dz!
¢ (kez)eff Z
2 2 A
& ) - (k B ) 2 /29 2 1- no—nem ( 'Ke+)2 (23)
ez’ eff,t T “Net,z  “e-,z’em e n2 k2
o o

¢ is the optical axis of the crystal. The last term in Eq. (22) is a
longitudinal field which leads to optical rectification33 when
w = wl - W, = 0. It is,however, a non-radiating term and we shall

neglect it in the following discussion.
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The solution in Eqs. (22) and (23) appear in the form normally
obtained for nonlinear optical processes in the slowly varying envelope
approximation. However, no such approximation has been made. As shown
in Appendix B, Eq. (22) together with Eq. (23) is an exact solution of

>

Eq. (20) with ﬁ(z)(ﬁT,z) as the source term. The field Ep(kT,z) in the

. . . 212p > -2
medium does not have a slowly varying amplitude since 9 lE (kT,z)I/BZ

->

is not negligible in comparison with ZRB!EP(ﬁT,z)|/8z. In fact, the
slowly varying envelope approximation is equivalent to assuming for
each polarization a wave propagating in one direction only.

As a check, we can use Egs. (22) and (23) to derive the solution
for the speciad case of optical mixing at an infinite boundary surface

. 34 >(2) >
discussed by Bloembergen. We have ky =0, £ >, and P (kT,z) =

ik =z
Poye 52 in the medium. Equation (23) gives for the reflected output

>p 2ﬂw2 . —ikozz ,

Er =r yPOe for z <0 (24a)

¢k (k 4k )

0oz 0z sz

and for the transmitted output
2 2k ik =z ik =z
P = 2mw P oz ., 8z _ ——~1;-——-e oz for z > 0  (24b)
t 2 0 2 2 k -k
ck 2 ks—ko Sz 0z

The above solution is, however, only true for the case with no
reflection at the boundary, but the boundary effects can be easily
incorporated by taking into account the linear reflection of Ez at the
boundary surface. The complete solution for the problem with a crystal-

vacuum plane boundary is then given by
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2k -ik z
WP ____ 0z FP. _ z
ER P Er(z 0) e for 2z <0
oz z
k ~k ik z
%P _ 3P _ 2 o0z FP. _ o
ET Et . Er(z 0) e for =z >0 (25)
zZ pz
2 2 1/2 o
where kz = [(w/c)” - kX] . Substitution of the expressions for Ei

EE in Eq. (24) into Eq. (25) yields results identical to those

and
, 34

derived by Bloembergen.

The above example suggests that the boundary effects can indeed
be taken care of separately. In Sec. TIIC, we shall use the same
procedure to take into account the boundary conditions of optical mixing
. ) . . 3(2) o> .
in a slab medium. Then, with the expression of P (kT’Z) in Eq. (19),
we can calculate from Egqs. (21) - (23) and the appropriate boundary
conditions the Fourier component E(KT,Z) of the DFG output and hence

) >

the difference-frequency field E(?) in space. In many cases, only one
of the four waves in Eq. (23) is nearly phase-matched. When this
happens, we need to retain only the phase-matched component in a good

approximate calculation.

C. Boundary Effects

We have seen in Sec., IIB hoﬁ we can take into account the boundary
effects of a crystal-vacuum interface by simply incorporating linear
reflection and transmission of the waves at the boundary into the
solution. We now discuss the boundary effects of the more general
case of a slab cryétalline medium. We can consider EE in Eq. (22) as

forward propagating waves starting from z = 0 in the medium and



subsequently undergoing multiple partial reflections at the two slab

surfaces. Similarly, we consider E? in Eq. (22) as backward propagating

waves starting from z = £ in the medium. .Thus, the field outside the

Ei E? weighted respectively by

slab is given by the sum of and

appropriate Fabry—Perot factors due to multiple reflections and
transmissions. To find the Fabry-Perot factors, we first calculate
the transmission and reflection matrices for ordinary and extraordinary
waves at a single crystél—vacuum boundary surface, and then find the
overall transmission and reflection matrices of the slab for the two
waves by summing over multiple transmissions and reflections at the
slab surfaces.

Consider first the case defined in Fig. la. The incident mono-

ll L

I, +E, 1 and the reflected plane

h ic pl . &k) =E
chromatic plane wave i+ T = i+ + i+

> > oA Lo
wave Er_(kT) = E H_ + Erél are related to the refracted ordinary and

di F (k) and B (k) tively, by th j
extraor 1nary waves ot T an o+ T respec ively, y the matrix

relations35
E% | E
i+ N o+
5! = Ay .
i+ e+
(26)
El E
r— © o+t
=B
Il
+ E

r— et
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where
+ L + 1
. ao/(1+ro), ae/(1+rei)
A, =
C\E ke, BTk /@ )k
o o Tol% e e Tot
+ 1 1 + 1 1
. o ro/(l+ro), uérei/(l+rei)
B, =
) Bi “k /(1+ ")k Bi : k /(1+ ! Yk
o oo Lo/ % . efete Tot
L _ I 2 2 2
r = (kz_koz)/(kz+koz)’ ro - (kokz_k koz)/(kskz+k koz) ?
1 o kt . (- 2%, ot k2 x, ki +
Tor = (g, * (z)/( ez Kp) > Ter = (7K Yo' K, JERIA Vo Tk keBe)
+ oA A A + N ~ A ~t
a :0_°(z><kT), Bo:oi . [(ZXkT)'Xko]
+ N ~ A + o~ A~ A~ ~t
o e *(z><kT), Be Ze ° (z><kT)><ke
+ A ~
Yo =% kT
With subindex "-" applied to the case of Fig. 1lb with
EL E EL E
i- © o- r+ BN o—
A A_ . ’ o =B .
i e- r+ e—

We next consider transmission and reflection of ordinary and extra-
ordinary waves incident from the crystal side onto the boundary surface

as described by Diagram a in Fig. 2. Clearly, Diagram a is equivalent



to the sum of Diagram b and Diagram ¢, and Diagrams b and c are

identical to those in Fig. la and Fig. lc respectively. We therefore

have
E
E_ =8 +8 =T (
E
e—-
E E
<> -
o+ - R; o (27)
Ee+ Ee—
where
<> <> <> (—)...l(—)
Ty = Ay - BeA "By
hd (—).—1(—)
the subindices "+" and "-" now refer to cases where the crystalline

medium occupy the left half-space and the right half-space, respectively.
We can now use the results in Eq. (27) to calculate the effect of
multiple transmissions and reflections at the boundaries of a crystal
slab. 1In particular, we are interested in finding the forward and
backward propagating far-infrared waves outside the slab created by

optical mixing inside the slab. As we mentioned earlier, we can

EP

imagine that optical mixing generates waves +

EP

© starting at z = { and in getting out of the slab, these waves undergo

starting at z = 0 and

multiple transmissions and reflections. Therefore, for the generated

field outside the slab, we readily find for z = &
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E () E_ (o)
> o o o+ o o o~
Ep, =T, F, + P, R_ (28a)
Ee+(2) Ee_(o)
and for 2z <0
E (o) E (V)
> o o o= + o © o+ 8
E,_=T_¥_ P_R, (28b)
Ee_(o) Ee+(2)
where
. exp(ikozﬁ)
PJL =
+
exp ( 1kez)

and
(29)

Because of the generalized Fabry-Perot factor %i’ the output fields
ETi can be rapidly varying functions of ﬁT’ w, and £. In some cases,
however, when the pump laser beams have fairly bread linewidths or the
crystal slab is wedged or not sufficiently well polished, it is more
appropriate to find an average Fabry-Perot factor or the average output

by averaging over one Fabry-Perot period. For example, in the nearly

isotropic case, we find from Eq. (28) after some manipulation,
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> 2 o o f oo
(|ET+| e ((T,F) (T,F))
+N |11, * + +
o i 0 (v} B
l—I;LI exp(-vL)
P | (1-7)n] ? + +
B -a 0 A B -0
1-|zy [Texp(-v2)
(30)

' AN
where Yy is the attenuation constant along z.

D. Far-Infrared Output Power and Its Far-Field Angular Distribution.

The total far-infrared power outputs from the slab in the forward

and backward directions are

P, = 2_(3”- f dxdy(/z\'ﬁ) |ETi (x,y) |2 (31

evaluated at large z. By Parseval's Theorem, this can be written as
_ '] /\./\i - - 2
P, == / ak ak (250 £, G | (32)
2 2<k2

where E&i(ﬁf) is given by Eq. (28).
In most practical cases, we are also interested in the far-field

angular distribution of the output power. As shown in the Appendix

of Miyamoto and Wolf,36 it has the expression

dPi(e)q)) c wz 2 > > w ~ A 2
g = EE-EE cos GIETi{kT = E-sine(xcos¢+ysin¢)}| (33)
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ITI. Results of Numerical Calculations

In this section, we shall present numerical calculations of far-
infrared generation by difference-frequency mixing using the equations
given in the previous section. We choose somewhat arbitrarily the
following values for the characteristic parameters of the nonlinear
crystal: n = 2, n(w) = 4, and X(2) = 1.87><10—6 esu. The two nearly
overlapped pump beams, one ordinary and one extraordinary, are assumed
to have the same focal spot in the crystal with both beams always along
the normal to the slab. The question we propose to answer is how
various quantities'such as phase mismatch, focusing, beam walkoff,

and absorption affect the far-infrared output at different frequencies.

A. Far-infrared Generation in the Absence of Absorption and Optical
Walkoff

We assume in this case that the optical axis of the crystal is
in the plane of the slab along X. The two pump beams, one ordinary
and one extraordinary, propagate along the normal to the slab, Z, with
essentially no walkoff, the nonlinear polarization ?NL is along ¥, and
the common focal spot of the two pump beams is at the center of the
slab. We also assume that the extraordinary refractive index LI of
the pump beam can be varied by external means such.as temperature in
order to adjust the amount of phase mismatch in DFG and that only the
ordinary far infrared waves in the forward direction can be nearly
phase matched. Since the phase mismatch is different for different
Fourier cdmponénts E(KT,w) of the far-infrared output, we define an
axial phase mismatch Aka = kl(wl) - kz(wz) - ko(w) to describe the

overall phase matching condition.



Figure 3 shows the far—-field angular distribution of the far-infrared
output, dP(6)/dQ versus 6, at 100 cm._l calculated from Eq. (33). 1In

the calculation the slab has a thickness of 1 cm, the focal spot size

is w = 25 um, and the axial phase mismatch corresponds to Aka = =5.1 cm—l.

Since the far-infrared output is approximately symmetric about

%.(i.e., nearly independent of the azimuth angle ¢ = tan—l (ky/kx)),

Fig. 3 actually shows a distribution in the form of a hollow cone. )
1/2

The radiatién peaks at the angle em = sin—l{ni(w) - [no(w) + Akac/w]z}
at which phase matching Akz = kl - k2 - koz(w) = 0 occurs. The secondary
maxima of the phase-matching curve can also be seen. They become more
pronounced for shorter far-infrared wavelengths as the effect of
diffraction becomes less important. From the expression of Gm, it is
seen that if Aka = 0, then Gm = 0 and the far-infrared output appears
as a narrow solid cone along the z axis. If Aka > 0, then there is
no solution for Gm and the far-infrared output is strongly suppressed
by phase mismatch; the angular distribution may show a weak central
peak at § = 0 and some secondary maxima at finite 6. For negative
Aka, the phase-matched peak shifts to larger em until em = m/2; then
because of total reflection at.the surface, the far-infrared radiation
in the phase-matched direction can no longer get out of the slab and
the output peak at 6 = 7/2 drops quickly.

The total far-infrared power 6utput P versus Aka is shown in
Fig. 4 with the same set of parameters used for Fig. 3. The curve has
 a maximum arouﬁd Aka = =5.,1 cmﬂ1 corresponding to the full development

of the hollow phase-matched cone in Fig. 3. The steep rise of the
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curve at Aka ~0 cmfl is due to the initial appearance of the phase-
matched cone. The gradual decrease between Akz ~ ~10 cm.—l and -75 cm
is due to the combined effects of decrease of the far-infrared

(2) for the

transmission coefficients and decrease of the effective P
generation of ordinary far-infrared waves around the phase-matched
direction. The steep drop after Aka ~ -75 cm.—l is due to total
reflection of an increasing portion of those far-infrared waves
generated near phase matching.

If the far-infrared wavelength A inside the crystal becomes much
smaller than the focal spot size w, the variation of far-infrared
output versus phase mismatch Aka appears more like the usual phase-
matching function (sinzx)/x2 for the ideal plane wave case. An
example is shown in Fig. 5 for the case of A = w/8. Because of the
smaller A/w ratio, the off-axis Fourier components of the far-infrared
become relatively less important and hence the output drops more
rapidly with increase of Aka. The curve in Fig. 5 is, however, still
noticeably asymmetric and its peak occurs at Aka = -2 cm"1 rather
than Aka = 0. As the ratio of A/w decreases further, the effect of
far-infrared diffraction becomes even smaller; the phase-matching
curve P versus Aka then develops more clearly defined secondary peaks
and approaches the symmetric form sinz(AkaQ/Z)/(AkaQ/Z)z.

The focusing geometry of the Gaussian pump beams is completely
characterized by the focal spot size w. In order to see how the far-
infrared output véries with focusing, we qalculate the ¢ = 0 curve in

Fig. 6 which shows the maximum of P(Aka) as a function of w. Because
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éf the higher pump intensity resulting from tighter focusing, the
far-infrared output increases sharply with decrease of w. It,however,
reaches a maximum at w = 13 um as the corresponding reduction of the
longitudinal focal dimension takes its toll. It is inferesting to note
that in the model of collimated Gaussian pump beams with a radius w

and with W2IE

lEzl = constant, P versus w has no maximum. This is
because when kTw << 1 for all significant far-infrared Fourier components,
-5
P(z)(kT,z) in Eq. (19) becomes independent of kT and w.

While Figs. 3-6 are for w = 100 cm—l, Figs; 7-9 show results of
similar calculation for w = 10 cmml. The far-field angular distribution
of the output 1s given in Fig. 7 for two values of the azimuth angle
o = tan_l(ky/kx) = 0 and /2. In this case, because \/w = 10 is large,
far-infrared diffraction is more important; phase matching occurs
around 0 = 7/4 and the phase-matched peak is very broad. As a result,
the output asymmetyy with respect to ¢ shows up because at relatively
large 0, the transmission coefficient for the ordinary far-infrared
wave across the slab boundaries is different for different ¢. For
¢ = 0, the wave is linearly polarized perpendicuiar to the plane of
incidence, while for ¢ = m/2, the wave is linearly polarized in the
plane of incidence. The latter case has a Brewster angle at 6 = 76°.

Figure 8 shows the total far-infrared output at w = 10 cm_l as a
function of the axial phase mismatch Aka. The curve again resembles
the well-known phase-matching curve (sinzx)/x2 for the plane wave case
except that ité maximum is at Aka = -4 cm.—1 instead of Aka =0 and

it has no well-defined nodes. However, this resemblance does not
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occur because diffraction is unimportant. It occurs because, when the
far-infrared wavelength is sufficiently long, then all the far-infrared
Fourier components E(E&,z) have roughly the same_Akz£ = Akaz; in other
words, if Aka% = 0, then all the far-infrared Fourier components are
nearly phase matched. The small difference of AkZQ among the Fourier
components, however, broadens the phase-matching peak and obscures the
fine structure.

The ¢ = 0 curve in Fig. 9 describes the peak value of P(Aka) at
w = 10 cmﬂl as a function of the focal spot size w. We notice that in
the range of our calculation, this maximum output power Pmax(Aka)
always increases with decrease of w. In this case, kTw becomes so
much smaller than 1 at small w that the nonlinear polarization
3(2) (ﬁi) approaches a constant independent of kT, w, and z in spite
of the factor (l+€2) in the exponential function in Eq. (19).
Consequently, the § = 0 curve of Fig. 9 flattens out at small w.
Eventually, for even smaller w, we should expect the curve to go

through a maximum like the ¢ = 0 curve in Fig. 6 for w = 100 cm_l.

B. Far-Infrared Generation with a Finite Walkoff Angle Between the
Pump Beams

We now consider the effect of optical walkoff on far-infrared
generation. We still assume that the pump beams propagate normal to
the slab and absorption is negligible, but the orientation of the
optical ¢ axis of the crystal is now varied in the X2 élane in order
to vary the walkoff angle . The primary effect of optical walkoff

is that it limits the effective interaction length of the beams. When

¢z is much larger than the divergence angle of the pump beams, the two



pumé beams overlap in the focal region only over a distance of 2w/[C|;
most of the far-infrared radiation is generated from this overlapping
region. As ]C[ increases, the effective interaction length decreases,
and hence the phase-matching peak in the far-field angular distribution
becomes weaker and broader as shown in Fig. 10 for w = 10 cm—l. For
smaller focal spot sizes w, the walkoff effect is stronger. This gives
rise to a lower maximum at a larger w for the { # 0 curves in Figs. 6
and 9.

The far-infrared output should in general consist of both ordinary
and extraordinary waves. We have so far assumed that the e-wave is
strongly phase-mismatched and can be neglected. This is true for
"GC = cos—l(6°%) larger than the total reflection angle GR. However,
when ¢ approaches 2 or 6, approaches zero, the phase mismatch of the
e-wave is greatly reduced and the e-wave output becomes non-negligible.
For O = 0, we have the nearly degenerate case where the e-wave and the
o-wave contribute almost equally to the far-infrared output.

There are two other less important effects of optical walkoff on
far-infrared generation. TFirst, the exp(ikX z/2) term in Eq. (19)
contributes to the phase matching relation which now becomes

Akz =k + kxg - kz = 0. This term shifts the ¢enter of the phase-

172
matching cone in Figs. 3, 7, and 10 from kX =0 to kX = C(Aka—know/c)/Z.
Since for ¢ = 0, the far-infrared transmission coefficient for o-waves
at the boundary falls off monotonically with increase of 0, this

increases the phase-matched output for kX > 0 and decreases that for

. Y ) 2(2) .
kx < 0. Second, as seen from Eq. (19), the maximum of ‘P (kT,z)I is
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) _ _ - 2 2 - 0. s
shifted from kX = ky =0 to kX kl gET/(1+ET) and ky = 0; its effect
on the far—-field angular distribution is just the opposite of that due
to the shift of the phase matching cone. Depending on the situation,

one effect may dominate over the other. They are responsible for the

slight asymmetry of the £=0 curves in Fig. 10. The phase-matching

effect is more important for the ¢ -0.01 case while the |P(2)(kT)|

effect is more important for the ¢ = -0.02 case. For shorter crystals

(2 £ 0.5 cm), the phase-matching effect is more important.

C. Effects of Linear Absorption on Far-Infrared Generation

In practice, nonlinear far—infrared generation in crystals is
always limited by far-infrared absorption. This is the main reason
why far-infrared DFG in solids has in most cases been restricted to
the range between 1 and 200 cm—l. Roughly speaking, with an absorption
coefficient Yy, the effeétive length of the crystal for DFG cannot be
much more than 2/v. |

Figure 11 shows how the far-infrared output from a l-cm slab
decreases as a function of the far~infrared absorption coefficient vy
for w = 10 and 100 cm~l. In the calculation, the focal spot size was
chosen as w = 25 um and the location of the focal spot was at the
center of the slab for vy = 0, while for increasing Y it moves towards
the end surface of the slab. As we mentioned earlier in Sec. IIIA,
for w = 10 cm—l, all the significant far-infrared Fourier components
are nearly phase-matched (Akzﬁ < 7). Therefore, the curve for
w = 10 cm._l in Fig. 11 agrees fairly well with that described by

[l—exp(—YSZ,/Z)]Z/(WL/Z)2 for the phase-matched plane wave case. For



w = 100 cm—l, since not all the significant far~infrared Fourier
components can be ﬁearly phase-matched, the reduction of far-infrared
output with increasing absorption is slower and cannot be approximated
by the phase matched plane-wave form at small 7.

In some respects, the effects of v for Y% 2 2 can be simulated
by an absorptionless crystal with a length ZY_l. An dincrease of vy
increases the phase-matching angle and broadens the phase-matched
peak in the angular distribution of the far-infrared output. It also
makes (Aka)opt’ the optimum axial phase mismatch for maximum total
far-infrared output, more negative. This latter effect is quite
pronounced for w = 100 cm ' as shown in Fig. 12.

IV. Comparison with Other Models and with Calculations
of Second Harmonic Generation

" We now compare the results of our detailed calculations withvthose
obtained from two simple models for the case where the optical walk-—off
effect is negligible. One is the Gaussian distribution (GD) model in
which we assume a Gaussian profile for the nonlinear polarization at

the difference frequency.

3D 7o = (;(2):glgz)exp[~2(x2+y2)/w2+i(kl~k2)z = iwt] (34)

in the crystal slab where the pump fields are given by

Ej(¥,t) = gj exp[—(x2+y2)/w2+ika—iwjt], Jj=1,2 .
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This 1s an extension of an earlier model used by Zernike and Berman27
and Faries et al.26 which assumes a uniform amplitude for ﬁ(z)(?,t)
throughout a cylinder with a finite radius. The other simple model
is the usual plane wave model in which we assume that the geometric
ray approximation is valid and that each beam can be described by a
cylindrical pencil of rays with a single wave vector.

From the GD model, we obtain for the lossless case a total output
power at w of

2 34
GD _mww 2(2) *12,2
P = T80 R

—wzk%/4
C(Akz) e (35)

w/c
X Jn dkT(kT/koz) <T(kT)>¢
b .

where (T(kT)> is the far-infrared transmission factor averaged over

¢
the azimuthal angle ¢ with multiple reflections at the slab boundaries

taken into account, and C(Akz) describes the effect of phase mismatch.

They are given by

2

2 2
1 ko(koz+no kz) (koz-kkz)

(T(k.)), = + k
T ¢ 2(k0+koz) kZ -Fn4 k2 k2 + k2 0z
0oz o0 =z oz zZ
. 2 2
C(Akz) = gin (Asz/Z)/(ARZQ/Z) (36)

with Ak = n w/c ¥+ Ak - k and Ak =k, ~ k., - n w/c.
Z o a oz a 1 2 fo}



ot
7

o~
L.,
A
K
.
<.
pry
i
e
R

The output powers at 100 cmfl and 10 cm_l

calculated from Eq. (35) as

a function of w are shown in Figs. 13 and 14 respectively in comparison
with the results of Eq. (32) from our more exact calculations. At

100 cm_l, the iny perceptible difference between the two curves occurs
at small beam sizes and amounts to 6% at w = 13 pm. At 10 cmfl, the
two curves are virtually indistinguishable. Thus, the GD model appears
to be a very satisfactory approximation.

