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The Price of Privately Releasing Contingency Tables, and 
the Spectra of Random Matrices with Correlated Rows 

Shiva Kasiviswanathan* Mark Rudelson t Adam Smith+ 

Abstract 

Contingency tables are the method of choice of government agencies for releasing statistical summaries 
of categorical data. In this paper, we consider lower bounds on how much distortion (noise) is necessary in 
these tables to provide privacy guarantees when the data being summarized is sensitive. We extend a line of 
recent work on lower bounds on noise for private data analysis [10, 13. 14, 15] to a natura] and important 
class of functionalities. Our investigation also leads to new results on the spectra of random matrices with 
correlated rows. 

Consider a database D consisting of n rows (one per individual), each row comprising d binary attributes. 
For any subset of T attributes of size ITI = k, the marginal table for T has 2k entries; each entry counts how 
many times in the database a particular setting of these attributes occurs. Imagine an agency that wishes to 
release all (%) contingency tables for a given database. 

For constant k , previous work showed that distortion O(min{n, (n2d)1/3, v'(ik} ) is sufficient for satis­
fying differential privacy, a rigorous definition of privacy that has received extensive recent study. Our main 
contributions are: 

• For i- and (f , 8)-differential privacy (with f constant and 8 = l/poly(n ), we give a lower bound 
of n (min{ yn, Vdk} ), which is tight for n = O(dk ). Moreover, for a natural and popular class of 
mechanisms based on additive noise, our bound can be strengthened to O( Vdk), which is tight for all 

n . Our bounds extend even to non-constant k , losing roughly a factor of J2k compared to the best 
known upper bounds for large n. 

• We give efficient polynomial time attacks which allow an adversary to reconstruct sensitive infonnation 
given insufficiently perturbed contingency table releases . For constant k, we obtain a lower bound of 
f2 (rnin{ yn, Vdk} ) that applies to a large class of privacy notions, including K -anonymity (along with 
its variants) and differential privacy. In contrast to our bounds for differential privacy, this bound (a) i 
shown only for constant k , but (b) is tight for all values of n when k is constant. 

• Our reconstruction-based attacks require a new lower bound on the least singular values of random 
matrices with correlated rows. For a constant k , consider a matrix AI with ( ~) rows which are formed 
by taking all possible k-way entry-wise products of an underlying set of d random vectors. We show 
that even for nearly square matrices with dk / log d columns, the least singular value is O(..,fdk) with 
high probability- asymptotically, the same bound as one gets for a matrix with independent rows. The 
proof requires several new ideas for analyzing random matrices and could be of independent interest. 
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t Department of Mathematics, University of Missouri, rudelson@math.missouri.edu. 
+Oepartment of Computer Science and Engineering. Pennsy lvania State University. asmilh@cse.psu.edu . 



1 Introduction 

The goal of private data analysis is to provide global, statistical properties of a data set of sensitive information 
while protecting the privacy of the individuals whose records the data set contains. There is a vast body of 
work on this problem in statistics and computer science. However, until recently, most schemes proposed in the 
literature lacked rigor: typically, the schemes had either no fonnal privacy guarantees or ensured security only 
against a specific suite of attacks. 

The seminal results of Dinur and Nissim [10] and Dinur, Dwork and Nissim [9] initiated a rigorous tudy 
of the tradeoff between privacy and utility. The notion of differential privacy [13] that emerged from this line 
of work provides rigorous guarantees even in the presence of a malicious adversary with access to arbitrary 
side infonnation. Differential privacy requires, roughly, that any single individual's data have little effect on the 
outcome of the analysis. Recently, many techniques have been developed for designing differentially private 
algorithms [4, 13, 31,29,2,28,20,5, 17, 19, 39, 8, 12, 41, 18]. A typical objective is to release as accurate an 
approximation as possible to some function f evaluated on the database D. 

A complementary line of work seeks to establish lower bounds on how much distortion is necessary for 
particular functions f. Some of these bounds apply only to differential privacy (e.g. [13, 18]); other bounds 
nIle out any reasonable notion of privacy by giving algorithms to reconstruct almost all of the data D given 
sufficiently accurate approximations to f (D) [10, 14, 15]. We refer to the latter works as lower bounds for 
minimal privacy. 

