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An Exponential Time 2-Approximation Algorithm for Bandwidth

Martin Fiirer*  Serge Gaspers!  Shiva Prasad Kasiviswanathan?

Abstract

The bandwidth of a graph G on n vertices is the minimum & such that the vertices of G can be labeled
from 1 to n such that the labels of every pair of adjacent vertices differ by at most b.

In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-
case (0(1.9797™) = (O(3%-6217") time and uses polynomial space. This improves both the previous best
2- and 3-approximation algorithms of Cygan et al. which have an O*(3™) and O*(2"™) worst-case time
bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph.
A bucket decomposition partitions the vertex set of a graph'into ordered sets (called buckets) of (almost)
equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two
consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decom-
position. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to
achieve this improved time bound.

1 Introduction

Let G = (V, E) be a graph on n vertices and b be an integer. The Bandwidth problem asks whether the
vertices of (G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by
at most b. The Bandwidth problem is a special case of the Subgraph Isomorphism problem, as it can be
formulated as follows: Is G isomorphic to a subgraph of P2? Here, P2 denotes the graph obtained from P,
(the path on n vertices) by adding an edge between every pair of vertices at distance at most b in P,,.

The Bandwidth problem is NP-hard [18], even for trees of maximum degree at most three [13] and
caterpillars with hair length at most three [16]. Even worse, approximating the bandwidth within a constant
factor is NP-hard, even for caterpillars of degree three [20]. Further, it is known that the problem is hard for
every fixed level of the W-hierarchy [3] and unlikely to be solvable in f(b)n°® time [4].

Faced with this immense intractability, several approaches have been proposed in the literature for the
Bandwidth problem. The first (polynomial time) approximation algorithm with a polylogarithmic approx-
imation factor was provided by Feige [10]. Later, Dunagan and Vempala gave an O(log® n+/log log n)-
approximation algorithm. The current best approximation algorithm achieves an O(log® n(loglogn)'/4)-
approximation factor [15]. For large b, the best approximation algorithm is the probabilistic algorithm of
Blum ez al. [2] which has an O(\/n_/blog n)-approximation factor.

Super-polynomial time approximation algorithms for the Bandwidth problem have also been widely
investigated [5, 8, 9, 12]. Feige and Talwar [12], and Cygan and Pilipczuk [8] provided subexponential
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| time approximation schemes for approximating the bandwidth of graphs with small treewidth. For general
| graphs, a 2-approximation algorithm with a running time of @*(3™)! is easily obtained by combining ideas
from [11] and [12] (as noted in [5]). Further, Cygan et al. [5] provide a 3-approximation algorithm with
‘ a running time of O*(2"™), which they generalize to a (4r — 1)-approximation algorithm (for any positive
, integer 7) with a running time of ©*(2"/7).
‘ Concerning exact exponential time algorithms, the fastest polynomial space algorithm is still the elegant
| O*(10™) time algorithm of Feige [11]. When allowing exponential space, this bound is improved in a
sequence of algorithms by Cygan and Pilipczuk; their O*(5™) time algorithm uses O*(2") space [6], their
O(4.83™) time algorithm uses (O*(4™) space [7], and their (O(4.473™) time algorithm uses (0(4.473") space
[8]. The most practical of these algorithms is probably the O*(5™) time algorithm as the space requirements
of the other ones seems forbiddingly large for practical applications. The Bandwidth problem can also be
solved exactly in O(n®) time using dynamic programming [19, 17].
Another recent approach to cope with the intractability of Bandwidth is through the concept of hybrid
‘ algorithms, introduced by Vassilevska et al. [21]. They gave an algorithm that after a polynomial time test,
either computes the minimum bandwidth of a graph in (*(4™+°(%)) time, or provides a polylogarithmic
approximation ratio in polynomial time. This result was recently improved by Amini et al. [1] who give
an algorithm which, after a polynomial time test, either computes the minimum bandwidth of a graph in
‘ O*(4™) time, or provides an O(log3/ 2 n)-approximation in polynomial time.
| Our Results. Our main result is a 2-approximation algorithm for the Bandwidth problem that takes worst-
| case O(1.9797™) time (Theorem 3.8). This improves the O*(3™) time bound achieved by Cygan et al. [5] for
the same approximation ratio. Also, the previous best 3-approximation algorithm of Cygan and Pilipczuk [8]
' has an O*(2") time bound. Therefore, our 2-approximation algorithm is also faster than the previous best
‘ 3-approximation algorithm.
Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposi-
tion partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all
' edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is
' to find the smallest bucket size for which there exists a bucket decomposition. This gives a 2-approximation
| for the Bandwidth problem (Lemmas 3.2 and 3.1). The algorithm uses a simple divide-and-conquer strategy
 along with dynamic programming to achieve this improved time bound.