The output power from the plane wave model without boundary

conditions is givén by

2 .2

2272
PPy = T | (22 2512 42 (peop

2 cn 1 2l (37)

¢
The result calculated from Eq. (37) is also shown in Fig. 13. It is
20% higher than the correct value at w = 0.02 cm. The deviation becomes
much worse at smaller w and diverges as w approaches zero. This shows
that the plane wave model gi&es unacceptable results at small w because
of its diffractionless approximation. With diffraction, the total
far-infrared output power is decreased by total reflection of those
Fourier components with large kT and by phase mismatch (described by
C(Akz) in Eq. (35)) for other Fourier components.

The plane wave calculation is, however, simple and does not
require numerical integration. It is therefore preferred when one
wants to crudely estimate the output power. We can make the estimate
more exact by multiplying the calculated result by a correction factor.
Comparison of Eq. (35) and (37) shows that this correction factor is

given by



~52-

r = PP
kowz fw/c (kT ) —wzk;/lr
=92 dk,, |——] (T(k.)), C(Ak ) e . (38)
2(T(0))¢ 0 Tk, /"¢ z

We approximate (T(kT)> C(Akz)/koz in the integral by (T(0)?> /ko for

¢ ¢
. 37
< > i = -

kT kM and by 0 for kT kM where kM is defined as kM /2Akc(now/c Akc/Z)

with Akc being the smaller of the two quantities 2w/% and (no-/hi—l)w/c.

Physically, at kT==k dP/dQ either has dropped to half of its peak value

M’

or has been cutoff by total reflection. The correction factor then becomes
2 2
F=1- exp(—kMW /4) . (39)

The output power calculated from FPPW using Eqs. (37) and (39) is within
20% of the correct value.

We now discuss similarities and differences between difference~
frequency generation (DGF) and second-harmonic generation (SHG). Imn
both cases, each pump field Ei with finite beam radius has a distribution
of Fourier components with wave vectors spreading effectively over an
angle 26i. The output of DFG or SHG from a nonlinear slab is significant
only when part of these significant Fourier components within the angular
spread 26i can satisfy the axial phase matching condition Akz = 0. As
shown in Fig. 15, this happens for SHG only if Aki = 2k(wl)-k(2wl)230
and Ak; = 2k(wl)(l—cosﬁl) = Akz, and for DFG only if
Be) = Tk, k(@) < 0 and Ak = I(w) (1-cos§) > -Mk , where 26 is the
angular spread of the significant far-infrared Fourier components which
can get out of the crystal slab. We emphasize that for an efficient

nonlinear interaction we must have Aki < 0 for SHG and Akz =2 0 for DFG.
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The quantity Ak; in SHG or Akg in DFG governs the qualitative

behavior of the phase-matching curve P versus Aka. As we mentioned
before, the output is most efficient when Akz (or -Akg) falls in the
range between 0 and Ak; (or Akg). Therefore, if Ak; (or Akg%) >> 2,
then the phase-matching curve has a broad peak; it rises sharply to
the peak around Akz (or AkZ) = 0, then slopes downward as Aki%(or —Akg)
increases from 0 to Ak; (or Akg), and finally in the case of DFG falls
rapidly at a certain Akg value because of the cutoff due to total
reflection at the boupdaries. Examples are shown in Fig. 4 for DFG
with AREQ = 80 and in Fig. 16 for SHG with Ak;ﬂ = lOO.31 Such a
phase—matching curve is characteristic of SHG with strong focusing
of the pump beam. In DFG, it occurs when the pump beams are more
weakly focused because of large far-infrared diffraction. When
Ak;% (or Akg) < 27w the range of Akz (or Akg) for efficient output is
much narrower, and the phase-matching curve now shows a central peak
and secondary maxima and minima, resembling the well~known plane-wave
phase-matching curve described by sinz(Akl/Z)/(AkQ/Z)z. Examples are
shown in Fig. 5 for DFG at 100 cm—l with Akg% = 4, in Fig. 9 for DFG
at 10 cm—1 with Akg% = 8, and in Fig. 17 for SHG with Ak;% = 5.68.
All these curves are, however, slightly asymmetric with a small
shoulder on one side. This is because for Akzﬁ <0 (or Akg > 0), the
phase-matching condition Akz = 0 is not satisfied for any of the
Fourier compongnts.

There are several minor differences between the SHG and DFG phase

matching functions. For Ak;% (or Akgl) >> 2w, the phase-matching curve
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for DFG, as shown in Fig. 4, has a sharp drop around the value of Akz
where significant Fourier components of the far-infrared output begin
to be totally reflected at the boundaries. In SHG, however, total
reflection is never important and therefore as shown in Fig. 16, no
sudden drop of the output power occurs as Akg increases. Because of
the weaker diffraction effect, the phase-matching curve for SHG has, in

general, more pronounced fine structure than that for DFG.

V. Conclusion

We have developed here the theory of far-infrared generation by
optigal mixing in a nonlinear medium, using an extension of a formalism
developed earlier for second-harmonic generation by focused laser beams.
The theory takes into account the effects of focusing, diffraction, and
double refraction of the pumped beams and the effects of diffraction,
absorption and reflections at the boundaries of the far-infrared
output beam. Numerical calculations showing these effects are presented.
Both the total power output and its angular distribution are calculated.

We have found that focusing of the pump beams can greatly enhance
the far-infrared output. In a crystal of 1 cm long, the optimum focal
spot radius is roughly equal to or smaller than the far-infrared
wavelength for output frequencies less than 100 cmfl. The walkoff
effect of the pump beams in birefringent crystals does not reduce the
output by more than a factor of 2. TFar-infrared absorption and boundary
reflections are howéver extremely important. The former is often the

factor which limits the output power.



We show that the usual plane-wave model which neglects the effects
of far-infrared diffraction and boundary reflections does not give a
correct description of the far—infrared output, especially for tightly
focused pump beams. A simple model treating the non-linear polarization
as a constant l/e radius Gaussian distribution of radiating dipoles is,
however, a good approximation to the real picture. We also compare our
results with those of second-harmonic generation and notice a great
deal of similarities. Most of the differences can be ascribed to the
boundary effects including total reflection which are more important

in the case of far-infrared generation.
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For tightly focused exp[—w2k§/4] = 1 when kT < %-, and this factor

can be pulled outside the integral in Eq. (35) along with
w/e
o Then, the remaining integral is fo dekTC (Akz)/koz

which has the value = m/% for thick crystals or high far-infrared

(T (kT))

frequencies and the value = (w/2c)[n(w)—¢n2(w)—l} for thin crystals

or low far-infrared frequencies.
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CHAPTER III. FAR-INFRARED GENERATION BY PICOSECOND
PULSES IN ELECTRO-OPTIC MATERTALS

The development of high power mode-locked lasers with pulse widths
in the picosecond range has made optical rectification a feasible method
of generating broadband radiation of high peak power (~ 1 KW), as
supported by the recent experimental results.l Theoretically,
Gustafson et 31.2 have calculated the rectified field for an infinite
plane wave in the limit that the optical and far infrared phase veloci-
ties differ negligibly. They have also neglected reflection and
refraction at the crystal boundaries. This letter reports a more
realistic calculation which includes the various effects due to a finite
beam cross-section, cfystal boundaries, and the significantly different
optical and far-infrared phase velocities.

Consider a short laser pulse incident normally on a thin slab of
electro-optic material. The slab has a transverse dimension much
larger than the beam diameter, and we can assume that the laser pulse
’

propagating in the slab in a single transverse mode is given by

E, = g Eﬁj (r,t) with

x ty

ggj(z,t) = §2j g (1+i€j) exp [ w2(1+i£.) o '
o J

2 2 (njz/c--t)2

+ i wo(njz/c - t) + i¢]§ (40)

where v is the beam radius in the focal plane, 0 is the pulse width,

Ej = (L + z/nj)/(wowi/Zc), L is the distance between the focal point



and the front surface of the slab, and z is the distance away from the
front surface into the slab. The subindex, j, indicates the polariza-
tion state‘of the laser field. The other quantities have their usual
physical meaning.

The laser pulse induces in the slab a nonlinear polarization at

difference frequencies of the form
NL NL %
2 (xk,t) = X : EQ,E,,Q/ (41)

if we neglect the dispersion of the nonlinear susceptibility XNL. The
far infrared radiation field E(E’t) generated in the slab can then be
obtained by solving the wave equation

2

2
Vx (Vx) + (g/c) L] B0 = -3 2o ¥

HeR (42)

ol

~

2

ot c ot

with the proper boundary conditions. Here, we have also neglected the
dispersion of g.

To solve Eq. (42), we use essentially the scheme of Bjorkholm.4
From the Fourier transform of E(r,t) and ENL(g,t) on X, y and t, we
obtain the Fourier components E (kT,w,z) and QNL(kT,w,z) respectively.
We then use the Green's function method to find E(ET’N’Z)' Although
far~infrared radiation is generated in the slab in all directions, only
the part which propagates in forward and backward directions with nearly
normal incidence on the plane surfaces of the slab can get out of the
slab because of fhe large refractive indei of a crystal in the far

infrared. If we are interested only in that part of the far-infrared
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radiation, then we can use the Green's function for normal incidence

as an approximation in finding E(ET,w,z), Multiple reflections at the
plane boundaries of the slab are clearly important, so that the solution
should be proportional to a Fabry-Perot factor. For far-infrared field
in the i polari;ation state, we find at the back surface of the slab,

z = 2,

(w)

- (s) oy @ (S) _ .
gi(kT,w,R) = Fi[Ei (ET,w,z—Q) RiEi (kT,w,z—O) exp (1wni

2/c)]  (43)

with5

EiS) = (Zﬂiw/cnéw)) gg dz' E?L(ET,w,z') exp(iwniw)|z—z'|/c)

where Fi = (l—Ri)/[l—Ri exp(ianiw)Q/c)] is the Fabry-Perot factor,
and Ri = (l—niw))/(l+n§w)) is the reflection coefficlent for the i
polarization state.

Experimentally, the far infrared output from the slab is collected
by a tapered light pipe leading to a solid-state detector.6 Since
wave propagation in the light pipe has a cutoff angle ¢M, the total

far infrared power seen by the detector is given by

flle=(w/c)sin¢M

2 2
Pi(w) = (c/2m) 4k, ]Ei(ET’w’l)l cos¢ (44)

(o}

where ¢ = sin_l(ch/w) < ¢m. To calculate Pi(w) from Eq. (44) with the
help of Eqs. (40), (41), and (43), we use the following approximations.

We assume that the cross—section of the laser beam remains unchanged



in traversing the thin slab. If both ordinary and extraordinary laser
beams are present, then we also aésume that walkoff of the two beams in
the slab is negligible., Both assumptions are clearly good approxima-
tions when the slab is not unusually thick (< a few mm.). Since ¢m is
often small, we also approximate cos¢ by 1 in Eq. (44). Then, if X??k
is the only dominating nonlinear susceptibillity in difference-frequency

generation, we find, for a slab of thickness 4,
P.(w) = T A|F ]ZM DS (45)
i i i i

where

2 2
NL 2 2
1, = (20 ol ) I & g sanh |
A= w1+ /4, £ = £, (270)
- - + + 2
M= O v ) - Ry O My |
+ ot -
13k = [1 - exp (1Akjk£)]/1Akjk£
* (wo) (wo) (w)
Akjk = (1/C)[(wo+u>/2)nj - (ooo—w/Z)nk “—‘wni ]
D=1~ exp[—(w2/4c2) wi(l+£2) sin2 ¢m]
S = exp (—w202/4)
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The various quantities in the above equation have the following physical
meanings. A is the effective cross-section of the beam at the slab.

+
M.,

i3k takes care of the phase mismatch in the difference-frequency

generation process, with Ak,

+ .
ik and Akjk being the average momentum

mismatches for far-infrared waves propagating in the forward and back-
ward directions respectively. D accounts for the diffraction effect
due to the finite beam cross-section. S is the spectral content of
the picosecond laser pulse. Finally, IiA gives the far-infrared power
spectrum if all the other factors in Eq. (45) are unity.

We now use Eq. (45) to calculate the spectra of the far-infrared
output for two cases. In the first case, a 0.1 cm. LiNbO3 slab 1is
oriented with the c—~axis parallel to the plane surfaces of the slab.

A 2-psec. laser pulse at 1.06 y, polarized along the c-axis, is normally
incident on the slab, so that xgg is the only nonlinear susceptibility
responsible for the difference-frequency generation. With 3 = ﬁ = E
along ¢ and niwo) #* niw) in Eq. (45), phase matching occurs only at

w = 0. The calculated spectrum is shown in Fig. 18. The dashed curve
gives the spectrum without the Fabry-Perot boundary condition. The
peaks at 5, 8.4, and 11.8 cm._l are the secondary peaks of the phase-
matching curve, which would have the major phase~matching peak at w = 0
if it were not for the low-frequency cutoff. This low-frequency cutoff
is mainly due to the wz—dependent radiation effects, and gives rise to
the first peak at 2 cmnl. The diffraction effect (D) only makes the

cutoff even sharper, but does not affect the spectrum significantly

beyond the first peak. On the high-frequency side, the spectrum is



limited by the spectral content S of the input pulse. With the Fabry-
Perot boundary condition included, the spectrum is then modified by the
interference pattern, as shown by the solid curve with spikes in Fig. 18.
For an input pulse of 1 -~ GWatt peak power, the total far-infrared
output energy is about 0.1 erg. Our results here agree with those of
| 2 o wy @) .

Gustafson et al.” in the limit not =g and when diffraction and
boundary conditions are neglected. |

In the second case, the LiNbO3 slab is oriented with the c-axis
tilted at 16.8° away from the normal of the slab and the a-axis is
in the plane defined by the c-axis and the normal. The normally
incident laser pulse is linearly polarized at 45° with respect to the
plane such that only ng is responsible for the difference-frequency
signal with polarization perpendicular to the plane. We then find

from Eq. (45) that the phase-matching conditions Ak; = 0 and Ak;ﬁ = 0,

k
for far infrared generation in the forward and the backward directions,
respectively, can be satisfied at w = 15 and 7.5 cmfl,respectively.

The far-infrared spectrum is then essentially the superposition of

the two phase-matching curves modified by wzs(w) and the boundary
conditions. If the boundary conditions are neglected (Ri = 0), then
only the far-infrared generated in the forward direction contributes

to the spectrum as represented by the dashed curve in Fig. 19. With
the boundary conditions, Ri # 0, the far-infrared generated in the
backward direction now appears in the output. Its spectrum dominates

over that of the far-infrared generated in the forward direction

because of the high-frequency cutoff due to S(w). The total spectrum
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is given by the solid curve in Fig. 19, where the spikes are again the
result of Fabry-Perot interference. Diffraction has little effect in
this case. For a laser pulse with a 1 - GWatt peak power, the total
far-infrared energy generated here is 0.0064 erg. Both cases discussed
above have been investigated experimentally. Preliminary results show
good agreement with our theoretical calculations.l

The time dependence of the far-infrared pulse must also be
understood, especially the features responsible for the oscillation
periods in the spectra of Figs. 18 and 19. These oscillation periods
are due to the following three characteristic times: the far-infrared
round-trip time, the sum of the optical and far-infrared transit times,
and the difference of the optical and far-infrared transit times.
The far-infrared round-trip time, T . = Zni(w)Q/c, is responsible for
the prominent Fabry-Perot oscillation period in the solid curves of
Figs. 18 and 19. The sum and difference of the far-infrared and optical
transit times, T, = (ni(w) x nj)K/c, are responsible for the.node
spacing of the backward and forward phase-matching functions,
respectively. Since the characteristic times are independent of the
'temporal pulse shape, we choose a square pulse to illustrate the
significance of T,. We shall also ignore diffraction in the following
discussion.

Ignoring diffraction reduces Eq. (42) to a pair of scalar one-
dimensional wave equations, one for the far-infrared o-ray and another

for the e-ray:
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- 2

2 n, .2 2

- —9—2- + —;—' -—8—5] Ei(z,t) = -~ f%r‘ —§—2 Pi(z’t) (46)
dz ¢ ot ¢~ ot
. -/‘v 2>NL a2 A . . ,
where P, = 1P (z,t)/[1-(i°z) 1, i is the direction of the electric

i

field, and n, is the far-infrared refractive index for the o- or e-ray.
When the nonlinear slab is imbedded in a medium with an identical linear
dielectric tensor (reflectionless boundary conditions), the solution

of Eq. (46) can be written down immediately from the standard Green's

function for an outgoing-wave:

2
o Y g e lzezt] oy 2m T Vo
Ei(z,t) = {) dz [Z}dt H(t-t' - - ni) nc 3t'2 Pi(z ,t") (47v)
B oo (Vg 2T 3 S
E,(z,t) = fo dz T p.(z',t - =) (47b)

where H(u) is the unit step function [H(u) Z 0 for u <0, and H(u) = 1
for u = 0].

The case in which an optical o~ or e-ray beats with itself is
most easily understood by following a short pulse through the nonlinear
slab. First, between its entry at z = 0 and its arrival at z = £ the
optical pulse creates the same transmitted and reflected far-infrared
pulses as it would if the nonlinear medium filled the entire half-space
to the right of the z = 0 interface. Since Pi is proportional to the
optical intensity and dispersion is ignoreé, the solution of Eq. (46)

for a single interface at z = 0 can be written down immediately from

. . 9 .
the solution for a monochromatic plane wave. Its transmitted
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inhomogeneous [E?(z,t)], transmitted homogeneous, and reflected

homogeneous far-infrared pulses are given by:

Eg(z,t) = - gﬁ 5 Pi(O,t—zn,/c) for z >0, (48a)
n,-n, J
i3
. n,-n,
E.(z,t) = ~%——l EP(O,t+zn./c) for z <0, (48b)
i n, i i
v n,4n,
E (z,t) = - ~—:L—-—*l-E?(O,t—zn,/,c) for z >0 . (48c)
i Zni i i .

(Ep, Er, and EC are zero in the half-spaces not described in Eq. (48).)
At z = 0 all three of these pulses have the time-dependence of the
optical intensity, except for sign reversals. Next, when the
inhomogeneous pulse arrives at the z =  interface, it generates another
reflected and another transmitted far-infrared pulse. At z = L both of
these pulses and the optical intensity have identical time-dependence;
also, the reflected and transmitted pulses have opposite polarity from
the corresponding pulse generated at z = 0 because the inhomogeneous
pulse propagates toward the z = { interface, but away form the z = 0
interface. Finally, the homogeneous transmitted pulse from z = 0 and
the homogeneous reflected pulse from z = £ arrive at and pass through
the opposite surface. Since each of these pulses automatically
satisfies the (linearly) reflectionless boundary conditions at the
opposite surface, the transmitted (reflected far-infrared wave is the

" sum of the transmitted (reflected) homogeneous pulses from z = 0 and

z = .



Figure 20 illustrates this case for a 2 psec square input pulse
and the crystal parémeteré of the calculation shown in Fig. 18. The
two opposite polarity single-surface pulses discussed above are clearly
present in both the transmitted (lower curve) and reflected (upper curve)
far-infrared fields. The first‘pulse of the transmitted electric field
coincides with the optical pulse at z = £ and the second follows it
after a delay of the optical minus the far-infrared transit time. This
delay of 9.5 psec causes the prominent 3.51 cm_l oscillation in both
curves of Fig. 18. The reflected electric field at z = 0 (upper curve)
is similar. The first pulse is the reflectionvoff the input (z = 0)
face of the slab while the second is the reflection off the exit (z = %)

face. The time lag between the two pulses, T, = 24.167 psec, generates

+
a 1.38 cm_l oscillation period in the solid curve in Fig. 18 which,
unfortunately, is pbscured by the 0.99 cm_l Fabry-Perot oscillation
period. However, the 1.38 cm_l period is clearly present in the spectrum
of the sum of the.forward wave and the first reflection of the backward
wave th;t, for the 2 psec square pulse, is shown in Fig. 21.

Figure 22 illustrates the time~dependence of the electric field
generated by the beating of the o-ray and e-ray components of a single
2 psec square optical pulse for reflectionless boundary conditions.
The crystal parameters are those used for the calculation shown in
Fig. 19. As in Fig. 20, there are two regions of approximately 2 psec
duration separated by T, in the backward wave at z = 0 (upper curve) or

by T_ in the forward wave at z = £ (lower curve) which are due to the

single surface nonlinear reflections or transmissions. The signal
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between the two surface pulses is due to the interference of the
radiation generated by the leading and trailing edges of the pulse;
its amplitude depends critically on the pulse length and 1s largest
when Wy T = (2m+1)7T m = 0,1,... (see Appendix D). Both during and
between the surface pulses, the time debendence is nearly sinusoidal

with a frequency that is given approximately by the corresponding

phase-matching condition Ak,

+
ik = 0 or Akjk = 0.

The nearly sinusoidal time dependence is easily explained: Due
to the different o- and e-ray phase velocities, the square pulse creates
a standing wave modulation, cos[(nj—nk)woz/c], of the nonlinear
polarization (plus a propagating second harmonic modulation that
doesn't concern us here) within the moving window determined by its
durqtion. If the input beam were continuous wave, this polarization
would have no time dependence and could not radiate; however, the
motion of the pulse edges creates a time-dependent source. (In the
one~dimensional plane wave case, only these edges radiate.) If we
consider just the effect of the leading edge of the pulse on the far-
infrared wave at z = £, the radiation arriving at time t was generated
at the retarded time t' = t—(%—z')ni/c at the point in space z' = ct'/nj
which the leading edge then occupied; thus, the relationship between
the time of observation at z = £ and the point of emission is
t - Qni/c = z'(nj—ni)/c, and the contribution of the leading edge is
sinusoidal at the difference frequency w = wo(nj—nk)/(ni—nj). This is

approximately the ffequency at which Ak,

= - >>n.-n .
ik 0 when ni nj nj nk

Between the two surface pulses the velocity difference between the



leading (c/nj) and trailing (c/nk) edges causes a deviation from a truly
sinusoidal field that is negligible unless the optical birefringence
is large.