In this paper, we investigate lower bounds on the distortion necessary for releasing a set of contingency 
tables, or marginal tables, under both differential and minimal privacy. A database D in our setting consists 
of n rows, each row comprising values for d binary attributes Xl, ... ,Xd. For any subset of T attributes of 
size ITI = k, the marginal table for T has 2k entries; each entry counts how many times in the database a 
particular setting of these attributes occurs. Alternatively, we may think of the table as counting the number of 
rows in the database that satisfy each of the 2k possible conjunctions on the attributes in T . Contingency tables 
are important summary statistics for categorical data: in addition to being easy to interpret, they are sufficient 
statistics for popular classes of probabilistic models [3]. Because of this , they are a fonnat of choice for data 
release by government statistical bureaus [2]. 

Barak et al. [2] investigated upper bounds on the noise needed to release contingency tables differentially 
privately. One can also derive incomparable upper bounds from the techniques of Blum et al. [4, 5]. These 
bounds are described in Tables 1 and 3. For the remainder of the introduction we identify the two notions, and 
treat E and 8 as constants . 

1.1 Our Contributions 

Let Ck(D ) be the set of all k-way contingency tables (equivalently, the frequencies of all possible k-attribute 
conjunctions) for a database D E ({O, 1 }d )n . One can think of Ck(D ) as a single real vector of length 2k ( ~ ) . 

(1) Lower bounds for Differential Privacy: We show that algorithms which do not sufficiently distort the 
contingency tables of D cannot be differentially private. Specifically, we give lower bounds on the (square 
root of the) average mean squared error (MSE) per entry of differentially private estimates of Ck . The upper 
and lower bounds are stated in Table 3, and discussed in Section 2. Table 1 restates the bounds of Table 3 
for the special case where k , E are constants and 5 = l/poly (n ). 

For constant k , the best known algorithms yield distortion O(min{n, (n2d)I / :3 , Vdk }), while our lower 
bound is n (min{ yn, Vdk} ). Our bounds imply that adding carefully calibrated Gaussian noise to each 
entry in Ck (as proposed in [4, 31]) is optimal for large databases (when n = O(dk

)). Moreover, for 
a natural and popular class of algorithms based on adding instance-independent noise, our bound can be 



Mechanism 

In stance-Independent 

General o 

u. B. (E, 6) -diff privacy 

o .Jdk [4J 

n, (n2d) 3 ,.Jdk [4, 5J 

Table 1: Upper and lower bounds on the root average mean squared error per cell entry for releasing all k -way 
contingency tables with k = canst , E = const, and 6 = 1/ poly( n). The diagonal entries of the mean squared 
error matrix are the mean squared error of the estimates, and taking the square root of the average of the diagonal 
entries gives the root average mean squared error. The n term in the upper bound for the general case comes 
from an algorithm that releases a vector ofn/2's for all D 's. The 0 (·) and OC) notation hides poJylogarithmic 
factors in the parameters of the problem. The full version of this table (Table 3) is in Section 2. 

strengthened to n ( y(jk), which is tight for all n . Our bounds extend even to non-constant k , losing a factor 
of -12k compared to the best known upper bounds (again, for large n in the general case). 

The rough idea behind these lower bounds is to bound the projection of the mean squared error matrix 
of some database D along a large set of orthogonal directions. Combined with concentration inequalities for 
matrix-valued random variables, this allows us to bound the trace of the MSE matrix and hence the average 
MSE. This line of argument is quite different from the indistinguishability arguments used to bound the 
accuracy of parity queries in [13]. 

(2) Lower Bounds for Minimal Privacy: Using a disjoint set of techniques, we also show ( lightly weaker) 
lower bounds that apply to a large class of "privacy" definitions for statistical databases, including differen­
tial privacy. Roughly, we construct distributions on databases D for which releasing too good an approxima­
tion to Ck (D ) allows an adversary to efficiently recover almost all of D , even though the adversary's a priori 
chance of guessing any row of D is small, and the rows of D are statistically independent. The bounds are 
stated in Table 2 and discussed in Section 3. 

We give two types of reconstruction results, corresponding to two violations of "minimal" privacy: we 
call schemes that allow these violations strongly non-private and attribute non-private, respectively. As a 
point of comparison, for constant k, our bound for strong non-privacy allows the same conclusion as do 
the bounds on differential privacy, namely average distortion O(min{ Vn, Vdk }) per entry is necessary. In 
contrast to our bounds for differential privacy, however, this bound (a) is shown only for constant k, but (b) 
is tight for all values of n when k is constant (that is, there is a non-differentially private algorithm, based 
on sampling, with distortion O( fo). 

(3) The Least Singular Value of Random Matrices with Correlated Rows: For k > 1, the bounds on 
minimal privacy (2) above require significantly djfferent techniques from previous work. Previous lower 
bounds [l0, 14, 15] were based on variants of the following reconstruction problem: given a real-valued 
matrix M , and a corrupted "codeword" M s + e, the goal is to compute an approximation s to s such that the 
"reconstruction error" s - 5 is somehow bounded in terms of the noise vector e. Typically, assuming some 
norm Ilelip is small, one can bound a related norm of s - s. 