l
'2  Preliminaries

Let G = (V, E) be a graph on n vertices. A linear arrangement of G is a bijective function L : V —
'[n] = {1,...,n}, that is a numbering of its vertices from 1 to n. The stretch of an edge (u,v) is the
absolute difference between the numbers assigned to its endpoints | L{u) — L(v)|. The bandwidth of a linear
|arrangement is the maximum stretch over all the edges of G and the bandwidth of a graph is the minimum
'bandwidth over all linear arrangements of G.

| A bucket arrangement of G is a placement of its vertices into buckets such that for each edge, its
endpoints are either in the same bucket or in two consecutive buckets. The buckets are numbered from
left to right. A capacity vector C is a vector of positive integers. The length of a capacity vector C =
(C[1],...,Clk]) is k and its size is Zf___l C[#]. Given a capacity vector C of size n, a C-bucket arrangement
of G is a bucket arrangement in which exactly C [i] vertices are placed in bucket 7, for each 7. For integers n

"The " notation is similar to the usual big-Oh notation except that factors polynomial in n are ignored.



and ¢ with £ < n/2, an (n, £)-capacity vector is a capacity vector

(a,0,4,...,0b)
N’

(%] —2 times

of size n such that a,b < £. We say that an (n, £)-capacity vector is left-packed if a = £. We say that an
(n, £)-capacity vector is balanced if |a — b| = 1.

Let X C V be a subset of the vertices of G. We denote by G[X] the subgraph of G induced on X, and
by G \ X the subgraph of G induced on V' \ X. The open neighborhood of a vertex v is denoted by N¢(v)
and the open neighborhood of X is Ng(X) := (U,ex No(v)) \ X.

3 Exponential Time Algorithms for Approximating Bandwidth

We first establish two simple lemmas that show that constructing a bucket arrangement can approximate the
bandwidth of a graph.

Lemma 3.1. Let G be a graph on n vertices, and let C be an (n, £)-capacity vector. If there exists a C-bucket
arrangement for G then the bandwidth of G is at most 20 — 1.

Proof. Given a C-bucket arrangement for G, create a linear arrangement respecting the bucket arrangement
(if v appears in a smaller numbered bucket than v, then L(u) < L(v)), where vertices in the same bucket are
numbered in an arbitrary order. As the capacity of each bucket is at most £ and each edge spans at most two
consecutive buckets, the maximum edge stretch in the constructed linear arrangement is at most 2/ — 1. [

Lemma 3.2. Let G be a graph on n vertices, and let C be an (n,{)-capacity vector. If there exists no
C-bucket arrangement for G then the bandwidth of G is at least £ + 1.

Proof. Suppose there exists a linear arrangement L of G of bandwidth at most ¢. Construct a bucket ar-
rangement placing the first C[1] vertices of L into the first bucket, the next C[2] vertices of L into the second
bucket, and so on. In the resulting bucket arrangement, no edge spans more than two consecutive buckets.
Therefore, a C-bucket arrangement exists for GG, a contradiction. O

Note that both the Lemmas 3.2 and 3.1 are true even if we restrict the vector to be left-packed or
balanced. We will use the previous fastest 2-approximation algorithm of Cygan et al. [5] as a subroutine.
For completeness, we describe this simple algorithm here.

Proposition 3.3 ([5]). There is a polynomial space 2-approximation algorithm for the Bandwidth problem
that takes worst-case O*(3™) time on connected graphs with n. vertices.