We have neglected dispersion and absorption in the above discussion.
They can, however, be easily incorporated in the computer spectrum

calculations. The effects vary from crystal to crystal. In LiNbOB,

the absorption coefficient, o, in the far-infrared is roughly proportional

to wz. (a0 ~ 18 cm—l at 30 cm_l).10 The decrease of the far-infrared

power due to absorption is less than 20% below 10 cm_l. We have also
neglected the effect of possible frequency chirping of a mode-locked

1 . s . . .
pulse. 1 This is not important here since, in the product E , any

E*
237k
%3 is almost completely cancelled out by the same
%

2k

phase modulation in E
phase modulation in E Finally, for a train of N identical mode-
locked pulses with a time interval T between pulses, the far-infrared
spectrum of Eq. (45) should be modified by the factor
l[l—exp(inT)]/[1—exp(in)]IZ. The total far-infrared energy is

increased by a factor of N.
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CHAPTER IV. PHASE MATCHED FAR-INFRARED GENERATION BY
DIFFERENCE-FREQUENCY MIXING OF TWO DYE LASER BEAMS

I. Introduction

The use of non-linear difference-frequency mixing of optical or

infrared lasers to generate tuneable far-infrared radiation has been

. . 0 . . .
experimentally demonstrated many times. Various combinations of

lasers and non-linear crystals have been used: temperature~tuned ruby
’ 4
2 b
7-9 . . , 6
and GaAs; a spin-flip Raman laser and a CO2 laser with InSb; and

Zn0, and CdSlO and

lasers with LiNbOe;l’3 grating tuned CO, lasers with InSb,2 ZnGeP

2

grating tuned ruby pumped dye lasers with LiNbOB,

with reduced (black) LiNb03.5 Only the dye laser system has demonstrated
output that can be continuously tuned over the entire 20 to 190 cm_l
frequency range with a single laser system.lO Although the ruby pumped
dye laser systems have a low repetition rate, the results obtained with
them suggest that a suitably chosen flashlamp pumped dye laser system
could be used to generate a greater than 1 Hz repetition rate,
continuously tunable, far-infrared source using a LiNbO3 crystal; this
source would operate from 20 to 160 cm_l with a peak power of at least
a few milli-watts.

This chapter describes the difference frequency generation of
continuously tunable far-infrared radiation in the 20 to 190 cm._l
frequency range using two distinct ruby-pumped dye laser systems. In
the experiments described here, we observed far-infrared radiation in
the 20 to 160 cm_l range with various phase-matching schemes in LiNbOB:

forward collinear (FCPM), backward collinear (BCPM), and noncollinear
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(NCPM). We have also investigated FCPM in ZnO, ZnS, CdS, and CdSe at
selected frequencies as high as 190 cmfl.. The observed far-infrared

power is summarized in Table 1.

IT. Synopsis of Plane-wave Theory

A. Plane~wave Theéry for Collinear Phase Matching

Because our optical focal spot diameter of 3 mm was much larger
than any of the far-infrared wavelengths that we investigated in LiNbOB,
the plane wave theory of difference frequency generation (see Eq. (37)
of Chapter II) adequately describes our experimental results above
40 cmfl. When, as in our experiments, the optical absorption is

(2)

negligible and only Xo4 contributes to the difference-frequency signal,

the far-infrared power can be approximated by

1 2moc ﬂwz ' ’
P(w,0) = de —— I(wte,0) (49a)
4moc 4
-2TC0c
where
.3 2
8w TTlTZ(w+€) n

: , .2 (2),2
I(wte,0) =sin 0 Ix [ 1.1 }
{c nlnz[n2+c2a2/4(w+€)2] 24 12
(49b)

o 11— exp(-08/2) exp{i[Ak(w,8)-Be/c]8}|?
[Ak(w,8)-Be/c]? + o/4

is the intensity generated by two monochromatic lasers at their
difference frequency wt+e; o is the far-infrared absorption coefficient

at w; Ak(w,8) is the phase mismatch for the nominal laser frequency
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and the difference frequency w; B is given by either B =n - ny for

FCPM or by B+ =1 + ny for BCPM; 20 is the effective bandwidth of our

dye lasers; I. and 12 are the pump laser intensities; T, Tl’ and T

1 2

and ﬁ, g, and n, are the far-infrared, high-frequency optical, and

2
low-frequency optical transmission coefficients and refractive indices,
respectively; and O is the angle between the optical beams and the c-axis

of the crystal.

B. Backwards Collinear Phase-matching

: In crystals that have an optical birefringence sufficient to

collinearly phase-match the difference frequency generation of a
forward propagating far-infrared wave, there is also a range of
frequencies in which the generation of a backward propagating or
reflected difference frequency wave can be phasematched. This occurs
because in the frequency range below the lowest infrared active TO
phonon, the far-infrared refractive index is typically a monotonically
increasing function of frequency and is usually greater than the
optical refractive indices. This reflected difference frequency wave
is similar to the reflected second harmonic wave generated in III-V
semiconductors;11 however, since it is phase-matchable, the coherence
length can be a substantial fraction of the crystal thickness rather
than just half a second harmonic wavelength.

If the forward, PF’ and the backward, PB’ collinearly phase
matched powers are generated by identical pump laser beams in crystals
that are identical éxcept for their phase-matching angles, then

according to Eq. (49) their ratio is the product of two factors:



1) the ratio of sinz(e) at their respective phase matching angles, and
2) the ratio of the mean values of their phase-matching functions
averaged over the far-infrared linewidth. The ratio of the backward
to the forward collinearly phasematched sin26 factors is (n+nl)/(n—nl)
when wl >> © and when dispersion at the pump laser frequencies can be
neglected. When the far-infrared generation process is phase matched

at line center (=0 in Eq. (49)), PB/PF’ including the above ratio of

the sinz(ﬁ) factors, is given by:

PB/PF = f[(n+nl)0]/f[(n—nl)0] (50)

where

2Tu d 9
f(u) f ————Y—-—z— [l-eXp[-—(Ziv-I-OL),Q,/Z] | .

2mu 4v2+a

Thus, BCPM is more efficient than FCPM for type II collinear generation
of a far-infrared o-ray in LiNbO3; in the limit of a large absorption
coefficient, o, the power ratio is given by PB/PF = (n+nl)/(n—nl) which

can be as large as a factor of two in LiNbO3.

C. Noncollinear Phase Matching

The most general phasematching configuration is non-collinear
phasematching; the forward and backward collinear phasematching
configurations are, in fact, limiting cases of non-collinear phasematching.
The general phasematched three wave interaction is described by the
wavevector triaqgle shown in Fig. 23a. TFor our difference-frequency
case the index 1 and 2 waves are optical beams and the index 3 wave is

the far-infrared beam. The special case ¢ = y = 0 is forward collinear
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phasematching with Akfc = kl—kz—k3 = 0 while ¢ = 0, ¢y = 7 is backward

collinear phasematching with Akbc = kl—k2+k3 = 0. By an elementary

application of the law of cosines and half-angle formulas, we obtain
for the angle between the two optical beams:

2 2
(ky—=ky) kg

k. k 0

sinz(%5 = -
172

(51)

and for the angle between the far-infrared beam and the high-frequency

optical beam:

n3 n3w3 n 2n.w

n (n,—n,)w n,+n (n.,+n)w
sinz(%) - %—{l _ _g._ 1 2 l} { 1 72 _ 372773 } . (52)
1 171

For far-infrared generation with optical or near-infrared lasers, the
angle ¢ is small because k3 is much smaller than either kl or k2'
However, the angle Y is often large.

Far-infrared generation with non-collinear phase matching is more
sensitive to the divergence of the pump lasers than far-infrared
generation with collinear phasematching whenever the angle, ¢, between
the pump beams is more than about twice their divergence angles. The
far-infrared radiation is generated by the interaction of the various
plane-wave compoﬁents of the pump laser beams. Thus, for phase
matched mixing of divergent pump laser beams, Fig. 23a illustrates the
phase matched mixing of the axial plane wave components that are at

the center of the far-field diffraction patterns of the pump laser

beams, and Fig. 23b illustrates the mixing of this component of one



pump beam with a plane wave component at the edge of the main diffraction
lobe of the second. The value, Ak', of the phase mismatch for the case
wheﬁ Aﬁ and KB in Fig. 23b are collinear is a measure of the effect of

the pump laser divergence angle §; its magnitude is the value of IAKI

for the most nearly phase-matched plane-wave component of the far-infrared
radiation in Fig. 23b, and it is given by:

M = 2 ~ k,8+siny (53)

kq +V(k:23 + u)

where u = 4klk2 sin(8/2) sin(¢ + &/2) and the approximation in Eq. (53)

is valid when |Ak| << ky and § << 1. 1In the collinear phasematching
cases (¢=0), the range of the phase mismatch is of the order of 62 and
thus a few milliradians of beam divergence can often be ignored. In the
non—collineaf case (¢ > 28), the phase mismatch becomes significant

more quickly because it grows linearly with &.

IIT. Experimental Equipment and Techniques

A. Laser Systems

For many of the collinear and all of the noncollinear phase-
matching experiments, a conceptually simple system of two separate dye
lasers pumped by a single Q-switched ruby laser was used. The active
medium was a solution of 3,3'-diethylthiatricarbocyanine iodide
(DTTC iodide) in dimethyl sulfoxide (DMSO) contained in a 1 cm Beckman
spectrophotometér cell. Each laser was arranged in Bradley's12 nearly

longitudinally pumped configuration with a 312 mm.l blazed echelle
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grating used in a sixth-order Littrow or back reflection geometry and
a 70% reflectivity dielectric mirror to complete the laser cavity.

The .5 J, 30 ns ruby pump pulse used in each dye laser generated about
24 mJ of dye laser energy that was continuously tunable. from about
810 nm to greater than 840 nm.

With this pump pulse, the dye laser output was insensitive to
factor-of~two changes in dye concentration from our operating con-
centration (20% low-level light transmission at 600 nm). Although the
low-level light transmission at 6943 A was less than 1%, the ruby laser
saturated the dye absorption band since its energy burned black masking
tape after passing through the dye cell. The only precautions taken
with the dye solution were to cap the dye cell to keep moisture away
from the hygroscopic DMSO solvent and to operate the laser in a
darkened room to retard the degradation of the DTTC iodide by ambient
light.13 To obtain a reasonable power output, the incident ruby light
was plane polarized parallel to the grating rulings to match the maximum
dye laser gain13 to the maximum reflectivity of our gratings.

Figure 24 describes a more novel dye laser that was used for some
collinear phasematching experiments. A 1 J, 30 ns ruby pump pulse
provided a large gain for both the orthogonal linear polarizations
selected by the intracavity Glan-Thompson prism.14 This prism makes
possible the independent tuning and selection of a frequency for each
polarization with two echelle gratings. To obtain good temporal overlap
of and high power fér the two frequency components, the net gains of

the two arms of this dye laser were approximately equalized by



polarizing the ruby pump pulse either circularly or linearly at 45° to
the transmitted polarization of the Glan-Thompson prism.15 The glass
microscoﬁe intracavity beam splitter provided fine tuning of the relative
gains of the two polérizations. Under our operating conditions, the
output polarizations for each beam had no more than 10% of their energy
in the undesired orthogonal linear polarization.

An amplified Q-switched ruby laser pulse pumped the dye lasers.

The oscillator consisted of a right angle prism Q-switch rotated at

400 sec_l with a hysterisis—synchronous motor; a 4 inch long, 5/16 inch
diameter ruby rod pumped by two water cooled linear flashlamps in a
double ellipse cavity; and a glass resonant reflector with 25%
reflectivity.l6 The amplifier was a 4 inch long, 3/8 inch diameter

ruby rod pumped by the same configuration of flashlamps as the oscillator
rod. Both ruby rods were water cooled from a common tank to equalize
their operating temperatures and to decrease the necessary delay between
successive shots. The oscillator and the amplifier rods were pumped
simultaneously to simplify the trigger—circuit electronics. The
oscillator was Q-switched about 400 us after the peak of the flashlamp
pulse which was about 800 us long.

Since misaligning the amplifier rod increased the laser beam
divergence and made its near field int;nsity asymmetric and non-uniform,
the amplifier rod faces were aligned parallel to the oscillator resonant
reflector and ruby rod faces; then, the oscillator and amplifier, which
were less than four feet apart, operated as a coupled system. With

new flashlamps, the oscillator and amplifier flashlamps discharged
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550 J from a 360 pfd capacitor bank and 750 J from a 395 ufd capacitor
bank, respectively. Amplifier flashlamp discharges of up to 1500 J
were possible and up to 1100 J discharges were employed regularly. The
oscillator flashlamp discharge energy was set to just below the &
threshold for multiple-pulses which was about 200 J above the threshold
for lasing. Under these operating conditions, the ruby laser system

generated about 1 J in a single 30 ns pulse.

B. Far-infrared Optics and Detection

To measure the far—infrgred difference frequency signals generated
in our experiments, we used an InSb Putley17 detector between 20 and
95 c:m—l and a Ge:Ga18 photoconducti?e detector between 95 and 180 cm—l.
The InSb detector was operated at 1.4°K in a 14.5 kG magnetic field.

Both the low temperature and the magnetic field increased the
responsivity and the signal-to-noise ratio of the detector-amplifier
system by increasing the resistivity of the InSb sample. The magnetic
field was also responsible for the high frequency end of this detector's
response by tuning the InSb cyclotron resonance peak19 to approximately
95 cmfl. The rotary vacuum pump used to maintain the He ‘temperature

at 1.4°K was attached to the He dewar through a large reservoir to
prevent modulation of the InSb detector's responsivity at the rotation
speed of the pump. The Ge:Ga detector was operated at 4.2°K.

In our forward collinear and non-collinear phasematching experiments,
the far-infrared radiation was collected by a 1 cm diameter evacuated
light piée beginning approximately .5 cm from the non-linear crystal.

The radiation propagated along a straight section of light pipe,



reflected off the flat brass mirror of a 90° bend, and then propagated
down another straight section of light pipe to the detector; the Ge:Ga
detector had a condensing cone at the bottom of the light pipe to focus
the radiation onto the detector surface. Three .25 mm thick sheets of
black polyethylene were used to filter out unwanted radiation including
that of the dye lasers; one of these sheets also served as the outer-
most vacuum seal for the light pipe. No signal was observed when the
non~linear crystal was removed and the dye lasers were fired directly
into the light pipe.

Both detector systems including their polyethylene filters were
calibrated against‘the flat response of a Golay cell20 with a diamond
window by conventional Fourier transform spectroscopy. A separate
interferogram was taken with each of the 3 detector‘systems; the same
mecury arc source, Michelson interferometer, and light pipe system were
used for each interferogram. Each interferogram was digitally Fourier
transformed and the frequency dependence of the responsivities of the
Ge:Ga and InSb detectors were determined as the point-by-point quotient
of that detector's spectrum to the spectrum measured by the Golay cell.
Differences in the product, A, of the area and collection solid angle
of the detectors were assumed not to effect their relative frequency
response.

K. H. Yang21 determined the absolute responsivity of the Ge:Ga
detéctor at 125 cnrl. He measured the response of both the Ge:Ga
detector and thé Golay cell to the mercury arc source through the

2
Michelson interferometer at zero path difference; 2 the ratio of the
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Ge:Ga to the Golay cell signal was 4.8X10_3. From the responsivity
curve18 of the Ge:Ga detector, the amount of 125 cm“l radiation that
would generate the same responsé was calculated to be 2/3 of the
radiation incident upon this detector from the mercury afc lamp. By
correcting for this and the 3 times larger A value of the Ge:Ga
detector, we concluded that the ratio of the responsivity of the Ge:Ga
detector at 125 cm.—l to that of the Golay cell was 2.4X10_3. Since
(according to its manualzo) the responsivity of the Golay cell is
8.3><105 V/Watt, the responsivity of the Ge:Ga detector is 2><103 V/Watt.
K. H. Yang21 also determined the noise equivalent power (NEP) of
the Ge:Ga detector. He measured the electriéal noise voltage of this
detector at the 1.35 V bias voltage used in our experiments with a
lock-in amplifier at several chopping frequencies at or above 280 Hz.
Under his measuring conditions the contribution of the preamplifier of\
the lock-in amplifier to the observed noise signal was negligible.
The l.2><10--7 V/V/Hz noise thus measured gives a NEP of 6><10_ll W/ iz
or 4.24X10_8 Watts within the 500 kHz bandwidth of the detection system.
The noise level of the operational amplifier with the detector replaced
by its equivalent room-temperature resistor was .3 mV peak-to-peak
compared to the 2 mV noise level of the combined detector-amplifier
system. Thus, the detector—amplifier system was detector noise limited
and the observed signal-to-noise ratio is relative to this detector NEP.
. Based on the above NEP value, the observed signal-to-noise ratio
of 66 (relative to fhe .7 mV rms noise) implies that about 4.9 mW of

far-infrared power was generated at 125 cm"l in our FCPM experiment in
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LiNb03. To arrive at this number three corrections had to be made:
First, the .75 mm black polyethylene filter used in the experiment,

but not in the detector calibration, attenuates the 125 cm._l radiation
by a factor of 8.65. Second, a factor of 3 attenuation due to the light
pipe was experimentally measured. Finally, since the 30 ns far-infrared
pulse generates an impulse response in the detector, the detector
averages the pulse energy over its 2 Us response time to record a

signal corresponding to 30/2000 or 1/67 times the peak far-infrared

power.

C. Sum-Frequency Normalization

Because of the low repetition rate of a ruby laser system, we
resorted to sum—frequency normalization to reduce the shot-to-shot
fluctuations in our measurements. In the collinear experiments, a
fraction of the combined two-frequency laser beam was split off with a
glass microscope slide and directed onto a polished (110) surface of
a GaAs or InAs crystal. Since both SFG and DFG are second order
processes, the effects of power fluctuations and temporal overlap
fluctuations are eliminated by this scheme. However, even with
identical field distributions, the fluctuations in spatial overlap
are not completely eliminated by this scheme as the long wavelength
of the difference—frequenéy signal causes the fields from neighboring
hot-spots to interfere due to the large diffraction angle from each
hot-spot as Wasldiscussed in chapter II. In the collinear experiments
using two separate dye lasers, we located the sum and difference

frequency crystals equal distances from the sum-frequency beam-splitter.



-86—

Since the latter followed all the beam combining and focusing optics

in our system, each of the two fields at one crystal wés proportional
(as nearly as possible) to the corresponding field at the other crystal.
Thus, for this group of experiments, spatial overlap fluctuations will
be reduced for hot-spots that are large compared to the far-infrared
wavelength.

Discrimination of sum-frequency signals against second harmonic
signals was achieved with Armstrong's scheme23 by making use of the
43m crystal symmetry in which Xijk vanishes if i,j,k is not a permutation
of 1,2,3. Linearly polarizing one laser parallel to the [001] direction
eliminated its second harmonic signal. The second laser was polarized
perpendicular to the [001] direction; thus, its second harmonic was
plane-polarized along the [001] direction and was eliminated by a
linear polarizer between the crystal and the photomultiplier. The [001]
direction was made normal to the plane of incidence of the two laser
beams to ensure that the above polarization directions were maintained
inside as well as outside the crystal.

Since we measured the frequency dependence of the far-infrared
power, we needed a sum-frequency normalization that did not vary with
the difference frequency, w, except through the product of the pump
laser intensities. The novel use of SFG by reflection from a highly
absorbing érystal eliminated one source of variation with w; the
highly damped solution has no Maker fringes to make the sum-frequency
signal a rapidly vafying function of the input laser frequencies as the

large phase mismatch of the reflection geometry is nearly constant



over the fractionally small tuning ranges used in far-infrared bFG
experiments. Phase matching could alsobbe used to eliminate the effect
of Maker fringes, but it is impractical for our experiments because it
requires a tedious adjustment of the orientation of the sum-frequency
crystal each time the frequency of either dye laser is changed. Other
experimenters have used sum-frequency generation by transmission through

. ] 2
a transparent crystal with a ground exit surface 7’

for this purpose;
we could have used this technique with a crystal like KDP, but the
collection of the output sum-frequency signal would have been compli-
cated by its poor colimation. Fortunately, the much larger sum—frequency
susceptibilities of GaAs and InAs compared to those of readily available
transparent crystals compensates for the much shorter coherence length

of the reflected wave geometry. Because the 12,000 to 12,200 cm—l
frequency range that our dye lasers were tuned through in these
experiments is small compared to the separation between the dye laser
frequencies and band gap frequencies of GaAs (~10900 cm—l) and InAs
(~2130 cm_l), the sum—frequency susceptibility of our normalization
crystal was nearly independent of the difference frequency w; together
with the lack of Maker fringes, this made the sum-frequency signal a

good normalization against the frequency dependence of the dye laser

power.
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IV. Forward Collinear Phase-matching Experiments

A. Experimental Measurements and Data Analysis for LiNbO3

Since the experimental data available in the literature on the
o-ray absorption coefficient of LiNbO3 between 70 and 1000 cm_l is
based on a Kramers-Kronig analysis of far-infrared reflectivity data2
rather than a direct measurement and since sample-to-sample differences
are possible due to impurities or slightly non-stoichiometric composi-
tion, we determined it at each frequency by measuring the far-infrared
power as a function of wavevector mismatch. DeMartini has used this

b

. 2
technique, known as momentum spectroscopy, to measure the far-

infrared absorption coefficient and the difference-frequency suscepti-

bility of GaP.24’25

However, we have used the birefringence of‘LiNbO3
to vary the momentum or phase mismatch while De Martini used the
noncollinearity of the pump beams and the various plane wave components
of his far-infrared radiation in the optically isotrobic GaP crystal.
We used seven LiNbO3 slabs cut from a single Crystal Technology,
Inc. boule with angles between the c-axis and the slab normal of 15°,
25°, 35°, 45°, 55°, 65°, and 90° (the a-axis, c—axis, and slab normal
were coplanar). This permitted the frequency range 20 to 127 cm—-l to
be spanned without the complications of angles of incidence over 20°.
The surfaces were ground flat on a series of SiC abrasive papers and
optically polished with 1 |1 diamond abrasive. For our experimental
measurements these L'iNbO3 slabs were mounted on the axis of a rotating

platform with their c-axes, their slab normals, and the laser beam
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direction all perpendiculag to the axis of rotation. At each frequency,
w, above 40 cm._l we measured the power as a function of the orientation
of the crystal, P(w,8), over a wide enough range of 0 to determine its
angular width and thus its absorption coefficient, a(w).