The connection to data privacy is that, if 5 E IR.n is a database with one number assigned per person, we 
can think of y = M s + e as a vector of (distorted) estimates of the quantities (Mi' s), where Mi is the ith 
row of M. Thus, any private data release that allows a user to estimate (Mi' s), allows an attacker to obtain 
y. Therefore, an algorithm for approximating s from y can be used to infer sensitive data from the release. 

Previous lower bounds rely heavily on the freedom to design M by selecting the rows of lYf indepen­
dently (either at random [10, 14, 15] or from an algebraic code [15]). They are closely related to techniques 
used to analyze the perfonnance of random matrices in compressed sensing schemes and LP decoding 
(see [7, 6], and references therein). 
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When k = 1 a similar flexibility is available in our lower bounds . However, for k > 1 the rows of 
the matrices A1 that arise in our lower bounds are highly correlated: the matrix AI has (%) rows which are 
formed by taking all possible k-way ently-wise products l of an underlying set of d random vectors. The 
techniques of previous work, from the literature on both privacy and random matrices, break down. 

We show that reconstruction procedures using these matrices can in fact be analyzed, by showing for 
any constant k that a random rectangular 0-1 correlated matrix has approximately same the high-probability 
bound on its least singular value as would a random 0-1 matrix with independent rows . Tight bounds 
are known on the least singular value bound for various types of matrices (e.g., square, rectangular) with 
independent random entries (see, e.g., [33, 34, 32, 37] and references therein). However, to deal with the 
dependencies, we develop several new tools, which may be of independent interest. We show that if !vI 
has less than dk / log (d) columns, then it's least singular value!1 ( vdk) with probability exponentially large 
in d. For comparison, a uniformly random N x n matrix with 0-1 entries has least singular value at least 
VN - Vn-=-I with exponentially high probability (Rudelson and Vershynin [34]). The basic idea is to 
decompose the unit sphere into different regions and to argue using epsilon-net arguments that for each 
region and every vector z from that region, IIAI zll is large with high probability. Our spectral bound allows 
for a reconstruction algorithm of the form s = round (M ' . (M s + e)), where s is a 0-1 vector and lvI' is an 
appropriate pseudoinverse of M . 

1.2 Comparison to Previous Lower Bounds 

Dinur and Nissim [10] showed that a mechanism which answers (or allows the user to compute) 0 (n log n) 
arbitrary inner product queries on a database s E IR.n with noise o( Vii) is not private. Their attack was sub­
sequently extended to use a linear number of queries [14], allow a sma]] fraction of answers to be arbitrarily 
distorted [1 4], and run significantly more quickly [J 5]. 

In their simplest form, such inner product queries require the adversary to be able to "name row " , that 
is, specify a coefficient for each component of the vector s . Thus, the lower bound does not seem to apply to 
any functionality that is symmetric in the rows of the data set (such as, for example, "counting queries"). It 
was pointed out in [9] that in databases with more than one entry per row, random inner product queries (on, 
say, attribute Xd ) can be simulated via hashing: for example, the adversary could ask for the sum the function 
H ( Xl' ... , Xd-l) . X d over the whole database, where H : {O, l }d-l -----t {OJ I } is an appropriate hash function. 
This is a symmetric query, but it might seem odd to a statistician (with, e.g. , a 2-wise independent hash function) . 

Using a more algebraic approach, Dwork et at. [13] gave a lower bound for differentially private mechanisms 
based on counting the number of rows that satisfy parity function s. Their attacks also require either that the 
adversary "name rows", or be able to index individual entries via hashing. 

The lower bounds we give for contingency table releases are the first for symmetric functions regularly 
released by official statistics agencies. As with previous bounds based on reconstruction, we show a lower 
bound of roughly I n on the average distortion per entry (as long as n = o( ( ~ ) )). This fo behavior is tight, 
since a sma]] random sample of the database allows counting queries to be answered with about this accuracy, 
yet clearly precludes reconstruction of the entire database. 

1.3 Relating Reconstruction Problems to Privacy Lower Bounds 

Our results suggest a general connection between reconstruction problems and lower bounds for private data 
release. The lower bounds for relaxed privacy definitions proceed by "embedding" an instance of the recon­
struction problem for a matrix with correlated rows into a contingency table release problem. We give two such 
embeddings (or reductions), leading to two differently fl avored resu lts. 