Proof. Let G be a connected graph on n vertices. For £ increasing from 1 to [n/2], the algorithm does the
following. Let C be an (n, £)-capacity vector. The algorithm goes over all the k = {%] choices for assigning
the first vertex to some bucket. The algorithm then chooses an unassigned vertex v which has at least one
neighbor that has already been assigned to some bucket. Assume that a neighbor of u is assigned to the
bucket i. Now there are at most three choices of buckets (i — 1, 7, and 7 + 1) for assigning vertex u. Some
of these choices may be invalid either because of the capacity constraints of the bucket or because of the
previous assignments of (other) neighbors of u. If the choice is valid, the algorithm recurses by assigning
u to that bucket. Let £’ be the smallest integer for which the algorithm succeeds, in some branch, to place
all vertices of G into buckets in this way. Then, by Lemma 3.1, G has bandwidth at most 2/ — 1 and by



Lemma 3.2, G has bandwidth at least #. Thus, the algorithm outputs 2¢' — 1, which is a 2-approximation
for the bandwidth of G. As the algorithm branches into at most 3 cases for each of the n vertices (except
the first one), and all other computations only contribute polynomially to the running time of the algorithm,
this algorithm runs in worst-case (?*(3™) time using only polynomial space. O

We now show another simple algorithm based on a divide-and-conquer strategy that given an (n, £)-
capacity vector C, decides whether a C-bucket arrangement exists for a connected graph G.

Proposition 3.4. Let G be a connected graph on n vertices and C be an (n, £)-capacity vector with £ < n /2.
There exists an algorithm that can decide if G has a C-bucket arrangement in O* ((?) . (néz) . 248 . gn/ 4)
time.

Proof. Let k = ( %1 be the number of buckets in the C-bucket arrangement. Number the buckets from 1
to & from left to right according to the bucket arrangement. Select a bucket index # such that the sum of
the capacities of the buckets numbered strictly smaller than ¢ and the one for the buckets numbered strictly
larger than 7 are both at most n/2.

The algorithm goes over all possible (?) choices of filling bucket i with £ vertices. Let X be a set of
£ vertices assigned to the bucket 7. Given a connected component of G \ X, note that all the vertices of
this connected component must be placed either only in buckets 1 to ¢ — 1 or buckets 7 + 1 to k. Note that
each connected component of G\ X contains at least one vertex that is adjacent to a vertex in X (as G is
connected). Therefore, for each connected component of G \ X, at least one vertex is placed into the bucket
i — Llori+ 1. As the capacity of each bucket is at most £, G \ X has at most 2¢ connected components,
otherwise there is no C-bucket arrangement where X is assigned to the bucket i. Thus, there are at most 2%
choices for assigning connected components of G \ X to the buckets 1 to 7z — 1 and 7+ 1 to k. Some of these
assignments might be invalid as they might violate the capacity constraints of the buckets. We discard these
invalid assignments.

For each choice of X and each valid assignment of the connected components of G \ X to the left or
right of bucket ¢, we have now obtained two independent subproblems: one subproblem for the buckets
{1,...,%— 1} and one subproblem for the buckets {i + 1,...,k}. These subproblems have sizes at most
n/2. Consider the subproblem for the buckets {1,...,7 — 1} (the other one is symmetric) and let ¥ be the
set of vertices associated to these buckets. Let Z C Y be the set of vertices in Y that have at least one
neighbor in X. Now, add edges to the subgraph G[Y] such that Z becomes a clique. This does not change
the problem, as all the vertices in Z must be assigned to the bucket ¢ — 1, and G[Y'] becomes connected.
This subproblem can be solved recursively, ignoring those solutions where vertices in Z are not all assigned
to the bucket ¢ — 1.

The algorithm performs the above recursion until it reaches subproblems of size at most n/4, which
corresponds to two levels in the corresponding search tree. On instances of size at most 72/4, the algonthm
invokes the algorithm of Proposition 3.3, which takes worst-case O* (3™/4) time.

Let T'(n) be the running time needed for the above procedure to check whether a graph with 7 vertices
has a bucket arrangement for an (n, £)-capacity vector. Then,

T(n) < (?) 2% .2 ("22) 22,234 00 = 0 ( (;) : (”ﬁ 2) 98 | 3n/4) .

This completes the proof of the proposition. O

Combining Proposition 3.4 with Lemmas 3.1 and 3.2, we have the following corollary for 2-approximating
the bandwidth of a graph.