To obtain the far-infrared absorption coefficient a(w) from a set
of experimental measurements, {(Pi,ei/i=l,2,...,m}, we used a nonlinear
least-squares fit. To make the computation tractable on a small
computer, we neglected the t-dependence of the term of Eq. (49b) that is
enclosed in braces and eliminateé the terms that contain exp(-al/2);
since af >> 2 at the frequencies at which we determined o, the latter
approximation is valid in our experiments. We also replaced Ak(w,0)
with ZW[AO + A(B)] where 27A(8) is the phase mismatch at the difference
frequency w and at the nominal laser frequency, € is the angle between

the laser beam axis and the c-axis, and A  accounts for the experimental

0
uncertainties in the values of the nominal laser frequency and the

angles Si. With these assumptions P(w,0) from Eq. (49) is given by

N . 2 . [AHA(O)+BO _1 (A, FHA(B)-Bo
P(w,0,a) = Asin® {tan L (—~0——~———————) —tan 1 (—0*——'——— )} (54)
N T

withl = a2/l6ﬂ2 and a = (A,AO,F). We minimized the function
m
2 2 .
X (A,Ao,r) = Zi=l [Pi—P(w,ei)] /(m-3) with respect to A, Ao, and " by
the minimization process discussed in Appendix E.
As we can see from Eqs. (49) or (54), determination of o from our
data requires that the effective bandwidth, 20, of our dye lasers be

measured. From Eq. (54) we can also see that, for a long crystal
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(0f > 2), 0 is determined by measuring P(w,0) aﬁ a frequency where o
(and hence ') 1s known. For any value of ¢, the minimum value of ¢
that can be determined from the angular width of P(w,0) is‘proportional
to a/4mB since Eq. (54) is nearly independent of O when both tan—l
functions can be approximated by their arggments. For a crystal less
than two absorption lengths thick, the finite thickness makes the width
of P(w,B8) even less sensitive to O as can be seen from Fig. 25.

To measure the effectiﬁe bandwidth or our dye lasers, we used a
1.61 mm thick LiNbO3 sample that was cut from a Hansen Microwave Lab.
boule with its slab normal at 16° to the c-axis. At a far-infrared
frequency of 21 cm_l, effective dye laser bandwidths smaller than about
.8 cm_l could not be measured even with a crystal many absorption
lengths thick. However, since our sample was less than two absorption
lengths thick (o = 9.5 cm—l),28 the smallest measurable bandwidth was
about 1.5 cm_l as can be seen from Fig. 25; this sensitivity to‘relatively
narrow bandwidths is due primarily to the large difference (4.4) between
the optical and far-infrared o-ray refractive indices. The results of

our experimental measurement are shown in Fig. 26; they correspond to a

3 cm—l bandwidth for our far-infrared radiation.

B. Results of Forward Collinear Phase-matching Experiments

The results of our measurements of the o-ray absorption coefficient,

o s in LiNbO. are summarized in Fig. 27. The solid curve is a composite

3
v 28 , .. - -
of Bosomworth's far-infrared transmission measurements for w < 70 cm

and Barker and Laudon's26 Kramers-Kroenig analysis of their far-~infrared

reflectivity data for w > 70 cm_l. Our results agree satisfactorily



with those of Barker and Loudon between 80 and 110 cm_l. Between 40 and
70 cm—l our values of uo are significantly larger than the values of
Bosomworth. The difference is due to a weak, broad absorption peak
centered near 65 cm—l that may be due to two phonon absorption.29
Bosomworth's data also suggests the presense of a peak near 65 cm”l,
but his peak is much weaker than ours; perhaps this is just sample

1

variation between his slightly greenish LiNbO, crystal and our colorless

3
sample.
Figure 28 contains a comparison of our FCPM experimental results
for LiNbO3 (the circles) and the plane wave theory of Eq. (49) with the
absolute power at 110 cm_1 treated as an adjustable parameter. Above
40 cm—l this theory30 reproduces our experimental results satisfactorily
given the multi-mode nature of our dye laser beams. However, the
theoretical absolute power at 125 cm—.l is 22.5 oW, a factor of 4.6 larger
than our measured power. Below 40 cm“1 the observed power falls off
far more rapidly with decreasing frequency than is predicted by Eq. (49).
The calculations shown in Figs. 29a and 29b strongly suggest that
this reduction in the DFG efficiency below 40 cmml is due to the multi-
mode nature of our laser beams and the inherent misalignment of their
hot-spots. These calculations used the more complete theory of Chapter
II for single mode dye laser beams; for Fig. 29a the two dye laser beams
were coaxial (a=0), but for Fig. 29b their axes were 0.5 mm apart. The
other parameters roughly approximate our laser beams and our LiNbO

3

crystal: 300 kW in each dye laser beam, A, = 833 nm, w = .08 mm,

1

z, = 50 cm (2 mr divergence half-angle at half intensity and 3.3 mm
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l/e2 diameter at the crystal), £ = .65 mm, X(z)

=3 .18><10_6‘ sinf,, where
GM is the phase—matching angle, n, = 2.257, n-n = .08192, a cubic
spline fit to the absorption coefficients in Table II, a 30° detegtor
collection half-angle, and an axially phase-matched DFG interaction.
The far-infrared radiation generated below 20 cm—l is reduced by more
than a factor of 10 by the 0.5 mm separatioh of the laser beam axes.

At a sufficient distance, z > from the focal plane, optical pump
beams separated by many focal plane radii diffract into each other and
form a Gaussian nonlinear polarization centered at the midpoint between
the two beam axes. Since geometric optics adequately describes the pump
laser beams at such a distance from the focal plane, at the midpoint
between the axes the Pointing vectors of the two laser beams, which give
the direction of the local wavevectors, lie in the plane of the laser
beam axes at equal, but opposite, angles ia/2zo to them. Thus, inside the
crystal the difference-frequency radiation is generated preferentially
about a direction at an angle sin—l(kla/kBZO) to the 1asef beam axes where
kl and k3 are the optical and far-infrared wavevectors in the crystal,
respectively. For the calculation of Fig. 29b this angle passes through
the total reflection angle at 24 cmfl; thus, only above the far—infrared
frequency w = ckla/zo, is the far-infrared power improved significantly
by placing the crystal for enough away from the focal plane that the
hot-spots diffract into ome another (as in our experiment).

We have also extracted.a rough measurement of the frequency dependence

5 . .
Z)I from our data. The results are shown in Fig. 30 together with

31,32 2) 2
of |X§4)| in

of |x§

a multiple simple-harmonic-oscillator calculation
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which we used the oscillator strengths, TO phonon frequencies, and line-
widths of Barker and Loudon26 and the Raman cross sections of Kaminow

and Johnston.33 The agreement is satisfactory. Furthermore, the -

2)l2

monotonically increasing IX§4 without a broad dip between 80 and

90 cm.—l indicates that the 152 cm.-'l E-symmetry mode contribution to the
low frequency (say llto 10 cm_l) Xéi) has the same sign as the sum of
the contributions from the electronic and the rémaining E-symmetry
vibrational modes.

Table I summarizes the far-infrared power generated in 1 mm thick
samples of Zn0O, ZnS, CdS and CdSe at their maximum phase-matchable
frequencies (all samples had their c-axes parallel to the sample
surfaces). The Zn0 and CdS samples were pre-cut and rough-ground by the
manufacturers; the two CdSe slabs were cleaved from bulk samples and
rough-ground on successively finer grades of SiC paper. The final
optical polishing of all these relatively soft samples was accomplished
by hand lapping in a water slurry of 1 u A1203 abrasive. The ZnS
sample was a long 1 mm wide strip that was optically polished by the
manufacturer; this sample was not wide enough to accept all of the dye
laser beam output, so the number reported\in Table I has been corrected

to estimate the output attainable with a crystal wider than the laser

beams.
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V. Backward Collinear Phase-matching Experiments in LiNbO

3

A, Modifications of FCPM Experimental Apparatus for BCPM

We have observed the phasematched difference frequency generation
of a reflected far-infrared wave in LiNbO3. In spite of the 547 far-
infrared o-ray reflectivity, above 40 cm—'l the laser input surface
cannot be used as a mirror to reflect the far-infrared wave into a
detector behind the crystal because the absorption coefficient is too
large. To collect the radiation from the laser input side of the
crystal, we added a short piece of brass light pipe and a right angle
bend to the far-infrared collection optics used for the forward
collinear phasematching experiments. The dye laser beams passed
through a 1/8 in diameter hole milled through the flat brass reflector
of the right angle bend; the axis of the hole was parallel to the laser
beams and at a 45° angle to the normal of the bréss plate. This
collection technique added about 5 cm of air to the far-infrared

propagation path.

B. Results of BCPM Experiment

As 1s shown in Fig. 28, our BCPM data do not agree with the simple
theorv of Eq. (49) since the prediéted dip near 65 cm_l in Fig. 28 was
not observed in our experiment. We believe that this difference is
due to the frequency dependent losses through the 1/8 in diameter hole
in the brass light pipe. As the far-infrared frequency increases, the
far~infrared beam becomes more collimated around its nominal reflected
direction; and when phase matching occurs near normal incidence, more

far-infrared energy cah escape through the hole at high difference



frequencies that at low ones. The added 5 cm of air in the propagation
path will also modify the frequency dependence of the far-infrared
signal due to water vapor absorption. The net result is extremely

difficult to calculate and we will not attempt to do so.

VI. Noncollinear Phase-matching Experiments in LiNbO3

A. Experimental Methods

The experimental set—up is shown in Fig. 31. Two separate dye
lasers were used; they were synchronized by pumping them with a single
ruby laser pulse. The plane of incidence of the dye lasers on the
LiNbO3 sample was horizontal for experimental convenience. To maximize
the far-infrared radiation generated, the non-linear polarization
vector and far-infrared wavevector were made orthogonal by using
vertically polarized dye lasers. The angle between the two dye laser
beams was adjusted by rotating the right angle prism PMl and the
intersection of the two beams was positioned at the input surface of the
LiNbO3 crystal by moving this prism on a translation stage. The two
dye laser beams were separately focused a few cm behind the LiNbO3
crystal. Sum frequency normalization was accomplished as shown in
Fig. 31. Since the dye laser field configurations at the sum and
difference frequency crystals were not similar, the sum frequency
signal compensates for the power and temporal overlap fluctuations of
the dye lasers but cannot be guaranteed to compensate for spatial
overlap fluctuafions even at high difference frequencies.

Figure 32 is a top view of the single 4 mm cube LiNbO3 crystal

used in our NCPM experiments. (LiNbO, was chosen for this experiment

3



-96-

because of its large electro-optic coefficient and its availability.)
In the shaded region, the nearly parallel dye laser beams create a
difference-frequency polarization that radiates along the direction of
the difference of the two optical wavevectors. To permit the far-
infrared radiation to leave the crystal with an acceptible reflection

loss, we cut off the corner of our LiNbO, cube at an angle corresponding

3
to wo = 68° so that the far-infrared radiation would be within 4° of
normal incidence inside the crystal over the frequency range 1 to

150 cmﬁl; at 160 cmnl the angle of incidence was approximately 5°.

We chose our experimental geometry with all three electric fields
polarized along the c-axis of our LiNbO3 sample for three reasons:
First, X33 and X9, are an order of magnitude larger than the other
non-zero difference-frequency susceptibility tensor elements. Second,
X924 yields a far-infrared o-ray while X33 yields an e-ray. The latter
has a smaller absorption coefficient than the former; thus, the X33
configuration is a more efficient far-infrared source. Finally, as can

be seen from Eq. (52) when n, = n, and n, is approximately constant,

1 72 3
as in the X33 configuration, the angle y between the far-infrared and

optical wavevectors is nearly independent of Wgs and a single sample of

LiNbO3 with its corner cut off at a nominal value of wo can be used at

all frequencies of interest. If { varied significantly with Wgs

multiple samples would have to be used to avoid large losses due to

total internal reflection.
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B. Results of Noncollinear Phase-matching Experiments

To analyze our results, we have made use of the simple apﬁroximation
of a plane wave far-infrared field that propagates perpendicular to the
cut off surface of the cube. Since the 4 mrad divergence of the pump
laser beams creates a 140 cm_l range of Ak values, we averaged the plane
wave power over this range using a uniform weight at each Ak. We actually
used the plane wave formula for collinear phase matching with an effective

length, 2 that is roughly the shortest distance along the far-infrared

eff’
beam between points at which the phases of the nonlinear polarization
are uncorrelated. A value of Qeff = .05 cm gave a good fit to our data
at 40 and 55 cmfl; at and above 75 cm._1 the calculated values are

independent of QQf due to the large absorption coefficient. This

£
simple analysis fits our data amazingly well as can be seen in Fig. 28.
The justification for treating the pumped region as a thin slab is that
the coherence length of ~.05 cm is much shorter than our beam diameter
of ~.3 cm so the exact shape of the non-linear polarization region be-
comes unimportant as the slab like first few coherence lengths dominate.
For the case of coherent pump lasers, a more general plane-wave analysis

that considers the shape of the pumped region has been given by Lax

and Aggarwal7 in their work using a non-collinear phase matching geometry.

VII. Discussion of Results and Conclusions

A. Comparison with Raman Scattering Results

Our experimentally derived ratios of the nonlinear difference

frequency generation susceptibilities of LiNbO Zn0, and CdS at their

3’
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respective maximum phase matching frequencies are within 207 of

independently computed values. The ratios obtained from our far-infrared

. 11 3 . —3 » —3. _2
power measurements are d24(L1NbO3).dlS(ZnO).dls(CdS) =1:9,1x10 7:5.2x10 ~.
Based on reported values of optical refractive indices,%—36 far-

26,37,38 33,39,40

infrared reflectivities, Raman scattering cross sections

of all three crystals and based on the clamped linear electro-optic

2

coefficient r,,, of LiNbO 1 the computed32 ratios are 1:1.0x10 :

4
42 3°

6.3X10—2. Such close agreement is remarkable for far-infrared difference
frequency generation experiments;

Figure 33 displays the dispersion of the ionic, rq, and electronic,
T, contributions to Teq for CdS at 80°K based on the Raman scattering
data of Ralston et al.40 and on Loudon's theory.42 Because the Raman
scattering cross sections are proportional to the square of matrix
elements while re_and rq are linear functions of the same matrix elements,
there are four simultaneous solutions for r, and rq in-terms-of the LO
and TO phonon Raman scattering cross sections; but one pair of these
solutions differs from the other pair by only a sign. The magnitude
of rq is determined by the TO phonon Raman cross section; however, there
are still two possible magnitudes of r, ﬁhich are shown in Fig. 33 for
CdS. Our far-infrared measurements require that r, is given by the
upper curve so that, for example, Tgy =
1.064 u. For ZnO at 5145A, rq is 2.04X10_8 esu and r, is .546x10°

r +r = 8.7><10--8 esu at
e q
8

(or 3.35X10_8) esu based on the Raman data of Arguello.gg_gl.sg and the
35

refractive indices of Bond. At 6471A, rq is 1.69X10—8 esu and r, is

.97><10—8 (or 2.27X10_8) esu based on the Raman data of Callender gg_gl,43



]
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Our far—infréfed‘power measurements imply that the smaller value of T,
is appropriate so that r,, = 2.59><10-_8 esu at 5145A. Fortunately, for
this choice of r, the linear combination of r, and rq that determines

the DFG susceptibility changes by only 2% between 5145 and 6471&; thus,

we can use this shorter wavelength data to estimate the DFG susceptibility

at our dye laser wavelengths (8100 to 8400A).

B. Relative Merits of Forward-, Backward-, and
Non-Collinear Phase Matching

Since BCPM occurs at a larger angle O than FCPM, DFG of a far-
infrared o-ray in crystals of the point groups 4, Z, 4mom, ZZm, 3m
(when sin3¢ = 0), and 6mm has a larger effective nonlinear suscepti-

bility, d for BCPM than for FCPM,as can be seen in Table III. For

eff’
o-ray generation in 32, 6, and 6m2 crystals and e-ray generation in

3m, 6, and 6m2 crystals de is smaller for BCPM than for FCPM. For

ff
the other combinations of the optically uniaxial point groups and the

for BCPM relative

generated polarization in Table III, the size of deff

to deff for FCPM at the same difference frequency depends on the
nonlinear susceptibility tensor elements of the particular crystal and
the angle ¢ at which it was cut, or it depends on the difference
frequency through the factor cos® sind (e.g., e-ray generation in 4, 4,
422, 42m, 6, and 622 crystals). However, collecting the far-infrared
radiation is more difficult in a BCPM than in a FCPM configuration;

thus, even when it has a larger d BCPM will probably be less useful

eff’

than FCPM in any far-infrared source based on difference frequency

generation.
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Noncollinear phase matching offers three practical advantages over
collinear phase matching. First, it adds cubic crystals in point groups
43m and 32 to the list of phase matchable materials. Second, a single
crystal sample can be used to cover a frequency range that would require
several separately cut samples for collinear phase matching. And third,

in some crystals, such as LiNbO it provides a more efficient far-

32
infrargd source by eliminating the angular dependence of deff’ using a
larger nonlinear susceptibility tensor element than collinear phase
matching, or using the far-infrared polarization with the smaller
absorption coefficient. Nevertheless, in the final analysis each

crystal must be evaluated independently to determine the best phase

matching configuration for it.

C. Difference Frequency Generation as a Far—-infrared Source

We have also verified that the dual-frequency dye laser system
shown in Fig. 24 can be operated with a flashlamp-pumped Rhodamine
6G dye laser, although the laser output was insufficient to generate
detectable far-infrared radiation in the difference frequency experi--
ment. However, a flashlamp-pumped dye laser with 100 kW peak power
(50 kW at each frequency) and a 1 usec pulsewidth would generate the
same far-infrared signal for each pulse as our Ruby laser-pumped system
with its 600 kW peak power and 30 nsec pulsewidth. Because flashlamp-
pumped dye lasers with 100 kW peak power can be operated at repetition
rates above 1 Hz and beam expanding telescopes can be used to narrow
the linewidth, difference frequency generation using the dual-frequency

dye laser system of Fig. 24 is an attractive source for far-infrared



spectroscopy. With the same conversion efficiency as in our experiment,
the system would generate a few nanoWatts of time-average far-infrared
power at a 1 Hz repe;ition rate,

There are at least two opportunities fof significant research in
developing difference frequency generation as a far-infrared source:
(1) a search for new and better nonlinear crystals with larger linear
electro-optic coefficients, lower far-infrared absorption coefficients,
and high damage thresholds; (2) an experiment with a less than 1 cm
linewidth TEMoo mode laser to verify the theory of Chapter II and
establish the maximum attainable optical to far-infrared conversion

efficiency as a function of input power for each crystal.
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Table I. Summary of the mixing experiments on five different crystals.
Crystals Tunable range Power (Frequency observed)
LiNbO,, 20 to 127 cm (FCPM) See Fig. 28
20 to 95 cm_l (BCPM) ~ twice that of FCPM
40 to 160 cm - (NCPM) See Fig. 28
* -1 -1
Zno < 190 cm — (FCPM) 14 mW (190 cm )
* - -
cds < 180 cm.l (FCPM) 3 mW (180 cm l)
ZnS < 91 em L (FCPM) 0.74 mi (91 cu )
* -1 + -1
CdSe < 150 cm (FCPM) < 0.15 mW (150 em )

%
Crystal thickness 1 mm

TLess than the detector noise level
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Table I1. Absorption Coefficients of LiNbO, (used for calculations in

Chapter 1V) 3
Frequenc& o-ray Source e—ray‘ Source
0 0 0
.50 a .31 a
10 2.1 a 1.25 a
15 5.54 a 2.8 a
20 8.68 a 5.0 a
25 12.5 a ‘ 7.5 a
30 17.1 11. a
35 49.6 13. a
40 110. b 18. a
45 150. 23. a
50 200. 30. a
55 230. b 39. a
60 300. b 50. a
65 425, , b 70. - a
70 460. 100. a
75 480. b 130. a
80 500. 175. a
85 520. : 230. a
90 530. : 260.
95 545, b 288.
100 610. 319.
105 720. 352.
110 845, b 386.
120 610.
125 1500. c
140 1047. c
160 ' 1510. c

a) D. R. Bosomworth, ref. 28
b) our nonlinear measurements
¢) Barker and Loudon, ref. 26
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Table III. Angular Dependencea of Second-Order Nonlinear
Susceptibilities for Type II Collinear Phase Matching in
Uniaxial Crystals.

(a) Ordinary-Ray Generation

Symmetry Effective nonlinear susceptibilityb’C
group
4 dlssine
4 (dl4Sin2¢ - d15c082¢) sinb
422 0
41m dlSSine
42m dlésin2¢ sinb
3 —(dllc053¢ + d22sin3¢) cosf + dZASine
32 —dllc033¢ cosf
3m —dzzsin3¢ cosf + d24sin9
6 dzasine
6mm d2481n6
622 0
6 —(dllcos3¢ + dzzsin3¢) cosf
6m2 —dzzsin3¢ cos0
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Table III. Continued.

(b) Extraordinary-Ray Generation

Symmetry Effective nonlinear susceptibilityb’
group
4 d14sin6 cosf
&4 [(dl4+d36)c082¢ + (d15+d31>Sin2¢] sinb cosb
422 d14sin6 cosf
4mm 0
42m (dl4+d36) cos2¢ sinb cosb
3 (dllsin3¢ - d22c033¢) cosz(e) + d,,sinf cosb
32° dllsin3¢ cos2(6) + d1431n6 cosf
3m. —d22c053¢ cosz(e)
6 dl4sin6 cosB
6mm 0
622 dlASine cosf
6 (dllsin3¢ - d22c0s3¢) cosz(G)
6m2 —dzzcos3¢ cosz(e)

a) All walk-off.angles have been neglected.

b) 6 is the angle between the normal, fi, and the axis of symmetry,

c) ¢ is the angle between 2 and nx3.

3.
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APPENDIX A

The ektraordinary ray assumed in Sec. IIA of Chapter II actually has

the form
&.é /{;Ez (x-C z)2 2
> _ 272 A 2 y
/(l+1£2x)(l+1£2y) w2(l+1€2X) w2(1+1£2y)
exp[i(kzz - wzt)] “(AL)
where
3 2 2 2. 2
& = (%o zo,zy)nz/{k M olem, 2 Mty o)
_ 2.2 2
box = 2772y 5) [/ {ieipn em, 2%, 27
_ B 2 2
gey = 2(z ZO,Zy) n /{k ,2]
82 = unit vector parallel to the electric field

of the e-ray for a normally incident laser beam

and the remaining parameters are as defined for Eq. (1). This expression

with z0 9% = 0 2y is essentially the same as the one given in

Appendix T of Ref. 31, but there the factors in the square brackets
in the definition of EZX and Ezy were approximated by 1.
. , . 2(2) = . .
The nonlinear polarization P (r,w) is obtained from Eq. (2)

in Eq. (1) and E

, in Eq. (Al). The

. >
using the expressions of El

> > - >
transverse Fourier transform of P(z)(r,w) gives P(z)(kT,z). To obtain
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the expression of P( )(kT,z) in Eq. (3), we made the following
simplifying assumptions. First, we assumed Wy W, =W Second, we
assumed a common focus for the two beams, z = z = z

0,1~ %o,2x ~ 0,2y ~ %o°

Finally, we assumed £ gZx = €l - £ 0. This last assumption is

"1 2y
- - << .
reasonable as long as 3|€l szl, 3|gl £2y| m/2. In our
calculations, the largest value of 3|€l - EZXI or»3[€l - 52y| is 1 for

the case of w = 10 cm_l, w =25 um and ¢ = -0.02. For all the other

cases, 3[51 - €2X| or 3|El - €2y| is much smaller than 1.



-114~

APPENDIX B
To derive Eq. (6), we first Fourier transform Eq. (4) and obtain

R -k e 0? et B = an? DB @

(B1)

L0 B@ = -amk - 3P @
The pafticular solution of Ed. (Bl) can be written in the form
@ =80 3P @ .

From the inverse transform on kz, we then have

o] 0o} i -t
P (ic,,2) = 5177 Lo dk Lo dz'elkz(z i s@y -3 (kpz')  (B2)
A straightforward, but tedious, application of the residue theorem
finally leads to Eq. (6).

We also notice that Eqs. (6) and (7) are not the results of slowly
varying envelope approximation. This is in fact generally true for
the solution of optical mixing in the parametric approximation. For
example, consider the simple case where the nonlinear process can be

described by the wave equation

(52/322% + ki) E(z) = 4m(w2/c?) P (z) (B3)

where PNL(z) # 0 only if 0 € z < . Then, in the region 0 < z < {,

the solution of the equation is



2 z ik (z-z") L —-ik (z-z")
E(z) =£1Lu—)2— [f PNL(z')e ° dz'+ f PNL(z') e © dz'] (B4)
0 0

ik ¢
o

No slowly varying envelope approximation was made in the derivation.
In fact, one can easily show that,with the complete expression of E(z)
in Eq. (B4), the terms 82|E(z)|/822 and 2k 3|E(z) |/3z are generally
comparable in magnitude. The usual slowly varying envelope approxima-
tion is actually equivalent to neglecting waves propagating in the

opposite direction.
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APPENDIX C

Computation Methods for Chapter II

The results presented in section III of chapter II were obtained

' >
by numerically integrating Eq. (32) after substituting for |ET+I2 the

ety (R F)0TE 501 L [ |? where th in b is th
quantity T+F+) (T+F+) 1,1 o+l where the term in braces is the
upper left matrix element of Eq. (30) evaluated for the special case

A

¢ = x and E§+ is obtained from Eq. (22) for the special case 0 = §,

~ A (2 AN A 2
TR IO
EP (K., %) _ 2w’ s s (2) & ?*ﬁ (~-8) Q(y,0,%) (c1)
okt T 5 00 Xepg Bty g SXPETO) QLYL0,
oz
where
_ 2 2 22
= [(kx—ckl) + ky]/Zklw
_ -1 2 22 2
o = (2y) [—szo/klw + al(kx— Ekl)/klw
1 . 2 . *
+ E-lckx(l—ZiAO/klw ) - 1(kl—k2—koz)]
_ 2 2 1 2 2 2,24
§ = al/Zw +-§~w kT 1 + 4zo/klw )
+-l ik a, (1+2iz . /k WZ) + 2Im(k )
2 x 1 01 0z
and
' 2 2 2
Q(y,p,8) = exp(yp™) j( dz exp[-y(p+tz) "] (c2)

o



00,0, =2 AT Wity %} - explovacaorn)t Wiy’ (ot} (c3)
o
with W(§) = 2 exp(—iz) J. exp(—uz)du. [See W. Gautschi, STIAM J.
vy -ig
Numer. Anal. 7, 187 (1970).]

Except for the factor IQ(y,p,Q)IZ, all of the quantities in the
integrand are simple to evaluate numerically. The function Q(y,p,%),
however, has some mathematical propertieé that must be circumvented
to successfully integrate Eq. (32) on a digital computer. The first
of these propertiés is that although W(Z) is bounded and analytic in
the upper half of the complex plane, it diverges in the lower half-
plane as Im(Z) -+ ~». Such Z values can occur when Q(y,p,%) is
evaluated for laser beams that are focused behind the exit face of
the nonlinear slab ; = fortunately, for such problems Q(y,p,%) can be

re-expressed as

Q(Y,p,2) = exply2(20+0)} [QLY",-(0 +0),2}1" .

In this form the signs of the imaginary parts of the arguments of W(Z)
are changed; by choosing this alternate form when Re(yl/%o and
Re[Y%{Z(p+£)] are both negative, the magnitude of the largest negative
imaginary part of an argument of W(Z) is reduced and often both of

the W(Z) arguments are moved into the upper half-plane. The derivation

of the above symmetry relation is straight-forward:
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Q50,0 = exp(8p?) [4 expl-v(p+0)*dz

= exp[—Y(Zp+2)+Y(p+SL)2] fg eXP{—Y[Z‘—(pHL)]Z}dz'
= exp[-Y2(2p+0) 1 Qly,-(p+2),4]

% % %
= exp[-y2(20+2) ] {Qly ,-(p +2),21}

There are two other parameter regions in which Q(y,p,%) is
difficult to evaluate on a digital computer. The first of these is
the region in which both |y;/%)| and [Yl(z(p+£)| are very small.
Because W(0) = 1 and Q(y,p,%) involves the difference between two
values of W(Z), Eq. (C.B) cannot be used to evaluate Q(Yy,p,%) in this
region on a digital computer with finite precision (14 significant
digits on a CDC 7600). However, in the region defined by
Rt %0 | + [t %0y | + [rely 2o 1] + [mly 2ot 1] < Loon
the series expansion Q(y,p,%) = £[1 - %—Y£(2+3p)] is accurate to better
than 1 part in 106. (This region is simply one of many choices which
keep the loss of significance [round-off error] and the inevitable
difference between the series and the results of Eq. (C.3) [truncation
error] at the boundary of the region to less than 10_6|Q(Y,p,£)|.)

The final parameter region in which Q(y,p,%) is difficult to evaluate
is the region where Yl/ZQ << 1 but Y1/2|p| is large. Again round-off
error is the source of the problem and a series expansion is the

2 . . .
solution. When Y8 << 1, the exponentlal function in the integrand

of Eq. (C.2) can be written exp[—y(p+z)2]Efexp(~yp2)exp(—2sz)(l—Yzz+...).



When vy %—2 < ,001, we evaluate Q(y,p,%) via the first term a the
asymptotic expansion that is obtained from a term-by-term integration

of Eq. (C.2) with exp[—y(p+z)2] replaced by this series expansion:

exp(-2ypf) - 1
-2Yp

Q(y,p,8) =

The double integral in Eq. (32) was re-expressed as an iterated
integral with constant limits via the change of variables for the
2 2 "L/2
inner (ky) integral: v = kyMu/c) —kx] . Both the inner and outer
integrals were evaluated with an adaptive three point Gaussian
quadrature algorithm. TFor each kx, the immer(v) integral was
adaptively refined until at least three levels of subdivision occurred
and two successive estimates of its value differed by less than
-1 w c
001+ [(w/e) *-] " f 5 die), 5 (%—) B, L0,
-w/c

which was estimated with a trapezoidal rule on 100 intervals. The
outer kX integral was adaptively refined until two successive estimates
differed by less than .1% of its initial estimate. The existance of
a phase matched or Cerenkov cone whose angular width was in some
cases much smaller than its operning angle at large far-infrared

frequencies (like 100 cm_1 for a 1 cm long crystal) made this careful

check necessary to be sure the peak of this hollow cone was sampled.

A listing of the computer program follows:



10

20

21

25

30

1

LSRR A CUN I

—

1

1
2
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PROGKAM INFRA{IRIN,FOUT yGFILEsTAPE2=IRIN, TAPE3=FOUT,TAPEG=GFILE,
TAPELOO)
CUMPLEX H33H&yHS5 ,HosH11y SMUNE$HSS
CUMPLEX EC+EEFLCZyEQGCX4ECSECEEILEEL,EECZ,EECX s AN2GHAC
LOGICAL P
COMMON  wWOKK(LL) 9XCCoYUCsZO00oWIDE o XTLL yDFREQeFRGQL4PL+P2+DKO,WOPQ,
AXTy PNLS(3} ¢ XNOL(2) o XNEL{2) 9 XUNO{3944) s NToXDNE (39441 4NT1,
CUToX0sYC o XLCC +Bno XLNyDFRQoDKoWCP s XENy XCA9 XEON, XEDA,,
CLUWsDHIGHsNR 9 STEP s ANAME 3 ISTARyHL 9 H24H2PyH2PP 4 H2PPPy
H3yH4 s HS5 s HOP s HO s HT s R s HI s HLOyH11yF12ohil3¢H14 4 XOR Sy XORCy
AKXC
CUMMUN 7 3C/ 2KV ARVIgFRKGS ECECCZ ECLUX ECS+ECEETZEELLEECZHEECX,
ANZyWAC
CCMMUN /CUNST/ CHPI,SNMUNE,CCMPR{13)
LOMMUN /AR\)A()Z/ (,62,062yEk.M|~1.NN,Al 'ﬁl 'EP,MPvNyhT
CUMMUN /PASS/ FIELU3AG2CGyPCUWERL 9y AKX sAKY L IRK,P
COMMON /GRkPH/ HORIZ{1000),VERT(1000)sVERTL{1C00)
DIMENSTION PH3(2)14PHA(2) 4PHS(2)PHE(2])PHLLIZ2) +PR5S(2)PSMONE(2)
EQUIVALENCE (PH34H3) g {PH4 ¢H4) 3 {PHY¢H5) s (PHOsHO) s {PHLL,HLL)
(PH5SyH55)y {PSFCONE 4 SMONE)
DATA CoPIyCCOMPR /2.997G25E+41043.1415927+5HPARAM, SHNTBLUSHNTBLE,
SHPHASE,y 4hFREQDHWIDTHOHAESRBy SHANGUL ySHTHICK y SHXDSPL¢SHYOSPL
4HELCCy 3HEND/
DATA PSMONE/Vovle/
DATA  Isn /0B/
DATA FIELC3 /0.0/
DIMENSIUGN TBETA{Z2)
HlpH2y ose CUNTAIN PRECIMPULTEC VALUES TC BE uSED 8Y RUUTINE FIELD
THESE VALUES DU NCT DEPEND CN AKX LR AKY AND THUS
REMAIN FIXED DURING THE INTEGRATION TUO FINO THE
PUnwEK GENERATED
DIKK IS STURAGE FUK THE UDIKFCTICN CUSINE CF K FCR THE TRANSMITTED
RAY ON THE FAR SIDE OF THE CRYSTAL
CALL DEVICE{O6FCREATE 4 HFCUT 5C00C)
CALL DEVICE(O6HCREATE,SHCGFILE 50000+ LERRMnD)
NR = LOC(AKXCI~LCC{WORK(1))+1
DU 10 I=1¢NR
WORK(I) = 0.0
CUNDR = PI/180.
CUNIW = 2.%P1*C
WRITE(3,2001) NRyL,LUMPR
CALL DDBCID(1UHBOX T44 JM,1}
CALL KEE#80(1)
ASSIGN 25 TG M1
ASSIGN 31 TG M
KEAD(2+y100G) ANAME, ISTAR NR o {wORK{T)s[=145)
o0 TC M1
D0 30 I=1413
1FCANAME-CUOMPKILI)) 30,435,300
CONTINUE
ASSIGN 20 TU M .
WRITE(3,1001)
WRITE(3,1002) ANAME;ISTARINRy (WORK{J)sd=1y9)
GO TO M
IF(I-2) 4Ce13Ce32
1F{1-3) 12Ci23U0+50
FRaL = 2.¥PI/WORK(1)*(1.0E481%C
OFREQ = CUNLe®wURK(2)
WIDE = WCRK(3)
Pl1 = WORK{4)
P2 = wWURKI{S5)

INFR
INFR
INFK
INFR
INFR
INFR
INFR
INFR
INFR
INFR
L NF
INFR
INFR
INFr
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INF R
INFR
I{NFR
INFR
INFR
INFR
INFR
INFR

INFR

{NFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFK
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR
INFR

340
350
360
370
380
390
400
410
%20
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620



46

47

130

131

132

136
137

cashios)

g
N
4«
R
-
g
i ; <,
G
N
S
r—
v
R
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X00 = WORKI(6}

YO0 = wOxk(7)

100 = WORKI{B)
XTLL = WCRK(9)
ISw = ISw.0R.(18)
IF{NR-2) 2C+46,20
ASSIGN 3> TG M1
ASSIGN 47 TO M

G0 TO 21
XNulL (L)
XNCL (2) nGRK({2)1%,5

XNEL (L) wORK(1l) - WCGRK(3)

wUPJ = WJURK(3)

DKO = WUKKI(9]}

XNEL{2) nWORK(2)%.5

xX1 WORK(4)*1 . E-¢€

PNL>{3) SWRT{WLRK{ S *24+wIRK(O) ¥ 2+WCRK(T)®%2)
PNLS(L) WORK( 2} /PNLS{3)

PNLS (2) WORK{O)/PANLS(2)

PNLS{3) WORKITI/PALS(3)

CJUT = wWORKI(3)

15w = ISW.Uka(2B)

vd 10 20

K = 3

J1 = 3%NR

I3W = ISH.uka(4E)

ASSIGN 30 TO Mi

ASSIGN 131 TO M

00 132 I=1,3

L= K+[-3

IF{AORK{3*[=2)) 13554136,135

XONO(L 1) WORKI3%I=-2)2#CONTw

XDNO(L,2) WCRK(3%[-1)

XOND(L,3) WCRK(3%])*.5

NT = Jl

K = K+3

IF(K=J1) 21,421,127

NT = L-1

WRITE(6) COMPR(2} ¢y NT 4 (HCRIZ{1),1=1,19)

CALL SPLICE(NTyXCNU{LeL)oXUNC{143)4XONCl144))
WRITEL6) ((XENGUToJYyd=1oNT)yJd=Ly4)

P = JFALSE.

KK = 0

DO 138 [=24NT

D0 138 J=1,5

KK KK+1

U3 XONJ(Ly L}=XENGEI-1,1)

Jl «2%U3%FLCATLY} ’

u2 W2 %UBRFLLCATI(5-0)

HIJRIZ(KK) = (XONC{1-1,1)+U1)/CONIW

WURK (1)

wouoh

(T L T TR TR 1)

[T}

138 VERTIKK) = 2.%(XKONC(I1,43)%UL+XDNLITI-1,3)%02 -

230

231

1

1

UL*U2% (XDNO(1-1,4)%(U3+U2)¢XDNO(L,4)*(U3+UL) }/6.)/U3

CALL GRAPHI{KK,9FALPHA-URD 4 16HFREQUENCY (CM-1)
28HO-RAY ABSGRPTICN CGEF (Ck-1) )

GO TO 20

K =3

J1 = 3%NR

ISW = ISw.0K.(108B)

ASSIuLN 35 TO M1

ASSIGN 231 Tu M

DO 232 I=1,3

L = K+l-3

INFR 630
INFR 640
INFR 650
INFR 660
INFR 670
INFR 680
INFK 690
INFR 700
INFR 710
INFR 720
INFR 730
INFR 740
INFR 750
INFR 760
INFR 770
INFK 780
INFR 790
INFR 800
INFR 810
INFR 820
INFR 830
INFR 840
INFR 850
INFR 860
INFR 870
INFR 880
INFR 890
INFR 900
INFR 910
INFR 920
INFR 936G
INFR 940
INFR 950
INFR 960
INFR 970
INFR S80
INFR 990
INFR1000
INFRLOLO
INFR1020
INFRL1030
INFr1040
INFR1050
INFRLO6O
INFR1070
INFRLOBO
INFR1090
INFR1100
INFRLIL10
INFR1120
INFR1130
INFR1140
INFR1150
INFR1160
INFR1170
INFR1180
INFR1190
INFR1200
INFRLZ210
INFRL1220
INFR1230
INFRL1240
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IF(WORK{3%]~-2)) 235,236+235 INFR1250

235 XUNELL 1) = aCRKA{3%¥[-21%CCNIR INFR1260

XONE(L2) = wORK(3%]-1) INFR1270

232 XONE(Ly3) = wCRK(3%[)%*,5 INFR1280
-NTL = Jl INFR1290

K = K+3 INFR1300

[F(K=-J1) 21,211,237 INFR1310

236 NIl = L-} INFR1320

237 WRITE(6) COGMPRI3)WNTL{HCRIZ(TI),1=1,19) INFR1330

CALL SPLICE(NTLoXDNE(Ly L) oXDNE{L93) o XDNE(Ly4%)) INFR1340

WRITE(G) ((XCNECLyd) o d=1NT1 ) d=104) INFR1350

P = JFALSE. INFR1360

KK = 0 INFRL1370

DC 238 [=2,NT1 INFR1380

Du 238 J=1,5 INFR1390

KK = KK+1 INFR1400

U3 = XONE{(L,L)-XCNE{I-1,1) INFRL4L0

Jl = 2%U3%FLCATLJ) INFR1420

U2 = J2%U3%FLCAT(5-J} - INFR1430

HORIZ{KK) = (XONE(I-1,1)+U1)/CCNIW INFR1440

238 VERTIKK) = 2.%(XDNE(T,3)%UL+XCNECTI-143)%0U2 - INFR1450

1 ULRU2%(XECNE(T—124)%(U3+U2 )4+ XONECI,4)%(U3¢UL))/6.)/7U3 INFR1460

CALL GRAPHI(KKy9YHALPHA-EXTy 1OHFREGUENCY (LM=-1) {NFR1470

1 28HE-RAY ABSCRPTICN CLEF {(CM-1) ) INFR1480

GO TG 20 . INFR1490

50 IFr(ISW-(17B))120+524120 INFR1500

52 nk = WORKI(3) INFRISLOQ

P = JTRJE. INFR1520

OLUW = ow0RKI(1) INFRL530

OHIGH = w0ORK({2) {NFR1540

X3 = X090 INFR1550

YO = YJO0 INFR1560

XLye = 220 INFRLI570

L2 = 0. INFR1580

IF{YO.NEO.) Co2 = ~1o INFRLS590

OFRY = UFREY INFR160Q0

Bw = WIDE INFRL1610

XLy = XTLL INFR1620

WOP = wWOPO INFRLO30

DK = DKO INFR1 640

STEP = (DFIGH-DLCh)/WURK{3)} INFR1650

NR = NR+1 INFR1660

WRITE(3,1CC4) STEP,COMPRII) INFRLOIO

CALL SETEPS INFR1680

CALL CRIENT . INFR1690

10PLT = | INFRLT700

GU TO (120,120+12Cy€047Cy8Ce9Co106Ce110+14C61500160,120)41 INFRLIT10

60 CALL PHASE INFRLT20

€0 CONTINUE INFRLT730

DK = DLUwW INFR1740

DO 61 L=14NR INFRLT50

HORIZ(I) = DK INFRL700

CALL OKIENT INFR1770

CALL SETCGNI(L) INFR1780

62 VERT(I) = PUWER(P) INFR1790

VERTL(I1) = POWERL INFK13800

6l DK = DK#3TEP INFR1810

ASSIGN o3 10 M INFR1820

GO T 158 INFR1830

69 CONTINUE INFR1840

CALL GKAPH(NK,10FP.M. CLRVE ' INFR1850

122HPHASE MISMATCH (1./CM)423APOWEK GENERATED (WATTS) INFR1660



10

[aEakal

10

12

19

c 80

80

81

8%

L S0
90

91

99

C 100
100

0

GU TO 20

CALL FREGQ

NON-PHASE MATCHABLE FREQUENCIES HAVE THE TGTAL RADIATED POWER
COMPUTED FOR THE OPTIL AXIS PARALLEL TC THE LASER BEAMS
CUNTINUE

DO 72 I=1.NR

DFRY = ULCw*CCNInw

HORIZ({I) = DLOw

CALL SETEPS

CALL CRIENT

CALL SETCONI(I)

VERT{1) = PUWER(P)

VERTL{I) = PCaERL

DLW = DLUW+STEP

A33IGN 75 TU ¥

GU TO los

CONT INUE

LALL GRAPH{NRy1OhP«M. FREQ.
1 17HFREQUENCY {1/CM),23FPOnER GENERATED (wATTS)
GU TU 20

CALL WIDTH

CUNTINUE

B = DLUn

DU 81 I=1,Nk

HORL1Z{t) = 6w

CALL SETCUN(D)

VEKTIUI)} = POWEK{P)

VERTL(L) = PCWERL

Bn = Buw+STEP

ASSIGN 39 TO M

GO TO l68

CUNTINUE

CALL GRAPHINR,1C+SPOT SIZt ’

1 35HLASEFR BEAM WIDThH (E*%-2 PCINT) (CM) ’
2 23HPOWER GENERATEC (wATTS) }

GO TO 20

LALL AbSRB

CUNTINJE

Du 91 I=1,NR

HORIZ(I) = DLO«

XJA = .5%0L0wW

CALL SETCUN(I)

VERT(I) = POWER(P)

VERT1(1) = POWERL

DLGW = DLOW+STEP

ASSIGN 95 TO M

60 TO 163

CUNTINUE

CALL GRAPHINR,LOHABSGRPTICN '
1 23HABSORPTICN COEF. (1/CM)} 423HPOWER GENERATED (wATTS) )
GC TC 20

CALL ANGJL

CUNTINUE

P = JFALSE.