Corollary 3.5. There is an algorithm that, for a connected graph G on n vertices and an integer ¢ < n can
decide whether the bandwidth of G is at least £ + 1 or at most 20 — 1 in O* ((’}) - (%) 2% 4) time.

Proof. If £ > n/2, the bandwidth of G is at most 2/ — 1. Otherwise, use Proposition 3.4 with G and some
(n, £)-capacity vector C to decide if there exists a C-bucket arrangement for G. If so, then the bandwidth of
G is at most 2/ — 1 by Lemma 3.1. If not, then the bandwidth of G is at least £ + 1 by Lemma 3.2. ]

The running time of the algorithm of Corollary 3.5 is interesting for small values of £. For example if
¢ < n/26, the running time is (7(1.9737™). In the remainder of this section, we improve Proposition 3.4.
We now concentrate on the cases where k = [n/{] < 26.

Let C be an (n, £)-capacity vector. A partial C-bucket arrangement of an induced subgraph G’ of G is a
placement of vertices of G’ into buckets such that: (a) each vertex in G’ is assigned to a bucket or to a union
of two consecutive buckets, (b) the endpoints of each edge in G’ are either in the same bucket or in two
consecutive buckets, and (c) at most C[¢] vertices are placed in each bucket i. Let B be a partial C-bucket
arrangement of an induced subgraph G’. We say that a bucket i is full in B if the number of vertices that
have been assigned to it equals its capacity (= C|[é]). We say that two consecutive buckets 7 and 7 + 1 are
Jointly full in 8 if a vertex subset Y of cardinality equal to the sum of the capacities of 7 and 7 + 1 have been
assigned to these buckets (i.e., each vertex v € Y is restricted to belong to the union of buckets i or ¢ + 1,
but which among these two buckets v belongs is not fixed). We say that a bucket is empty in B if no vertices
have been assigned to it.

Proposition 3.6. Let G be a graph on n vertices and C be a capacity vector of size n and length k, where
k is an integer constant. Let B = B(G') be a partial C-bucket arrangement of some induced subgraph G’
of G such that in B some buckets are full, some pairs of consecutive buckets are jointly full, and all other
buckets are empty. If in B no 3 consecutive buckets are empty, then it can be decided if B can be extended to
a C-bucket arrangement in polynomial time.

Proof Outline. Let G = (V, E) and G’ = (V’, E’). Let r be the number of connected components of G \ V’
(the graph induced on V \ V’), and let V; represent the set of vertices in the /th connected component of
G\ V.

If the bucket 7 is full in BB, let X; denote the set of vertices assigned to it. If the buckets 2 and 7 4+ 1 are
jointly full in B, let X; ;11 denote the set of vertices assigned to the union of buckets 7 and i + 1. We use
dynamic programming to start from a partial bucket arrangement satisfying the above conditions to construct
a C-bucket arrangement. During its execution, the algorithm assigns vertices to the buckets which are empty
in B. We only present an outline of the dynamic programming algorithm here. The dynamic programming
algorithm constructs a table T7[. .. |, which has the following indices.

e An index p, representing the subproblem on the first p connected components of G \ V.

e For every empty bucket 7 in 3 such that both the buckets ¢ — 1 and ¢ 4 1 are full, it has an index s;,
representing the number of vertices assigned to the bucket <.

e For every two consecutive empty buckets 4 and 4 + 1 in B, it has indices t; ; 11, 25, and 2;4;. The
index t; ;41 represents the total number of vertices assigned to the buckets 7 and ¢ 4 1. The index z;
represents the number of vertices assigned to the buckets ¢ and % 4 1 that have at least one neighbor in
the bucket ¢ — 1. The index z;; represents the number of vertices assigned to the buckets 7 and ¢ + 1
that have at least one neighbor in the bucket ¢ + 2.



e For every two consecutive buckets 4, ¢ + 1 which are jointly full in B, it has indices f; and f; 1
representing the number of vertices assigned to these buckets that have at least one neighbor in the
bucket ¢ — 1 (f;) or in the bucket i + 2 (fi;1)-

Table T'[.. .| is initialized to false everywhere, except for the entry corresponding to all-zero indices, which
is initialized to true. The rest of the table is built by increasing values of p as described below. Here, we
only write those indices that differ in the looked-up table entries and the computed table entry (i.e., indices
in the table that play no role in a given recursion are omitted). We also ignore the explicit checking of the
invalid indices in the following description. The algorithm looks at the vertices which are neighbors (in G)
of the vertices in V,, and have already been assigned.