CALL SETCUN(1)

Al = ABS{DFRG/C)

CAKY = 0.

DLCKWl = DLUw

DU 101 I=14+NR

AKX = AI*SIN(DLCW1*CONDR)

AVOID SINGULARITY IN TERMS CALCULATED BY FIELD.
TF{ABS{AKX) oL T ol UE~40) AKX=1.CE-40

INFRLB70
INFR1680
INFR1890
INFKLS00
INFK1910
INFR1 920
INFR1930
INFR1940
INFR1950
INFR1960
INFR1970
INFR1680
INFR1990
INFK2000
INFR2010
INFrR2020
INFR2030
INFR2040
INFR2050
INFR2060
INFR2070
INFR2080
INFR2090
INFR2100
INFR2110
INFR2120
INFR2130
INFR2140
INFR2150
INFR2160
INFR2170
INFR2180
INFR2190
INFR2200
INFR2210
INFR2220
INFR2230
INFR2240
INFR2250
INFR2260
INER2270
INFR2260
INFR2290
INFR2300
INFR2310
INFR2320
INFR2330
INFR2340
INFR2350
INFR2360
INFR2370
INFR2380
INFR2390
INFK2400
INFR2410
INFR2420
INFR2430
INFR2440
INFR2450
INFR2460
INFR2470
INFR2480
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HORIZ(I) = DLOwl INFR2490
VERT(I} = FIELC(P)I*H] INFR2500
VERT(1) = VERT(I)*{(LDFRQ)**2/CONIW2DIRK INFR2510

101 OLUwl = DLUWL+STEP INFR2520
ASSIGN 136 TO M INFR2530

vl TC 168 INFR2540
106 CONTINUE INFR2550
CALL GRAPH(NRyLUHPWR CIST. & INFR2560
132HANGLE IN PLANE OF INC. (CEGREES) 120HPCwER PER STERADIAN }INFR2570
AKX = loE-40 {NFR2580

DT 105 I=1sNR INFR2590

AKY = AI*SIN(OLCwW*CCNDR) INFR2600
AVOLD SINGULARITY IN TERMS CALCULATEL BY FIELD. INFR2610
IF(ABS(AKY) oL Tole0E—40) AKY=1.0E-40 INFR2620
HORIZ{1) = DLOw INFR263C
VERT(I) = FlelU(P)*HI] INFR2640
VERT (1) = VERT(I)®{DFRQ}I**2/CANIW*DIRK INFR2650

105 DLUW = OLCw+STEP INFR2660
ASSIGN 109 TCL M INFR26T0

GU TO 169 INFR2680

109 CUNTINUE INFR2690
CALL GRAPFINR,1GHPwWR LCIST. v INFR2T00
135HANGLE PERP. TC PLANE OF INC. (DEG.) 9 20HPOWER PER STERADIAN JINFR2T1D

GO 10 29 INFR2T20

110 CALL TAltK INFR2T730
110 CONTINUE INFR2740
FRACT = wOrK{4) INFR2T50

XLN = DlLuwn INFR2T760

00 L1l I=1sNR INFR2TT0
IFEISTAKEJoLlb¥) XLCC = —XLN*FRACT INFR2780
CALL SETLUNCD) INFR2790
HORIZ(I) = XLN INFR28B00
VEKT({I) = POaEK(P) INFR23810
VERT1 {1} = PCwtRI1 INFR2820

111 XL = XLnN+STEP INFR2830
ASSIGN 119 TG M INFR2840

sU TO 168 INFR2850

119 CONTINUE INFR2860
CALL GKAPHINR,y LOHLENGTH ' INFR2870

1 LIHLENGTR (CM)  423HPOWER GENERATED (wATTS) INFR2880

GO TU 20 INFR2850

X DISPLACEMENT INFR2900

140 CONTINUE INFRZ9LO
X0 = OLiw INFR2920

DO 145 I=1¢NR INFR2930
CALL SETULCNIUT) INFR2940
VEKTLT) = POWERLP) INFR2950
VERTL{l} = PCWERL INFR2960
HORIZ(l) = X0 INFR29170

145 X0 = X0 + STEP INFR2980
A>SIGN 146 TU M INFR29930

GO TO lod INFR3000

146 CALL GRAPH(NRylUFX-CISPLACE,22HBEAM CENTEK SHIFT (CM), INFR3010
1 23HPUWER GENERATEC {wATTS) ) INFR3020

GG TC 20 INFR3030

Y DISPLACEMENT INFR3040

150 CONTINUE INFR3050
Co2 = =1, INFR3060

YO = DLDw INFR3070

DO 155 I=1,4NR INFR3080
CALL SETCONC(IL) INFR3090
VERT(I) = POwEK(P) INFR3100



155

156

160

i61

162

120

168

169

170

w
| s
o

.
£,
L'

VEKT1 (I} = PCwWER]
HUORLIZ(1) = YO

Y0 = YO + STEP
ASSIGN 156 TO M
GO TO 1638

CALL GRAPH(NR,LCHY-DISPLALE,22hBEAM CENTER SHIFT ((M),
23HPUAER GENERATEDL (WATTS) )

GO 10 20

CUNT INUE

XLOC = ULOwW

bC 16l I=1,NR

HORIZ(I) = XLOC

CALL SETCONI(I)

VERT(I) = POWER(P)

VERTL(I[) = POGWERL

XLaL = XLGC + STEP

ASSIGN 162 TO M

o0 TC 168

CALL GRAPH{NR,lOHFGCUS LOC.423HFCCAL PT. LLCATION (CM},
23HPOWEK GENERKATEL (WATTS) )

GO TG 20

WRITE(3,41003) 1,1Swm

END FILE 6

CALL PNIU(LIBETA)

GET FIELD LENGTF

LOCATE BLOCK FCR IND#S ETC. AS AN INDEX FCR ARRAY IBETA

IBETA = I8ETA+MWO-LCC(IBETA{O))-2008

LGCATE THE wOURC CONTAINING THE FILE LENGTH

IBETA = (IBETA(IBETA) ANV TT7T778)-LCCLIBETA(OQ))
GET FILE LENGTE
IBETA{2) = ISRUIBETA(IRETA),3€).AND.TTI777778

ROUND LENGTH TG ThE NEAREST .GE. 512 WORDS
I[BETA(2) = ISLCOISRU(IBETA(2)47778)1+G)46)
SET-UP THE FILE NAME IN BETA WORLS FOR A GCB CALL
THE LEADING BLANKS ARE NECESSARY - R FCRMAT DCES NOT SUPPLY THEM
IGETA{L) = 10OH GFILE
SwITCH THE FILE NAME FRCM CHIP LCISPLAY CCDE TO ASCII
CALL SWITCH(2HCTA,IBETA,1)
CALL GUB{1200BsIERROyIBETA)
CALL DEVICE{6HCLOSER,SHGFILE)
CALL PLOIE
CALL EXIT
ROUTTINE TC PRINT THE CALCULATED CUKVE PRIGR TO CRT PLOTTING
WRITE(3,1007)
DO 169 1=14NRy8
K = [+7
IF(K.GTaNR) K=NR
WRITE(3,1005) HORIZ(I)2{(VERT(J),J=14K}
CONTINUE
WRITE(3,1007)
WRITE{6) COMPRUICPLT) oNRoHOKRIZ(1)¢STEP XUy Y0sXLOCsBwePLsP2,
FRQL 9 XX T 9 PRLS s XNUL ¢ XNEL ¢ XLNyDFRQ WGPy DK,y
XUNyXCA s XECN XEDA
WRITE(6) (VERTII}I=14NR)
IF(«NCT.P) GC TC M
Do 170 l=1|NRv8
K = [+47
IF{KGTaNR} K=NR
wRITE(341005) HCRIZLLY,(VERTLLJ) yJ=14K])
CONTINUE
WRITE(3,10CT7)
WRITE(O) (VERTLIT}I=14AR)

INFR3110
INFR3120
INFR3130
INFR3140
INFR3150
INFR3160
INFR3170
INFK3180
INFR3190
INFR3200
INFR3210
INFR3220
INFR3230
INFR3240
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INFR3200
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INFR3280
INFR3290
INFR3300
INFR3310
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INFR3400
INFR3410
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INFR3470
INFR3480
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INFR3570
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INFR3640
INFR3650
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INFR36T0
INFR3680
INFR3690
INFR3700
INFR3710
INFR3720
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1002
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1007
2001
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vd TG M
FORMAT(AS Al 12,9F 8.1

FORMAT (17TH CARC REJECTEC - 1}

FORMAT (LlH +Ab,AL,1Xe02,9E12.4 /)
FORMAT (//// L1k ENL-UF-J0OB ,215/1H1)

[CaF RO S

—

[PV S

FORMAT (/15H STEP SI1ZE IS sEll.4,17H PROCEVDURE IS WyAS5/)

FORMATU El1244,8E13.4)

FAORMAT(/)

FORMAT{2120+9(2XsA5)/4CXs402X,A5))

END

FURTRAN PLWER

FUNCTICN POWER{Quu)

COMPLEX M3 3H4yhSeb69HLIL 9 SMCNE ¢H5S

CJUMPLEX EUIEEECCZ,EOCXpECSHECEETWEEIL EECZyEECXoANZynAC

LOGIECAL P

COMMUN  WORK(LL) 9 XCCsYDCsZ00 s WIDE o XTLL 4DFREGIFRGLYPL P2 4UKOsWOPO,
XXToPinL SE3) o XNCLE2 )Y o XNELL2) o XOUNCE3394) oNT o XONEL3994)o4nNT Ly
CUTy XD YO XLOC Bnea XLNyDFKGsCKenCP o XENyXCA) XEDN 9 XEDA,
CLOWCRIGRyNRySTEPyANAMEy ISTARyHLsHZyH2P yH2PPy H2PPP,
H3 ¢y H4 yHS yHOP s HE ¢y HT s HE sy HI yHLIO pHLL s H12 ¢ H13 9H14 5 XURS s XORC
AKXC

COMMON /8C/ AKVyAKVI¢FRCS1EGyECCZyEOLXsEQOSyEQLELyEELEECZ yEECX,

AN2 y WAL

COMMCN /CUCNST/ CoPIoSMUNESCCMPR(L3)

CUMMDON / ARGAG2/ (62 3D624ER MM yNN AL «BLyEPyMPyNyhT

COMMCN /PASS/ FIELD34)A62GyPLAERL g AKX AKYyCIRK,P

CUMMON /GRPH/ HGRIZ(10U0)o VERT(1000},VERTLI1GCO)

DATA CO24y062 bRy MMaNNyEP ¢MP N /O0eploplabE—=340420, loE‘ByO'ZQ/

DATA ERSyNEST2 /.001,448/

Bl = ABS(CFRQ/C*CLT)
AL = -8Bl

MPREV = MM

M4 = 0

NESTL = 2¥NESTZ
NEST = NESTL+#}

AKY = 0.
AKX = Al
DKX = (BL1-AL)/FLGAT{NEST)

UEST = SxFIELO(P)

D 100 1=1yNESTIL

AKX = AKX+CKX

UEST = UEST + FIELUL(P)

AKX = 81

UEST = J5%(UEST ¢ S*FLELD(P})

ER = ERS*UEST

CON = (/(PI%*(D62-Ce2) )%k

PUWEK = CON¥AGIIGGY)

[F{MPREV.NEoMM) WRITE(3,1000) MM

FORMAT(2X 17422 FULNCTICN EVALUATICAS

RETURN

END

FUNCTIUN FUNLALB)

COMPLEX H3yH4¢H54RO9H11 s SMONEZH5S

COMPLEX ECsEE FLULZoEOUXGECSECEEL 2 LI FECZyEECX 9 ANy HAC

LoGgIcaL »p

COMMON  wWORKI(11)4XCCoYOCeZUOQ WIDE ¢ XTLL yDFREGeFRGLPL4P29DKO,WUPO,
XXLoPNLSE3 Y 9XNOL(Z) o XNELL{2) 9 XDAO(39y4) ¢gNT o XDNE(3944)oNT Ly
CUT ¢ X0y YUs XLCCyBh o XLNyLFRGsCRyWCP o XONy XDA, XEDN o XECA,
OLUW DHIGH NR ¢ STEP s ANAME s ISTARyHL  H2 4H2P yH2PPH2PPP,
H3sH4 s H5 ¢ HOP s HO s HT s HB o HY 9 BL 09y h 1Ly H123h L3y HL 4y XURSy XORC
AKXC

COMMON /BC/ AKV  AKVIoFRCSIEGIEGCZECCX o EGSHyECEELWEELILZEECZLEECK,

INFR3730
INFR3740
INFR3750
INFR3760
INFR3770
INFR3780
INFR3T90
INFR3800
INFR3810
INFR3820
INFK3830
INFR3840
INFR3350
INFR3860
INFR3870
INFR3BED
INFR3890
INFR3900
INFR3910
INFR3920
INFR3930
INFR3940
INFR3950
INFR3960
INFR3970
INFR3980
INFR3990
INFR4000
INFR4010
INFR4020
INFR4U30
INFR4040
INF R4 050
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INFR&OTO
INFR4 0G0
INFR40S0
ANFR4100
dak RGELLO
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INFR4130
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INFR4 )60
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INFR4200
INFR4210
INFR4220
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INFR4340
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1 AN2 y WAC

COMMCN /CONST/ CHPL.SMUNE,CCVMFR(13)

COMALN / ARGAGc/ CoLaD62 4EK ¢ MMyNNy AL BLIEP Yy MPy Ny WT
COMMON /PASS/ FIELD3+1A62GsPUNERL y AKX ¢AKY LCIRK,P
COMMON /oRPH/ HOKIZ{10001,VERT(LOCC),VERTL(1000)

AKX = d

I+ {ABSUAKX) oL T 1.E-40) AKX = 1l.E-40
AKY = wWT#*A

FUN = FLELU(P)

RETJURN

END /

FUNCTIUN AGI{(QQ)

COMMUN /ARGA02/ C24024EPS24 M2 NMAX2 1AM, BByEPS)MoNMAX WT
OIMENSION SA12(20),5812(20),5U121201+s5w12(20)+5V12{20),
CEVZ2(20)9812020)9SFVZ2L20)ySFLZ2L20)+SFR2(20)4SAGL2(20)
DATA {TEM=0.77455666524148)

UATA (TEML1=0.2254C323C75¢852)

UATA {CU1=0.55555555555556)

CATA (CO2=0.UBEEBBBEBB3889)

GIT=0. $N=-1 $L=AA $p=bb $BMA=B-A $BP A=t +A

VJI=0.5%3PA $UO=0 DXTEMEEVMA $HO=LO0+VO $UO=VO-U0
FU0=AGI2 (U0)
FVO=AG121VO) $EWO=AGI2(w0) $M=3

AGS=(LO2%FVO+LOL*(FUO+FWO) ) ¥0.5%BMA
EPSR = EPS*AGS .

N=iy+2 PIF(NJLESNMAX) T1,472

WRITE (3999} NyA,B

FOKMAT (17H N ANC INTERVAL  +110+5X942E16.T+7H CLTER)
N=N-2

GU TO 73

N1=N+1 $SA12(NL)=AL=A+TEMLEBMA $hl=A+0.2%¥BMA $Ul=A+Al~-wl
S8l2({N1}=81=8PA-Al $SLIZINL)=UZ2=W1I+WI-UD
"Snl2(N1)=w2=Bl-L2+AL $Snl2lhN}=w3=Bl+tnl-A
SULZ2(N)=U3=Bl+Ul-A . $SVI12(N1)=VC $SVI2IN)=n0
SEV2{(N1I)=FVO $SFVZ2IN)=FhO $SB812{N)=8B

SA12(N)=8B1

FUl=aGI2(Ul) $Fwl=AG12(kW1) $FU2=SFU2(N1)=AGl2(U2)
FU3=SFU2(N)I=AGLZ21U3) $FW2=SFW2(N1)=AGI2(W2)
Fa3=SFW2(NI=AG12(n3) $M=ME6

AGL1=(CO2%FUC+LOL*{FUL4FK1))*0.5%(A1-A)
ALL2=SAG12(NL)=(CC2#FVO+COL*{FU2+4Fn2))*C.5%(B1-Al)
AGL13=SAGL2(N)= (CO2%FnO0+COLl*{FU3+Fw3))2*0.5%(B-B1)
AGI=AGLL1+AG124AGL3

WRITE (3434) AlLyB1lyAGI¢AGS

FORMAT (2Xs10OHINTEKVAL 12EL6.Ts13H ESTIMATES ,2El6.7)
ABSOLUTE ACCURACY

IF{ASSFUABSFUAGI)-ABSH{AGS ) ).LELEPSR) 73,74

RELATIVE ACCURACY
IF(ABSF{ABSFIACII-ABSHLAGS))/AGI)LELEPS) 73,74

AGS=aGl1 $B=A1 $V0=LO $U0=Ul $WO=nwl $FVO=FUO
FUO=FJL $FWi=Ful $BMA=B~A $EPA=B+A $G0O 1O 70
N=N~-1 SIF(NLE.O) 75,76 .

AGIT=AGIT+AGI $AGS=SAGL2(N) $8=5B12{(N) $A=SA12{(N)
BMA=B-A $EPA=B+A $VO=5V12(N} $UC=SUL2{N)
n0=3wl2(N) 3FVO=SFVZ2IN) $FUC=SFU2(N) $FHO=SFW2(N)
60 10 71

AGI=AGIT+AGI $RETUKN

END

FUNCTIOGN AGI2(P}

CCMMON 7 ARGAB2/ AA BB EPSy M2y NMAXNS KAD2 yRALsEQey MUy NG WT
DIMENSION SAL2(20),S812(20),SUl2(20)+S5W12(20},SV12(20)
CFV2(20)4BL2(2G) 4 SFV2020)4S5FL21200)+SFn2(20)9SAGL2(20)

INFR4350
INFR4360
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INFR4380
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INFR4400
INFR4410
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INFR4440
INFR4450
INFR4400
INFR44T0
INFR448O
INFR4490
INFR4500
INFR4510
INFR4520
INFR4530
INFR4540
INFR4550
INFR4560
INFR45170
INFR4580
INFR4590
INFR4600
INFR4610
INFR4620
INFR4630
INFR4640
INFR4650
INFR4660
INFR46T0
INFR4 680
INFR4690
INFR4TO0
INFR4T10
INFR4720
INFR4T30
INFR&T740
INFR4750
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INFR4T 10
INFR4780
INFR4790
INFR48B00
INFR4B10O
INFR48B20
INFR4830
INFR4840
INFR4850
INFR4860
INFR4ET0
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INFR4900
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INFR4930
INFR4940
INFR4950
INFR4960
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DATA (TEM=0.7745%666924148)

DATA (TEM1=0.2254C333C75652)

CATA (C01=0.5555555555%5506)

DATA [(C02=0.HBEEBBLEBB3889)

WT = SQRT(RAC¥RAL - PP} $1Sn=0

AGIT=0. $N=-1 $A=AA $B=68 $EMA=B-A $BPA=B+A
VO=0.5%3PA $U0=0.5%TEMEBMA $W0=0L0+VO $UO0=V0-UO
FUO=FUN(UO+P) $FVO=FUN{ VO P} $FWO=FUN(WO,P) $M2=3+M2

AGS=(CI2%FVO+COL*(FUO+FW0) ) *y.5%BMA
N=N+2 SIFINJLELNMAX) 71,72
WRITE (3499) NyAsB

FORMAT {17k N AND INTERVAL 411005X92E164797TH INNER)

N=N=2 :

Ga TC 73

Nl=N#¢1 $SALZ2(NL)=AL=A4TEMLI*BMA $h1l=A+0.2%BMA SUl=A+A1-H1
S8l2(NLl)=81=8PA-Al $SULI2(NLI=U2=Wi+W1l-UO
SHiI2{(N1)=n2=Bl-L2+Al $SK12(N)=n3=Bl+ul-A
SULZ2(N)=uU3=81+Ul-A $SVI2{N1)=vO $SVI2(N}=h0
SFVZ2{N11=FVO $SFVZ2I(N)=FWO $SBle(N)I=8

SA12{(NI1=81

FUl=FUNITUL,P) $Fnl=FUN{W1,P) $FU2=SFU2(NL)=FUN{UZ2+P)}
FU3=SFU2 (N} =FUN{U3,P) $FW2=SFn2 (N1)=FUN(W2,P)
Fa3=SFw2(N)=FUN{W3,P) tM2=M2+E

AGLL={CO2*FUU+COL*(FUL+Fal))*0.5%{A1-A)
AGL12=SAGL2(NL}={CO2*FVU+COL*(FU2+FW2) }*0.5%({B1-Al)
AGL3=SAGL2(NI= (CO2*FnO+COL*¥{FU3+Fh3))*0.5%(B-B1)
AGI=AG11+AGL2+AG13

WRITE (3.34) Al,BL+ACLyAGS

FURMAT (2X, LOHINTERVAL 12EL6.7413H ESTIMATES ,2El6.7
1 ,7H INNER ) '

ASSOLUTE ACCURACY
IF(({ABSF{ABSFLAGI)-ABSF(AGS) }*WT)oLELEPS) o ANDL (ISH.NELO)) 73,74
RELATEVE ACCURACY
IF((ABSFICABSFIAGI)—ALSF(AGSY)/AGI) oLELEPS) JAND . {ISW.NELQ)) 73,74

AGS=AGLL $B8=A1 $V0=U0 $U0=U1 $nC=nl $FVO=Fu0

ISw=1

FJd=Ful $FnO=Finl $EMA=B-A $EPA=B+A $GO TO 70
N=N-1 $IFINJLELO)Y 75,76

AGIT=AGLT+AGI $AGS=SAGL2IN) $B=SB12(N) $A=SA12(N)
BMA=B-A $BPA=B+A $VO0=SVIZ2(N) $L0=SUL2(N)
WI=SW12(N) $FVO=SFV2{NI $FUC=SFU2(N) $FaC=SFH2{N)
ol TU 71

AGIZ2={AGIT+AGI ) *W T : $KE TURN

END

SUBRUUTINE GRAPFING,RCsRX9RY)

CUMPLEX H34H4 ) HSyHo oH11 9y SMUNE yHSS

COMPLEX EO+EE+ECCZyECCX4EGS+EQEETIZEEIZEECZLZEECXyANZyWAL

LOGlCAL P

CUAMON  wURKLL1L) 4 XCO9 YO0y 200 RIDE JXTLL CFREQyFRULyPLyP24DKO»WOPO,
XXToPNLS(3) ¢ XNCLE2) o XNELU2) ¢ XONC(3994) o NToXDNE{39,44) 4T 1y
CUT s XO0s YO o XLOCyBWaXLN+OFRG LK yWCPy XUNyXOA9 XECN s XEDA,
VLG sOHIGH ¢NR ¢ STEP yANAMEy ISTARy HL 9y H2yH2P s H2PP +H2PPP,
H3yH4yHS yHOP yHO W HT s HL o HI 9 K109 H11yH12 ¢yh134HL 49 XURSy XOKCy
AKXC

CUMAUN /BC/ AKV AKVI,FRCSyECEOQCZ, EOCXECS ECEET JEEIoEECZHEECXK,

ANZ2 9 WAC

COMMCN /CONST/ (sPLoSMONE.CCMPR(L3)

CGMMON 7/ ARGAB2/ CO2yCOH24EK yMMyNNyALyBLEPyMP Ny WT

CUMMCN /PA5S/ FLELU3 A62G PCWERL ¢ AKX AKY ¢ DIRK 4P

CIMMUN /GRPH/ HCRIZ(L100C),VERT(10001,VvERT1(1000}

DIMENSIUN PH3(2),PH4A(2)PH5(2),PHE(2):PHLL{2)+PHS5(2),PSMUNE(2)

EQUIVALENCE (PH34k3 )y (PRH4yH4) s (PHS5,H5)y (PHOYHO) s (PHLL4HLL)

ndwN -

p—

INFR4970
INFR4980
INFR&990
INFR5000
INFR5010
INFR5020
INFR5030
INFR5040
INFK5050
INFR5060U
INFR5070
INFR5080
INFR5090
INFR5100
INFRS110
INFR5120
INFR5130
INFR5140
INFR5150
INFRS5160
INFR5170
INFR5180
INFR5160
INFR5200
INFR5210
INFK5220
INFRS5230
INFR5240
INFK5250
INFR5260
INFR5270
INFR5280
INFR5290
INFR5300
INFR5310
INFR5320
INFR5330
INFR5340
INFR5350
INFR5360
INFR5370
INFR5380
INFR5390
INFR5400
INFR5410
INFR5420
INFR5430
INFR5440
INFR5450
InFRS5460
INFR5470
INFR5480
INFK5490
INFR5500
INFR5510
INFR5520
INFRH530
INFR5540
INFR5550
INFR5560
INFR5570
INFR5580
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1000

30

1 (PHS5SyHS5S), (PSMUNE,SMUAED

YHAAX = Q.