If the vertices in V, have at least one neighbor in each of the full buckets ¢ — 1 and 4 + 1, have no
neighbors in any other buckets, and bucket i is empty in B, then

T, si,.. ] =Tlp— 1,8 — |V, ].

If the vertices in V), have at least one neighbor in the full buckets s — 1 and ¢ + 2, have no neighbors in any
other buckets, and the buckets ¢ and % 4 1 are both empty in B, then

false if Ng(Xi—1) N Ng(Xi12) # 0,
T[p, Liit1s Tis Tit1, . - ] = T[p = 1,41 — inl, T — |Vp n NG(Xi~1)|a
Tiv1 — |Vp N Ne(Xig2)ls. . ] otherwise.

If the vertices in V), have at least one neighbor in the jointly full buckets ¢ — 2 and ¢ — 1, and at least one
neighbor in the jointly full buckets i 4+ 1 and 7 + 2, but have no neighbors in any other buckets, and bucket i
is empty in B, then

Tp, 8is fiet1s fivtss .- | =Tl — 1, 88— Vo, fica — [ Ne(Ve) N Xzl firs — INe(Vo) N Xit1g42, .. -]

The recursion for the other possibilities where V), has neighbors in two distinct buckets can now easily be
deduced. We now consider the cases where V}, has only neighbors in one bucket. Again, we only describe
some key-cases, from which all other cases can easily be deduced.

If the vertices in V}, have only neighbors in the full bucket i — 1, and the buckets i — 2 and 7 are both
empty in B, but the buckets ¢ — 3 and ¢ + 1 are either full or non-existing, then

T[p, 872, 85, ] = T[p-— 1,89 — |Vp|,si,.. ] \% TLD—' 1,8i_92,8 — |Vpl,. . ]

If the vertices in V}, have only neighbors in the full bucket ¢ — 1, and the buckets ¢ — 3,7 — 2,4, and i+ 1 are
all empty in B, then

Tpsti—8,i—2,Ti-9, ti i1y Tis-« | = Tlp — 1, ti-8i-2 = |Vplywi-2 — [Vp N Ne(Xi-1)lstiit1, 21, - - ]
V Tlp — 1, fi=34-3, i b ge1 = Vel % — (VN Na(Xi< ]l .« ]

If the vertices in V}, have only neighbors in the jointly full buckets 7 and ¢ + 1, and the buckets 7 — 1 and
i + 2 are both empty in B, but the buckets ¢ — 2 and 7 + 3 are either full in 3 or non-existing, then

T[p, 8i-1, 8iv2, fis fir1,. -] = Tp—1,8i-1 — |V3|, 8ix2, fi = |INa(Vp) N Xis11|, fix1s- -]
V Tlp—1,si-1, 8i+2 — [Vp|, fis fiv1 — |Na(Vo) N Xii41], .- ]



The final answer (true or false) produced by the algorithm is a disjunction over all table entries whose
indices are as follows: p = r, s; = C[i] for every index s;, t; ;41 = C[i] + C[i + 1] for every index ¢; 41,
z; < C[i] for every index z;, and f; < C[] for every index f;. 0O

Remark: The dynamic programming algorithm in Proposition 3.6 can easily be modified to construct a C-
bucket arrangement (from any partial bucket arrangement B satisfying the stated conditions), if one exists.

If the number of buckets is a constant, the following proposition will be crucial in speeding up the
procedure for assigning connected components to the right or the left of a bucket filled with a vertex set X.
Denote by small(G) the set of all connected components of G with at most /n vertices and by large(G)
the set of all connected components of G with more than 4/n vertices. Let small,(G) denote the set of all
vertices which are in the connected components belonging to small(G). We now make use of the fact that if
there are many small components in G \ X, several of the assignments of the vertices in small, (G \ X) to
the buckets are equivalent.

Let C be a capacity vector of size n (i.e., >, C[i] = n) and let BB be a partial C-bucket arrangement of an
induced subgraph G’ of G. Let C’ be the capacity vector obtained from C by decreasing the capacity C[i] of
each bucket 7 by the number of vertices assigned to the bucket ¢ in B. We say that B produces the capacity
vector C'.