DJ 10 [=14NG

YMAX = AMAX)Y(YMAX,VERT(1))

IF{P) YMAX = AMAX1{YMAX,VERTL(I)}
CONTINUE

CALL MAPS(HORTIZ{1)yHOKIZING)0eyYMAX])
CALL SETCH{leslesly0¢3,0+0)

CALL LRTBCDI{RG)

CALL SETCH(32.414¢04Cy2+40,40)

CALL CRTREBCC(RX)

CALL SETCH(144324+0+04291,01)

CALL CRTYBCD(RY)

CALL TRACE(HUKRIZyVERT 4NC)

IF{P) CALL TRACE(HGRIZyVERTLsNG)

CALL SETCH(654933¢414Cy19040)

FRID = DFRQ/(2.%P1%(L)

FRYLL = FRIL/(2.%¥P1%C)

WRITE (1C0Os10C0) PLyP2yBWsXCoYOsXLOC o XLNy WGP DK ¢ XNCLy

1 XNEL o XCN o XCAy XECN ¢ XEDA XX Ty FRQDy FRGLL
FURMAT (6HP L =yELl1.3/76+P2 =yE11e3/6HBwW =¢E1ll.3
1 /76HX0 =3E11.3/6HYD =¢E1le3/6HXLUC =¢EL1l.3
2 /oHXLN  =,t11.3/6hnhUP =4E1le3/€EHEK =9Elle3
3 JOHNOL  =9ELl1.3/6HACL =,Ell.3/€¢HNEL =,Ell.3
4 f6HAEL  =,El1.3/60NOC =4E11.3/€HAUD =,4E1l3
S JOHNED =4ELl1.3/6HAEC =4ELll.3/7CHXXI =4E1l1le3
6 /6HDFRG =,E11.3/6HFRGL =9E11.3)

CALL FRAME

RETURN

END

SUBROUTINE SPLICEINP ¢XT5YT+S5P)
GENERATION OF THE SPLINE INTEKPOLATICN COEFFICIENTS

NP IS THE NUMBER OF (XT,¥T) PAJIRS

XT IS THE Fwh OF TABULATEL INDEPENDENT VARIABLE ARRAY
YT IS5 THE FWA OF TABULATED DEPENDENT VARIABLE ARRAY
SP IS THE ARRAY LF SPLINE CLEFFICIENTS

PARAMETER N1 SHbULC Bt SET TC MAXIMUM NP TC BE USED
BLOCK SSSS mItL THEN BE CIMENSIUNED FOR 2N1(NLl+Z2} aURDS

DIMENSION XT(2)YTI2),5P(2)
CUMACN/SSS3/wl40440) 9B(40+140)9Y(40),S(40)5T140),VI(40)

NT = NP

Wily1}) = 1./3.

W(le2) = 1./6e

YOL) = (YT(2I=YTLLI I/ (XT(23=-XT (1)) %22

WINTyNT-2) = =1 /{XT{NT-L)-XT(NT~2))

WINT¢NT-1) = 1e/{XTINT-1)-XTUNT=2))+1e/{XTINT}=-XTI(NT-1))}
WINTINT) = —1o/UIXTINT)-XT(NT=-1))

Y{(NT) = 0.

NTP=NT-1

DU 30 K=2,NTP

WIKsK=-1) = {XT{KI-XT{K-1)})/¢.
WIKyK) = {XTIK+1}-XT{K-1)}/3.
WiKyK+1) = {(XT(K+1)=-XT(K})/6.

Y{K) = {YTUK+LD)=-YTUK) I/AIXTUK#LI=-XTUK) )= (YTAKI=-YTLK-L) }/(XT{K}~

1 XT(K-1)}
CALL MLRU4OJNTyNTswoYySP 9B S sT 4V}
RETURN

INFR5590
INFR5600
INFR5610
INFR5620
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INFR6190
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END

SUBROUTINE SETEPS

COMPLEX H39H4H59H6 yH11 o SMONE 9H5S

CUMPLEX EU.EESECCLIEOCX yEOSyECEETIsEET EECZy EECX9 AN2sWAC
LGGICAL P

CUMMON  WORK{LL) ¢XCOoYOCyZU0swIDE o XTLLyCFREGsFRGLPLyP2+1DKO¢WOPO,
XXToPNLSU3) 9 XNOLE2) ¢ XNELE2) ¢ XONOU3G,4 ) yNToXONE(39441) oNT 1,

CUT o R0, YO, XLOLyBho XLN¢DFRGsDKy TPy XDNy XDA, XEDN o+ XEDA,
CLOWsOHIGH NK ¢ STEPyANAME s 1 STARy H1L ¢ H2 ¢4H2P yH2PP 4 H2P PP,
H3sH4eHS g HEP g HE ¢y HT ¢ HB g HI g HL1O0 gy H Il g H12,yHL3 314, XORS+ XORCy
AKXC

COMMUN /BC/ ARV AKVIZFRCSyECHECLLyECCXoEQOSIECEEToEELIZEECZSEECK,

AN2 s WAC

CCMMIN ZCCNST/ (4P 1oSMUNELCMPRIL3)

COMMON 7ARGAB2/ Cou24D0U2 4ER gy MMaNNoAL ¢BLoEP s MP o Ny T

COMMON /PASS/ FIELC3,A62GsPCWERL AKXy AKY 3 DIKK,P

COMMOCN /GRPH/ HORIZ(10G0),VERT{1000),VERTLI(1000}

DIMENSION PH3(2)sPHA(Z) 4PHSL21 3PHLIZ2) o PHLL{2)PH5S5(2),PSMONE(2)

EQUIVALENCE (PH33H3) s (PR4yH4) 4 (PHYsHS) s (PHOsHO) s (PHLLHLL),

L (PH5S59yH55) » (PSMONL ¢ SMUNE)

DO 53 J=2,NT

U2 = XDNO{Jyl)~aBS{CFKL)

IF(J2) 53454:54

CUNTINUE

J = NTY

Ul = ABSI{LFRQI-XCNU{J-141)

U3 = XDNUGJeL)=-XCNL(J-141)

XON = XDNQO(J,2) + U2/U3%(XDND(J-1,2)-XDNDO{J+2))

XOA = (XDNC(J93)%UL+XONL{J=1y3 ) %02~

1 UL#L2% (XDNC(J=144)%(U3+U2)+XCNCIJ4)*{U3+UL))/60)/U3

DO 153 J=2,NIi1

U2 = XDNE(Jr»1)-AuS{LFRG)

[F{U2) 153,154,154

CONTINUE

J = NTIL

Ul = ABS(DFRQ)I-XUNE(J=1,1)

U3 = XDNE{Jy1)-XDNE(J~1+1)

KEDN =XDNE(Js2) + U2/L3%(XDNECJ-1,2)-XCNE(JI+2))

XEDA = (XONE(Jy3)RUL+XDNLJ-143)%U2-

1 Ul*U2* (XLNEL Y- 174)*(U34U2)fXLNt(Jy4)*(U3*Ul))/6 Y /U3
RE TURN

END

SUBROUTINE ORILENT
CCMPLEX h3,H4 ,H5sHosHLL y SMCNE 4HS S

CUMPLEX EOyEEsEQCZ EOCKEOS EGEEIEEI4EECZyEECX 9 AN2sWAC
LCGICAL P

CUMAMON nORK(Il).XCO,YCC.ZUC,hIDE'XTLLJCFREC'FRCLvPl,PZ.DKO,HOPO,
XXD o PNLSE3) g XNOL{2) ¢ XNEL(2) +XONG(3994) 9NTy XONE(39+4) 4NT L,

CUT s XCs YO o XLUC B o XLNsOFRGoCK WGPy XCNe XCA9 XECN s XEDA
DLOW yOHIGH ¢ NR y STEP ¢ ANAME 9 ISTARGHL 9 H2yH2P s H2PP 4 H2PPP
H39H4 4 H5 4 HEP s HE ¢ HT o899 3HLI0 9 H1Ll ¢ H12 yB139H14 9y XURS o XORL y
AKXC

COMMLN /BC/ AKV AKV I, FRQS)EC,ECCZoEGCX EOQOSyECEETEET2EECZSEECX,y

1 ANZ2 s WAL

COMMCN /CCNST/ C+PISHGNE,CCMPR(13)

CIMMON / ARGA62/ CO62¢DO24ERyMMsNN,AL¢BLyEPyMPy Ny T

CUMMCN /P 4SS/ FLELC3,A62GyPLWERL ¢ AKXy AKYyLIRK P

COMMON /GRPH/ HORIZ(1000}y VEKT(1000),VERTL(1000)

DIMENSIUN PH3(2)+sPH4(2)4PHS(2),PHE(2),PHLL(2),PH55(2) PSMONEL2)

EQUIVALENCE (Ph34H3 )9y (PH4yH& )y (PHS ¢HS5) o (PHEWHE) o {PHLLyHLL),

1 {PH5SyH55) ¢ (P SMUONE ¢ SMONE)

G = (LFRUL - (XDN%DFRQ ¢ DK=C)/XNOL{1))/(FRQL - DFRQ))*22 - 1,

VoW N e

INFRO210
INFR6220
INFR0 230
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INFR6260
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INFR644D
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INFR6570
INFR6580
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(ABS{G)eLTelak-10) GC TG 59

FUDGF CRYSTAL URIENTATICN TC ELIMINATE PLLARIZATIUN
DEPENDANT EFFECTS FOR NCN-ZEKO WALK~-CFF ANGLES. FOR LARGE
WALK-0OFF ANGLES THE E-RAY IS NEARLY PHASE-MATCHED AT LOW
FREQUENCIES IN wHICH CASE THIS IS A BETTER APPRUXIMATICN
THAN USING JUST THE O-KkAY DFG AT THE CCRRECT URIENTATIUON.
FUR LARGE FREQUENLIES WHERE THE ORIENTATIGN ANGLE IS LARGE
THE EFFECT OF THIS CHANGE SHLULD BE SMALL.
XOR> = 1.
XORC = 0.
XNELEL) = XNUL{L)#SQRT(G+1.}
Gy TO 69

59 XORS = l.
XJIRC = 0.
XHEL (L) = XNCL{1)

60 WRITE (3+1CC7) XNEL({1)+GyXORS

1007 FURMAT (31H UPTICAL E-FKAY INDEX OF REF. = 3EL2.995H G =

1

E13.599H X{)L = 4,£13.51)

RETURN

END

SUBRUUTINE SETCCUN(KKKY

COMPLEX H34H4yhoyHoyHi Ly SMCNE 4H5S

COMPLEX tO.EEsECCZoEUCXECSHECEELZEEL EECZ9EECXsANZ2sWAC

LIGICAL P

COMMEN  ACRK{L1) 4 XCCyYOC)ZOOy WIDE s XTLLsCFREQsFRCLyPL4P24DK0OsHWOPO,y

(€ I R VU S

KX Lo PNLS(3) 9 XNOL(2) o XNELL 2} ¢ XDNUG{3G94) ¢NTo XDNE(39,44) 4NT1,
CUT s XU YO IXLOCyERe XLNyCFRQyCK ¢y WGP ¢ XDN ¢ XDA 9y XECNy XEDA
OLUWsDHIGH NRySTEP  ANAME G ISTARyHLyH2 ¢ H2P o H2PP 3y H2PPP

H3 9 Ha ¢ HS5 4 H5P, hb’H7'H6'H9'H10'H11'H12'H13'H141XGRSQXUR(;'
AKXC

COMMON /BC/ AKVAKVI,FRCS,EC,ECCZHECCX EOS+ECEEI+EELI EECZ,EECX,

1

ANZ2yinAC

CCMMCN /CONST/ C+PI14SMONELCCMPR(13)

COMMON /ARGAE2/ CO2¢D624ERyMMyNNJALyBLYEP o MPyNyWT

COMAON /PASS/ FLELE34A625yPCUAERLy AKX yAKYyDIRK P

COMMON /GRPH/ HURIZ(LO00) o VERT(1000)VERTL(1000]}

DIMENSION PH3(2),PH4{2)4PH5({2),PHE(2),PHLL1(2)4,PH55(2)PSMONE(2)
EQUIVALENCE (PH34H3)y{Pk4yH4)y{PHS¢HS)y(PhoyHE) s (PHLLyHIL),

1 (PH5S4H5S) y(PSFUNEy SMUNE)

AKV = DFRQ/C

AKVI = l./AKV

FRQS = AKV¥AKYV

HL = (PI#XXI#{DFRQ/CI#%2%4,/C ) %% 24P 1%xP2%¥1.E+19
H2 = — Z25%(BW¥*2+4 % (XLOL*C/ (BWHFRQL) } ¥%2)
T1 = C/(FRQL*Bw%%*2)

H2P = —{(XCxXU+YO*YO)/ (BweBW)

H2PP = —2.%TT%XU*XLOL

H2PPP = —=2.%T7%Y0*XLOC

H5P = YOXT7/XNOL{1)

HT7 = XLOC*T7#C/(XNGL(1) #FRQL)

HY = TT#,5%C/{FRQLEXNCL(1)%%2)

AR = XDN*CFRG/C

H1l = CMPLX(AR.XLA)

Hl2 = HLL1*CMPLXI{REAL(HLL1)y~AIMAG(H11))
Ha = HLL*C/ABSULFRQ)

H3 = Hl1l*H11

Hil4 = (C/CFRQ)*%2

EE = LMPLX{XECN,XECA®C/ABS{CFRC))

Et = EE*EE

EQ = H3*Hl4

EEl = 1./EE

EQS = FO*EN

INFR6830
INFR68B4O
INFR68950
INFRoBoOO
INFR6870
INFR6BBO
INFR6E90
INFR6900
INFR6910
INFK6920
INFK&6930
INFR6940
INFR6950
INFR6960
INFR69STO
INFR6980
INFR6990
INFR7000
INFRTOLO0
INFR7020
INFRT030
INFRTO040
INFR7050
INFR7060
INFRTOT0
INFR7080.
INFRTO90
INFRT100
INFRT110
INFRT120
INFKT7130
INFR7140
INFRT150
INFR7100
INFRTLTO
INFR7180
INFR7190
{NFRT7200
INFRT210
INFRT220
INFRT230
INFRT7240
INFRT250
INFRT200
INFRT2T0
INFR7280
INFR7290
INFKT3G0
INFRT310
INFRT320
INFRT330
INFR7340
INFR7350
INFRT360
INFRT370
INFR7380
INFR7390
INFR7400
INFR7410
INFRT420
INFRT430
INFR7440
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AR = WwOP

ANZ = 1o/ {XORS*¥*¥2/LE+XURC®%2/8L0)

EUEET = AN2*AN2*EE]/EC

WAC = [EEI-1o/EC)%XORS®XURC®AN2

EOCX = EC*XORS

EuCZ = EC*XORC

EECX = EE*XORS

EECZ = EE#*XORC

AKXC = TT7#XLUC/H2*AMAXLI{ABS{X0), ABS(XO+AR*XLN), ABS(YOD))

H5S5=

H3

AR®TT/XNCL(1)

HLO = o5%(AR/8W)*%2

AR%{ 5% SMONE  -TT7%XL0OC)

H5 = H5S —XO0%T7/xXNCL(1)

TNEL = THE EXTRA-CRCINARY INDEX CF REFRACTICN FUR A WAVE
PRKUPAGATING AT AN ANGLE AKCSINIXCORC) FROM THE UPTIC AXIS
FCR THE CASE OF NEGLEGIBLE AoSCRPTION.

1
2

(S, R VU U

—

1

1
2

1

1

TNEL = SuRTI

1o /UEXCRS/XNELCL))R%24 (XCRC/XNGLLL))2%2))

K = DK # KEAL{HLL)

Al =

Ho = CMPLX(R
HL3 = {(-PNLS
HI = Hl1¥(4./
IF(KKK NESL)
WhiITE

XNOL{(2Z)+XNEL{2) ¢ XO*AR/{(BW*BW)

1AL

[L)#XOKC+PNLS(3)%XCRS)
(OXNULCL)+1a ) ¥ (TNEL+L.) ) )%%2
RE TURN

{342002) Floyh2)PH34PH4GPHS,PHOYHTyHByHIyH10oPHLLHL24HL3,

H149 TT74 ARy (WCRK(JDI 9 J=L 4} s DFRQy By XOR Sy XORE
XLNy XDivg XOAGH2P yH2PP yH2PPP 4, PH5S5,HOP
2002 FURMAT (26H DUMP UfF PRESET VALUES - /11X,8El4.4))

RETUKN
END

FUNCTIUN FLELE(R)
CUMPLEX H3IyH49yH54yhO b1l SMONE +#5S
COMPLEX EU,EE,FOCZ,EDCXHEUS,EQEEL ¢EEIZEECZ)EECX 1 ANZyWAC

LoolcCAaL P
COMMUN  wORK

XX14P

CUT
OLCWw

(11) 4XCOyYOCs2004nIlE s XTLL ¢CFREGCIFRCLPLyP2+DKO4HUPO,
NLS{3) g XNOLE2) o XNELL2) s XONO(39,4) s NTyXONE(39,40 NT L,
XO g YO o XLOL yBhe XN yDOFKQsChywOP y XUNy XDA9 XEDN ¢ XEDA
sCHIGHNRySTEP y ANAMEy I STARsHL ¢H2 ¢ H2P yH2PP 4 H2PPP,y

H3sH4 3 HS 9 HOP ¢ HO 9 HT 4 89 9 4104 H11,H124H134H149 XCRS3 XORC

AKXC
COMMUN /BCY/

CGMMCN /CCiNS
CUMMCN /PASS
COMMON /GRPH

AKV'AKVl'FRCS'EL'ELCZ'FCCX.EGS'ECEEI'EEI'EECL,EECX'
ANthAC

T/ CyPLoSMONEZCCMPR(13) *

/ FIELU3+)A62GsPULWERL 9 AKXsAKY3LIRK GG

/ HOKIZ(1000),VERT(L100C}yVERT1(10CO)

DIMENSION PH3(2)4PH4(2)4PHS5(2)yPHE(2) 9 PHLL(2)3PH5512)PSMONE(2)

EQUIVALENCE
(PHLS4yH5S5)

COMPLEX CRPyURMyAPyAMyBP4BMyRP, RM'PP.PM.TNT,QMT;FMT;AMHT'DP,DM.DF

CUMPLEX GPyC
FMT1
GEM,
DIMENSIUN O

(pH3'H3"(PH4 H4)1‘pH5 HS’,(PHﬁyHﬁ,"PHlllHll"
{PSMCNE ,SMUNE)

MiEP o EM¢yAKLCPyARLEPyAKZCMy AKZENMLEPTLEPT2,EPT 3,
»EMTZ.EMTB.CPL'LHL.EPL'EML.GRPI.CRMI.AKZEI.AKZEZv
GEPyQ+T2+T1

P(3),CM{3),EP(3),EM(3)4AKTV(2)

INFR7450
INFRT7460
INFRT4T0
INFR7480Q
INFR7490
INFRT7500
INFR7510
INFRT7520
INFR7530
INFRT540
INFR7550
INFR7560
INFRT570
INFRZI580
INFR7590
INFR7600
INFR7610
INFRT620
INFR7630
INFKRT640
INFRT650
INFR7060
INFRT670
INFRT680
INFR7650
INFKTTQO
INFRTTLO
INFRT7720
INFRTT30

FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA

DIMENSION GRP(4)sURMUG) AP 4) 4 AM{4) 48P {4)sBM{4) sRPI4)RMIG)4PP{2)FLA

PM

(2)9TMT(4) QMTL4) s FMT(4) JAMMT(4)

LOGICAL DEBUG,QG

DATA [CNT/0/
ODIMENSION PT
EQUIVALENCE

(PT
COMPLEX Tl,T
DIMENSION TT
EQUIVALENCE

L(2),PT2(2)PT2C(2)
(AKZOPoTLePTL) o (T2;PT2),(PT20,T20),(PT20,T21),
200214722)
23T3,74,T64120
4(2),T73(2)

(T4, TT4R1Y o4 TT4lZ2)sS1)o (T3, TT34R2)44TT3(2),452)

FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA

10

20

30

40

50

60

70

B0

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
2170
280
290
300
310
320
330
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1

300

400

1

1

210
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EQUIVALENCE (PT24R3),(PT2{2),453)

DIMENSIGN PAKZEP(2)PAKZEM(2)

EJUIVALENCE (PT1yR4),(PTL(2),54)

EQUIVALENCE (PAKZEP,R5¢AKZEP){PAKZEPLZ),455)
EJQUIVALENCE (PAKZEMyRuyAKZEN) o (PAKZEMIZ) 9S0)s(PT24R3),(PT2(2),53)
COMPLEX A0OF2Z :

ICNT = ICNT+1

DEBJG = (IUNT.LELV])

U .= AKY=®%2

AKXS = AKX¥AKX

V = U+tAKKXS

DIKK = SERT(l.—-V#%H14)

Tl = THE Z CCMPUNENT CF K IN THE CRYSTAL

AKZJP = CSJRTIKH3-V)

T2 = 2.%GAMMA*ETA ;

T2 = SMONE #(Tl-ho6) + FT7T%V - HS5%AKX +H5HP%AKY

IF(VEBUG) WwRITE(3,2301) LyV.PTL,PT2
T5 = GAMMA

T5 = HE¥AKX +HG*V + HIO0

T3 = GAMMA%%,5

T3 = SUkTHITS)

T4 = GCAMMAR¥ ,5&FTA

T4 = T2/(2.%13)

TLIO = h2P+H2PPHRAKX+h2PPF*AKY~2 % ALIMAGIAKZCP ) ¥XLN
FIELD = THE SQUAREt OF THE MOCULUS CF THE FIELD GENERATED
AT THE FAR END OF THE CRYSTAL wW/C BCUNDARY CONDITIONS
(MATCHING LINEAR MEDIA) AND w/GC THE EXP ABSOGRPTION TERM
IF(DEBUG) WRITE(3,2304) 13,T74,T1C

DEL = XLN*T3

IF{ABSIDEL).LT.(.001}) CC TL 2CO

FIELD = Pl/ {4 (REAL(T3)%x2+AIMAG(T3)%%2))
T3 = DEL + T4

IF(SRIFTI(RY «ANLC.RZ.ANC40060000000C0OCOCC00C0B) s 1) EQeL) 3C0,400
To = (le~EXP(=RIEXLN}*¥CMPLX(CCSIS3®XLN) y—~SENIS3*XLN}II/(TL%T2)
IF ({ABS(S1)+ABS(S2)+ABS{RL)I+ABS(K2)).LTaleE-3)

T6 = XULN¥{l.—UEL*{T4 + .23323233333333%DEL})}/TI

FIELD = EXP(H2%V+TLOIS(REAL(TE)2¥2+4AIMAGITOI*%2)
30 TO 210

TLO = T10 —~ Z2e*CEL*(DEL+2.%REALIT4))

T6 = —CONJG(T3)

T3 = -CuNJGI(T4)

Te = T6

FIELD = FIELD*EXP{h2%V+T1J)

T20 = (T4-T3)%(T3+T4)

T6 = (WCFZ(-S1,yR1)I-EXPLT21I#CMPLXICCSIT22),SIN(T22))
*¥WOFZ(=S52,R2})/T1

IF ((ABS{SL)I+ABS(S2)+ABS(RL)+ABS(R2)}alTaloeb=~3)

To = DEL¥(1.—-UDEL*(T4 + .33323333333333%DEL)I1*1.12837916709551/71

FIELD = FIELC*(REAL{TO)*¥2+AIMAG({TE)**2)
IFLDEBUG) WRITE(3,2304) KLyS29R1981,T6
IF(DEBUG) WRITE(Z,2307) T3,T4,FIELD
TGPl = XORS¥*AKY

TOP2 = —XCRC*AKY

TAP3 = XQRU¥AKX

oP(2) = TOP3 — XORS*AKZOP

OPL = 1./CSQRTICPL2}*CP(2)+U)

OP(1) = LPLXTCP2

0P(2) = OP(21*CPL

IP(3) = GPL*TCPL

AKLVP = aKVXCIRK

AKT = S4QRTI(V)
AKTV(1) = AKX/AKT

FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
LA
FLA
FLA
FLA
FLA
FLA
FLA
FLA
FLA

340
350

670
680

860
870
880
890
900
910
920
930
940
950



3*

[aNaleNaXal

~134-

AKTVI2) = AKY/AKT FLA
AP{Ll) = —0P{1)%AKTV(2)+0P(2)%AKTV(1) FLA
AP(2) =(AKZOP¥(AKTV(L)}%0P (L)+AKTV(2)%0PI2)) - AKT2CP(3))®AKVI FLA
URP(1)= (AKRZVP~AKZOP)/ (AKIZVP4AKZICP) FLA
ORP(2)= (-AKIZUP+AKZVP®EC)/ (AKZCP+AKIVP*EC) FLA
CAA = EXP(~XLN%S4) FLA
TPER = {(le—REAL(CKP{L)))**#24AIMAGICRP (1) )%%2) FLA

1 /(1e—LLAAR(REAL LCRPIL) )*¥2+AIMAGICRP{1))%82))%%2) FLA

2 S (REAL(AP(L))*%2+4AIMAG(AP(L) ) %%2) FLA
TPL = ((1.—REAL(CRP(2)))%%24AIMAG(CRP(2))%%2) FLA

1 JULla—(CARRIREAL (ILRP{2) ) %224 AIMAG(URP(2))%%2) ) %% 2) FLA

2 S(REALLAP(2) ) *%2+AINAGIAP(2) }%%2) FLA
W= PNLS{L)%GP(L)4PNLS(2)20P(2)+PNLS(3)20P(3) FLA
FIELD = FIELC*{REALIQ)*%2+AIMAGIG)*%2) FLA
FIELD3 = FIELD®REAL{AKZCPI%AKVI] FLA

1 H(REALICP (L)) %#%2 + AIMAGICP{1))*%2 FLA

2 + REAL(CP(2))%%2 + AIMAG(CP(2))e% FLA

3 + REAL(LP(3)1%%2 + AINMAG(CP(3) )xx2) FLA
FIELD = FIELO*{TPER + TPLI®DIRK FLA
IF{.NOT.CEBUG) RETURN FLA
WRITE (3,1003) AKXyAKY »AKXS,VyAKZCP,TCPL,TCP2,TCP3,0P,0PL, FLA

X AKTV 9 AKT FLA
WRITE (3,1001) CRP,AP,FIELU,FIELD3,CAAyTPER,TPL FLA
RETURN FLA
1001 FORMAT(16H DATA ANC VALLES / SH  CRP = ,8E13.5/ FLA
i 9H AP = 48ELl3.5/9n FIELD = y8E13.5) FLA
1003 FURMAT({ 6H AKX =,E13.546H AKY = p£13e543X9E13.593X,E13.5/ FLA
1 9H AKZuP = ,5E13.5/9k GP = 4BE13.5/ FLA

4 9H AKTV = 43E13.5//7) FLA
2301 FURMATI(20H FIELLC CEBUC PRINT 10X, €E15.4) FLA
2302 FORMAT(LIH El4.4,2E15.4) FLa
2304 FIRMAT(ULELS.4) FLA
2307 FORMAT(5EL15.4) FLA
END FLA
FORTRAN COMPLEX ERRCR FUNCTILN FLA
COMPLEX FUNCTIUN WOFZ(U,V) FLA
COMPLEX ERROR FUNCTION WaGAUTSCHI ALGORITHM 363 FLA
CuMM. ACM VUL 12 NG 11 NLVY 1969 PAGE 635 FLA
EFFICIENT CCMPUTATICAN OF THE COMPLEX ERROR  FUNCTIGN FLA
WALTER GAUTSCHI SIAM JR. NUMERICAL ANALYSIS VOL 7 NG 1 FLA
MARCH 1970  PAGE 187 THEORY NUMERICAL LCEVELCPMENT RESULTS FLA
REAL IM,LAMBDA FLA
INTEGER CAPN.EK FLA
WIZ)=EXP (=% ZJERFC(-1Z) I=X¢1Y X¢0. Y®0. ACCURACY 10 DECFLA
DIMENSION DOLC(2) FLA
EQUIVALENCE (CDCynGEZZRED 4 (DDCI2),1M) FLA

X = ABS(U) FLA

Y = ABS{V) ) FLA
IFUIYelTe4029) o ANDa{XolT25433)155,1 FLA

95 $={1e=Y/%4229)#SGRTF({la—X%X/28.41) FLA
H=1.6%S $b2=h+h $CAPN=6423%5 $NU=9+21¢S $GO TO 2 FLA

I H=0. $CAPN=0 $NU=8 FLA
2 1F(H.GT.0.) LAMBDA=F2%%CAPN FLA
IF({HeEQe0e) oOR 4 (LAMBCALEQ<Ga))54,3 FLA

54 B=1 $GO 10 4 FLA
3 B=0 FLA
4 RL=R2=S51=52=0. SAUI=NU+1 $DC 5 NKL=14NUL $N=NUL-NKL SNPL=N+1FLA
Tl=Y+H+NPL*R 1 $T2=X-NP1%R2 $C=.5/(T1*T1e¢T2%T2) $K1=C*T1 FLA
R2=C*T2 $IFI(F.GT.0.) ANDSIN.LE.CAPN})53,5 FLA

53 Tl=LAMBDA+51 FLA
SI=R1¢T1=-R2%S2 $S2=R2%T1+K1#52 SLAMBDA=LAMBDA/H2 FLA

5 CONT INUE $IF(B) 52,8 FLA
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TEMP=R] $ TEMM=R? $GU TC 66 -

TEMP=S51 $TEMM=S?2

IF{Y.EQeQe) 59,5

REZEXPF{~X%*X) $GU TC &
KE=1,1283T791¢709551%T EMP
IM=1.128379167CS551%TEMM

IFIVelTaO0e) WUFZ = —~CUNJGIWLFZ) + 2.%EXP(Y*Y-X%*¥X)¥
1 CHPLX{CCS{Z2e%X%Y ) ySIN(2.%X%Y )}

IM = [M%SIGN{(l.4U)

RE TURN

END

FLA
FLA
FLA
FLA
FLA
FLA

FLA
FLA
FLA
FLA

1580
1590
1600
1610
1620
1030
1640
1650
1660
1670
1680
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APPENDIX D

The plane wave square pulse laser fields are given by

> > .
Ez(z,t) _ji:p Egp(z,t) with

Egp(z,t) égp 2coslwy(t=2n /e)] 0 < t-zn fe <1 | (1)

=0 otherwise.

If we make the simplifying assumptions that only the beating of optical
polarizations j and k to generate far~infrared polarization i has
non-zero tensor elements and that the optical pulses still overlap

at z = £, then the solution to Eq. (42) is

3 _ N 2(s) _ +(s) _
B, (t,2) = (l—Ri)E=0[Ei (t,z=0)-RE ¥ (¢ —n 2/c,2=0)] (D2)

with t = t—m(ZQiﬂ/c),

Eis)(t,z=£) =

0 t <t,
r J
B.( )L cosw .t) £, <t <min(t,,t +7)
~E; (n, nj cos w_j . i , S min ti’tk
< <
0 ti tr tk+T
> (ni—n.)—lcos(w_,tr)
-E. J J .+t <t <ct,
I - ) Leosw | (£ -1) ] k r 4
i nk -k r
> -1
- - < <
Ei(ni nk) cos[w_k(tr )] max(ti,tk+T) tr ti+T

0 ‘ t,+1 < t
’ 1 r

b
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and
s
Ei )(t,z=0) =
0 | t <0
B (n,4n)"t ) 0 < t < min(T,t +t,)
—E, (o 5 cos(w+jt t n T,ti tj
0 t+t, <t <7
1 ]
N (n.m.)—lcos(w_"_,t)
T, 1] 1 ] T <t <t +t,
+ —(ni+nk) cos[w_l_k(t—'f)] o J
> -1
- <
Ei(ni-i-nk) cos[w+k(t 1) ] max(T,ti+tj) t<ti+tk+’r
0 ti+tk+T <t
where
- 8T ONL > o
E, =X EJLjEJLk(l ij/Z)
(n.—nk)
wtp =0 —*J——————n'in (p=j or k)
i p
tr =t - ni,Q,/c
tq = an,/c (q =i, j, or k)
n =

1 = ni(w); ny = nj(wo); n = nk(wo)

and n, > n, = o has been assumed.
1 J
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APPENDIX E

Determination of the Least Squares Fitting
Parameters 4 and Their Covariance Matrix

R . 2 . . .
The minimization of ¥~ was based on a local linearization of

P(w,e,g) on the three components of Z: P(w,e,Z ) = P(w,@,zn) +

nt+l
-> - > S

V>P(w,6,a )e(a_,.-a ). When a_was sufficiently close to the solution
a n ntl n n

->%
a , the standard linear solution of the resulting equations was used.

Whenever this procedure gave a step, gn+l_zn’ at an angle greater thap
cos_l(.Ol) = 89.4° to the gradient (after scaling the components of g)
VgP(m,@,Zn), a step along the above gradient was taken instead of the
normal calculated step. After the solution, Z*, was found by iterating
the above procedure, the variance of the absorption coefficient was

obtained by the standard linear Least squares fitting method (see

B. W. Lindgren, Statistical Theory, (MacMillan, N.Y., 1962), p.386f)

-> »>%
from the local linearization of P(w,0,a) about a using the assumption
that the variances of all our power measurements Pi at a given far-
2
infrared frequency were equal to Op(w), a value measured near the peak

pf each phase matching function,
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Let M =(Y Y)
y

P]_"P ((.L), el ,Z*)
Py-P(w,09,a%)

PuP(w,0_,a%)

oP

oP > oP >
—a'z' (@’el’a*)’ B_AE)— (w,619a*)’ E'F(w,elaa*)

5P :

A (w,em,Z*), e

Then following Lindgren:

VS 1 ~o-1
M = [(XX) X]My[X(XX) 1
or if M = Oz(w) I, then
y p
18 = ol‘f(un ool

where X and Y are the transposes of X and Y, respectively. The matrix
XX is adequately approximated by the matrix inverted at the last step

. . 2 > ~ > >
of the iterative solution since VZX (a) = 2XX -+ (a-a%).



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.
Fig. 5.

Fig. 6.
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FIGURE CAPTIONS

Wavevector diagram for reflection of a plane wave incident
from the vacuum side on the plane interface between vacuum and
uniaxial crystal half-spaces: (a) crystal fills the right
half-space; (b) crystal fills the left half space and (c) an
equivalent diagram with the crystal on the right (Therefore,
Fig. 1(b) is equivalent to Fig. 2(c) below.).

Wavevector diagrams showing (a) boundary transmission and
reflection of ordinary and extraordinary waves and its
decomposition into (b) and (e¢) thch describe two simpler
cases of linear transmission and reflection of waves at an
interface.

Angular distribution of far-infrared power outpﬁt at w = 100 cm

Il

with the axial phase mismatch at its optimum value Aka

-1 \ .
-5.1 cm 7, a near optimum focal spot radius w = 25 um, a zero

It

walk-off angle ¢ = 0, and a crystal length £ = 1 cm.

-1 .
Far-infrared power output at w = 100 cm = as a function of

]

25 um and 2

Akaz, assuming oo = 0, £ = 0, w 1 cm.

100 cm—l as a function of

]

Far-infrared power output at W
Akal assuming oo = 0, £ =0, w= 0.2 mm, and & = 1 cm.
Far-infrared power output at w = 100 cmfl as a function of the
focal spot radius w for various walk-off angles é, o = 0, and
£ =1 cm. . The calculation was done by always adjusting the
axial phase mismatch Aka to its optimum value for maximum

power output.

1



Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Angular distribution of far-infrared power output at w = 10 cm
for Aka = -4.0 cm_l, w=25um, £ =0, a=0, and £ = 1 cm.
The azimuth ¢ is defined by ¢ = tan_l(y/x).

Far-infrared power output at w = 10 cm_l as a function of

Akaﬁ assuming oo = 0, £ = 0, w = 25 um, and £ = 1 cm.
Far-infrared power output at w = 10 cm--1 as a function of the
focal spot radius w for various walk-off angles 7, o = 0, and
2 = 1 em. The axial phase mismatch was always adjusted to its
optimum value in the calculation.

Angular distribution of the far-infrared power output at

10 cm'-l for various walk-off angles ¢ assuming w = 25 um,

w

o =0, £ =1 cm, and the optimum value of Aka(c). All curves -
were computed in the ¢ = 0 plane.

P(a) /P(a = 0) versus o showing the reduction of output power
due to far-infrared absorption. For each point on the curves
for w = 10 cm_l and w = 100 cm—l, w = 25 um, an optimum
value of Aka, and an optimum location of the focal plane

were used in the calculation. A corresponding curve
calculated from the plane wave model is also shown for
comparison.

Optimum valﬁes of Akaﬁ versus the absorption coefficient o
for the case of Fig. 11 with w = 100 cm—1 where Aka is the
axial phase mismatch.

Compérison of the results of the Gaussian distribution model,

the plane wave model, and our present calculation for

w = 100 cm—l, o=0, =0, and £ = 1 cm.
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Fig.

Fig.

Fig,

Fig.

Fig.

14,

15.
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17.

18.

19.
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Comparison of the results of the Gaussian distribution model
and our present calculation for w = 10 cm_l, o=0, =0,

and £ = 1 cm.

Phase~matched wavevector diagrams for (a) second harmonic
generation and (b) difference frequency generation.

Second harmonic power output as a function of Akak when

Ak;ﬁ = 100. [After Boyd and Kleinman, Jour. Appl. Phys. 39,
3597 (1968)1.

Second harmonic power output as a function of AkaR when

Ak;% = 5.68. [After Boyd and Kleinman op.cit.]

The far-infrared spectrum computed from Eq. (6) for a 2 psec.
(full width at half-maximum) Nd laser pulse normally incident
on a l-mm LiNbO3 slab. The crystal is oriented with the
c—-axis parallel to the>plane surfaces of the slab and the
laser pulse is polarized along the c-axis (X33 = 1.57X10~6esu).
The other parameters used in thé calculation are w0 = 0.017 cm.

(corresponding to a 4-mrad. divergence of the laser beam),

Ew) = 5.05 and niwo) = 2.2. The solid apd the

L =135 ¢cm., n
dashed curves are computed with and without boundary conditions
respectively.

The far-infrared spectrum computed from Eq. (6) with the

same laser parameters as in Fig. 1. Here, the l-mm slab is
oriented with the c-axis tilted at 16.8° away from the normal

of the slab, and the a-axis is in the plane defined by the

c—axis and the normal. The laser is polarized at 45° to the
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Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.

plane, so that only xgz = l.54><10_6 esu 1s responsible for
the difference-frequency signal with polarization perpendicular
to the plane. With i= 3 (along the b-axis) and ik béing the
directions of polarizations of the ordinary and the extra-
ordinary light propagating along z respectively, we have
niw) = 6.6, ni(wo) = 2.2, and nk(wo) = 2.193.

The electric field for the optical rectification case (as in
Fig. 18). The optical input is a 2 psec square pulse and
linear boundary reflections are ignored. Upper curve: field
that travels back toward the laser (z < 0). Lower curve:
field that propagates in the‘direction of the laser beam

(z > 2).

The spectrum of the sum of the lower and first refleétion

of the upper curves in Fig. 20 illustrating/the interference
of these two fields.

The backward (z < 0; upper curve) and forward (z > 2;

lower curve) wave electric fields for the o-ray, e-ray
mixing case (as in Fig. 19). The optical input pulse is a

2 psec square pulse and linear boundary reflections are
ignored.

Wavevectors in non-collinear phase matching: (a) the phase

matched case - ki = niwi/c; W = w for difference

375 O17%

frequency generation. (b) The unmatched case.



Fig. 24.
.Fig. 25,
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.

~144~

Dual—fréquency dye laser system. The Ruby laser beam was
circularly bolarized with a quarter-wave plate. The two
output frequencies could be independently tuned from 8100 to
8400A.

Far-infrared bandwidth versus angular width of the phase
matching function for 1.61 mm (solid line) and 1 cm (dashed
line) thick LiNbO3 samples used to genefate o-ray far-infrared
radiation in a type II collinear phase matching configuration
at a 21 cm-_l difference frequency.

Experimental measurement of the phase matching function for
our 1.61 mm thick LiNbO3 samplé at 21 cm—l. The solid curve
is the theoretical phase matching function for a 3 cm—l
far—infraréd bandwidth.

O-ray absorption coefficient of LiNbO The solid curve is a

3¢
composite of Bosomworth's (below 70 cm—l) and of Barker and
Loudon's (above 70 cm_l) o-ray absorption'coefficients.
Far-infrared peak power generated in LiNbO3 versus difference
frequency for three phase matching methods. The solid curves
are the plane wave theory including the calculated dispersion
of X9y, (collinear) O X34 (non-collinear).

Calculated far-infrared power vs. frequency for FCPM in LiNbO3
with monochromatic lasers neglecting the dispersion of Xo4*
The lower curve includes the exact boundary conditions
discussed‘in chapter II; the upper curve is the power in the

absence of all reflections. (a) Coaxial pump laser beams;

(b) Laser beam axes .5 mm apart.



Fig. 30. Dispersion of Ixéz)lz in LiNbOB. The circles are our
experimental measurements. The solid curve is a multiple
simple~harmonic~oscillator calculation based on the Raman
cross sections of Kaminow and Johnston and the TO phonon
oséillator strengths, frequencies, and linewidths of Barker
and Loudon.

Fig. 31. Dye laser system used for non-collinear phase matching
experiments in LiNb03.

Fig. 32. Schematic of the»LiNbO3 cube used for our non-collinear
phase matching experiments.

Fig. 33. Dispersion of the electronic, s and ionic, rq, contributions

to the linear electro-optic coefficient r,, of CdS from the

42

Raman scattering data of Ralston et al.
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