Proposition 3.7. Let G = (V, E) be a graph on n vertices. Let C be a capacity vector of size n and length
k, where k is an integer constant. Let j be a bucket and X C V be a subset of C[j] vertices. Consider
all capacity vectors which are produced by the partial C-bucket arrangements of G[small,(G \ X) U X]
where the vertices in X are always assigned to the bucket j. Then, there exists an algorithm which runs
in O* (3\/7_‘) time and takes polynomial space, and enumerates all (distinct) capacity vectors produced by
these partial C-bucket arrangements.

Proof. Let V] be the vertex set of the lth connected component in small(G \ X). Let £, denote the list of
all capacity vectors produced by the partial C-bucket arrangements of G[U; <;<, Vi U X] where the vertices
in X are always assigned to the bucket j. Note that since % is a constant, the number of distinct vectors in
L, is polynomial (at most n¥). Then, £; can be obtained by executing the algorithm of Proposition 3.3 on
the graph G[V1] with a capacity vector C’ which is the same as C except that C'[¢] = 0. In general, £, can
be obtained from £,,_; by executing the algorithm of Proposition 3.3 on the graph G[V}] for every capacity
vector in Lp,—1. As the size of each connected component in small(G \ X) is at most /7, the resulting
running time is O*(3vV™), O

3.1 Exponential Time 2-Approximation Algorithm for Bandwidth

Let G = (V, E) be the input graph. Our algorithm tests all bucket sizes £ from 1 to [n/2] until it finds
an (n, £)-capacity vector C such that G has a C-bucket arrangement. For a given /, let & = [%1 denote the
number of buckets. Our algorithm uses various strategies depending on the value of k. The case of k£ = 11is
trivial. If £ = [n/2], we have at most two buckets and any partition of the vertex set of G into sets of sizes
£ and n — £ is a valid C-bucket arrangement. If £ > 27, Corollary 3.5 gives a running time of O*(1.9737™).
For all other values of &, we will obtain the running times displayed in Table 1.

Let I} be the set of all integers lying between n/(k — 1) and n/k. The basic idea (as illustrated in
Proposition 3.4) is quite simple. The algorithm tries all possible ways of assigning vertices to the middle
bucket. Once the vertex set X assigned to the middle bucket is fixed and the algorithm has decided for each
connected component of G \ X if the connected component is to be assigned to the buckets to the left or



to the right of the middle bucket, the problem breaks into two independent subproblems on buckets which
are to the left and to right of the middle bucket. To get the claimed running time, we build upon this idea to
design individualized techniques for different k’s (between 3 and 26). For each case, if (G has at least one
C-bucket arrangement for an (n, £)-capacity vector C, then one such arrangement is constructed. We know
that if G doesn’t have any C-bucket arrangement for an (n, £)-capacity vector C then the bandwidth of G is
at least £ + 1 (Lemma 3.2), and if it has one then its bandwidth is at most 24 — 1 (Lemma 3.1). If k = 8, 10,
or 12, the algorithm uses a left-packed (n, £)-capacity vector C, and otherwise, the algorithm uses a balanced
(n, £)-capacity vector C.

k = 3. The algorithm goes over all subsets X C V of cardinality | X| = C[3] < [(n — £)/2] with £ € I3.
X is assigned to the bucket 3. If the remaining vertices can be assigned to the buckets 1 and 2 in a way such
that all vertices which are neighbors of the vertices in X (in G) are assigned to the bucket 2, then G has a C-
bucket arrangement where C has length 3. The worst-case running time for this case is max ¢e, O*((Ij\l’l) ).

k =4 or k =5. The algorithm goes over all subsets X C V with | X| = £ and £ € I;,. X is assigned to
the bucket 3. Then, we can conclude using the dynamic programming algorithm outlined in Proposition 3.6
(see also the remark following it). The worst-case running time for these cases are max e, O*( (’;))

k = 6. If k = 6, the algorithm goes through all subsets X C V with | X| = 2£and ¢ € I. X is assigned
to the union of buckets 3 and 4 (i.e., some non-specified £ vertices from X are assigned to the bucket 3, and
the remaining vertices of X are assigned to the bucket 4). Then, we can again conclude by the algorithm
outlined in Proposition 3.6. The worst-case running time for this case is max g7, O ((3})).

k = 7. The algorithm goes through all subsets X C V with |X| = £and £ € I;. X is assigned to the
bucket 4. For each such X, the algorithm uses Proposition 3.7 to enumerate all possible capacity vectors
produced by the partial C-bucket arrangements of G[small,(G \ X) U X] (with X assigned to the bucket 4).
This step can be done in O*(S‘/’_L) time. There are only polynomially many such (distinct) capacity vectors.
For each of these capacity vector C’, the algorithm goes through all choices of assigning each connected
component in large(G \ X) to the buckets 1 to 3 or to the buckets 5 to 7. Thus, we obtain two independent
subproblems on the buckets 1 to 3 and on the buckets 5 to 7. As the number of number of components
in large(G \ X) is at most 1/ (as each connected component has at least 1/n vertices), going through all
possible ways of assigning each connected component in large(G \ X) to the buckets numbered smaller or
larger than 4 takes (’)"(2‘/’_1) time. Some of these assignments may turn out to be invalid. For each valid
assignment, let V7 denote the vertex set assigned to the buckets 1 to 3. Then, the vertices of V7 are assigned
to the buckets 1 to 3 as described in the case with 3 buckets with the capacity vector (C[1],C'[2],C’[3]) and
with the additional restriction that all vertices in V7 which are neighbors of the vertices in X need to be
assigned to the bucket 3. The number of vertices in V7 is at most [(n — £)/2] (as C is balanced). Now the
size of bucket 1 is C'[1] < [(n—5£)/2]. Letn; = [(n—£)/2] and £; = [(n—5£)/2]. If V; has at least one
valid bucket arrangement into 3 buckets (with vertices in V1 neighboring the vertices in X assigned to the
bucket 3), then the above step will construct one in worst-case O*( (Zl)) time. The algorithm uses a similar
approach for Vo = V' \ (V1 U X) with the buckets 5 to 7. Since, the algorithm tries out every subset X for
bucket 4, the worst-case running time for this case is

meaxe? [ (). 3vR 4 9V, (m) = max O* ( n) . 20(/m) | (nl)
fely l /1 Lely / /1



k  Running time  Expression

k<2 poly(n)

E=3 ((1.8899") max { (n—e) } = Z)
tely R 3

k=4 (O(1.8899") max
E=5 O(1.7548™) max

k=6  0(1.9602") max

k=7 ©O1.9797™) max

Lely {
3n
k= 0(1.9797)  max ™) . 20(v/R) . pax Ll B =[5 . g8ua)
ey '4 L)’ l 2 g
n o n In
k=9 ©O(1.893T) max 20(/m) . (72 = {18 ). 200/
ey £ 12 = =
n ny\
k=10 O1.8473") max{(7)-200™ . (2 )L (™) (2. 90(v/m)
¢eho | \ £ ¢ z /' \=a
9 9
n Bt n I "
k=11  O(1.7568") max 9Ol 3 = 20} . 90(vn)
teny | \L ‘ LSRN !
k=12 O(1.8415") max {(”) - 90(VA) ’max{('%). ("f 6‘))}} = (Z) : W) 20(v/n)
JA<IED) / ¢ \ 27 11 —‘i—
13<k<23  O1.9567) max{<n> : (”/2> - (”/4> -2‘9%)} = (”) : (%) : (Z) 90/
et et \\£ ¢ ‘ 2] \=i\2
; : n n/2 n/4\ [(n/8\ Lowm Ot ira
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ko7 09 maxd (™) (™2) . gmeazl o (M) (2) .28 32
T .
ecly V4 2 26 26

Table 1: Running time of the 2-approximation algorithm for Bandwidth according to the number of buckets
k = [n/f]. Ij is the set of all integers lying between n/(k—1) and n/k. The final running time is dominated
by the cases of k = 7 and & = 8 (when £ is close to n/7).



k = 8. The algorithm uses a left-packed (n, £)-capacity vector C for this case. The algorithm goes through
all subsets X € V with | X| = £and ¢ € I5. X is assigned to the bucket 4. The remaining analysis is similar
to the case with 7 buckets. Buckets 1 to 3 have a joint capacity of 3/ (as C is left-packed) and the buckets 5
to 8 have a joint capacity of n — 4¢. The worst-case running time for this case is

(o) 2w (0)-(21)))

The terms in the max expression come from the running times for the cases with 3 and 4 buckets.

k =9ork =11. The algorithm goes through all subsets X C V' with |X| = £and ¢ € I}.. X is assigned
to the bucket [%k/2]. As in the previous two cases, Proposition 3.7 is invoked for G[small,(G \ X) U X]
(with X assigned to the bucket [k£/27). For each capacity vector generated by Proposition 3.7, the algorithm
looks at every possible way of assigning each connected component in large(G \ X) to the buckets 1 to
[k/2] — 1 or to the buckets [k/2] + 1 to k. Each assignment gives rise to two independent subproblems —
one on vertices V4 assigned to the buckets 1 to (k — 1)/2, and one on vertices V5, assigned to the buckets
(k + 3)/2 to k (with vertices in V7 and V5 neighboring the vertices in X assigned to the buckets (k — 1)/2
and (k + 3)/2, respectively). The algorithm solves these subproblems recursively as in the cases with 4 or
5 buckets. Let ny = [(n — £)/2]. Then, the worst-case running times are max sez, O*((7}) - 200/®) . (1)),

k =10 or k =12, The algorithm uses a left-packed (n, £)-capacity vector C for these cases. The al-
gorithm goes through all subsets X C V with |X| = £and ¢ € I;. X is assigned to the bucket k/2.
The remaining analysis is similar to the previous cases. For & = 10, the worst-case running time is
max ger,, O*((7) - 20v/™) . ("f)) For k = 12, the worst-case running time is max se 1, O*((}) - 200V .

max{ (Sf) s ("52’7") b

13 < k € 26. The algorithm enumerates all subsets X C V with | X| = £ and £ € I},. X is assigned to
the bucket [k/2]. As in the previous cases, Proposition 3.7 is invoked for G[small, (G \ X) U X]. For each
capacity vector generated by Proposition 3.7, the algorithm looks at every possible way of assigning each
connected component in large(G \ X) to the buckets 1 to [k/2] — 1 or to the buckets [k/2] + 1 to k. Each
assignment gives rise to two independent subproblems. For each of these two subproblems, the algorithm
proceeds recursively until reaching subproblems with at most 2 consecutive empty buckets, which can be
solved by Proposition 3.6 in polynomial time. If k& < 23, this recursion has depth 3, giving a running time

of
max 0 [ (™) . 900m . (M2)  qo0m . (M4 | g0(vm)
el £ 4 ¢

If 24 < k < 26, the recursion has depth 4, giving a running time of

max 0° () 000/ . (M2 sowm . (M4 | qotvm . "'/8>.20(ﬁ)>
e ¢ ¢ ¢ ¢

k > 27. By Proposition 3.4 the running time of the algorithm is bounded in this case by

74
max OF i T w/d Jodt gr/i
ey € g
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Main Result. Putting together all the above arguments (and using the numerical values from Table 1) we
get our main result (Theorem 3.8). The running time is dominated by the cases of kK = 7 and &k = 8. The
algorithm outputs 2¢ — 1, where £ is the smallest integer such that G has a bucket arrangement with an
(n, £)-capacity vector. The algorithm requires only polynomial space.

If G is disconnected, then the algorithm finds for each connected component G; the smallest #; such that
G; has a bucket arrangement corresponding to an (n;, £;)-capacity vector and outputs 2¢,,, — 1, where n; is
the number of vertices in G; and £,,, = max;{£;}.

Theorem 3.8 (Main Theorem). There is a polynomial space 2-approximation algorithm for the Bandwidth
problem that takes worst-case O(1.9797™) time on graphs with n vertices.

4 Conclusion

For finding exact solutions, it is known that many problems (by subexponential time preserving reductions)
do not admit subexponential time algorithms under the Exponential Time Hypothesis [14] (a stronger hy-
pothesis than P = NP). The Exponential Time Hypothesis supposes that there is a constant c such that 3-SAT
cannot be solved in time O(2°"), where n is the number of variables of the input formula. We conjecture
that the Bandwidth problem has no subexponential time 2-approximation algorithm, unless the Exponential
Time Hypothesis fails.
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