I Th entry -wise product of k vectors Ul, ... ,'Uk E IRd is the vector in v E ~d with entri es v( i) = nj u J (i). 
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Problem Upper Bound 
O(min{ fo, d} ) 

O(min{ fo, vdk}) 

Table 2: Upper and lower bounds on root mean squared error per cell entry for releasing all k-way contingency 
tables under (not) strong non-privacy with k = canst. The upper bound is proved in Proposition 3.3. The lower 
bounds are proved in Theorems 3.9 and 3.14. 

Let k ~ 1 be a constant. Consider a 0-1 matrix S E {O, 1 }dxn, and let M (k) be the (~) x n matrix whose 
rows consist of all the k-way entry-wise products of the rows of S. Let s E {O, l}n . 

• First reduction (Attribute Non-Privacy): Consider the database D = (STls) E ({O , l }d+l )n. That is, the 
first d columns of D are given by the rows in the set S , and the last column is s. Suppose that the adversary 
knows S but wants to learn s - this corresponds to the model, common in the data privacy literature, e.g., 
[35, 27, 24], of d nonsensitive attributes (e.g., demographic infonnation), which can be learned from other 
sources, and one sensitive attribute (e.g., disease). Then the k-way contingency tables of D contain the vector 
1\;1 (k - l ) s. We show (using our result (3) on least singular value) that with high probability over random S, for 
every s E {O, l}n, any mechanism that approximates k-way contingency tables on D with distortion ~ -Iii 
per entry allows the adversary to compute n - o( n ) bits of s (that is, to find s that agrees in almost an entries 
with s), as long as n = o(dk - 1 ). One can extend the reduction to get a lower bound of !1(min{ -Iii, J dk - 1 } ) 

for all n. 

The lower bound applies to any model of privacy which purports to protect individual values of the sensitive 
attribute (in partiCUlar, to differential privacy but also, e.g., the notion of privacy implicit in "K -anonymity" 
[35] and its variants). Another interesting interpretation of this result is that conjunctions form a "good 
enough" family of hash functions H for the purposes of the Dinur-Nissim style attack described as above . 

• Second reduction (Strong Non-Privacy): Consider now a database D given by diag ( s) · S T, where diag( s) 
is an n x n diagonal matrix with diagonal s. Because s is a 0-1 vector, this corresponds to a world where 
person i's data is either Si or Od, according to the ith bit of s (where Si is the i th column of S). As before, 
assume that the adversary knows S, but not s. Then the k-way (as opposed to k + 1 above) contingency tables 
of D contain the vector M (k)s. We show (using again (3») that with high probability over random 5 , for 
every S E {O, l}n, any mechanism that approximates k-way contingency tables on D with distortion ~ -Iii 
per entry allows the adversary to compute n - o(n) bits of s, as long as n = o(dk ). One can extend the 
reduction to get a lower bound of n (min { ft, Jdk} ) for all n. 

The distribution on databases generated by this reduction is somewhat less natural than in the first reduction, 
but yields a stronger lower bound. It applies, roughly, to any notion of privacy that seeks to protect any 
complete row of the database (as opposed to only individual entries) . This includes differential privacy (see 
Lemma 3.4), a well as its relaxations to metrics on probability distributions such as total variation distance 
or KL divergence. 

The schemata above for reducing lower bounds on privacy to reconstruction problems are quite general, and 
they raise the question: for what types of (natural) correlations on the rows of a random matrix can we bound the 
least singular values (or Lipschitz coeffi cients for other nomls)? More generally. what properties of a function 
determine how accurately it can be released privately? 
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1.4 Preliminaries 

We use [n] to denote the set {l, 2, . .. , n} . dH (',') measures the Hamming distance, and negl (n) denotes 
a function that is asymptotically smaller than line for all c > 0. Pr [·), IE[·), Var [·], and suppC), denotes 
probability, expectation, variance, and support of a random variable, respectively. We often add subscripts to 

Pr[ ·] and IE[·] to empbasize tbe source of randomness. 
Vectors are always column vectors. For a vector 'U, 'U T denotes its tran~pose (row vector) and Ilv II denotes 

its Euclidean norm. Vi denotes the ith entry of the vector v. We use U v be the unit vector corresponding to v 
(i.e. , U v = v Il lvll ). For two vectors VI and V2, (V l ' 'U2 ) denotes tbe inner product of VI and V2. For a matrix 
lv!, tr (Jv1) denotes the trace and IIMlloo denotes the operator norm. Operator norm of M , IIMlloo equals the 
maximum eigenvalue of M . Let TId denote the identity matrix of dimension d. Let !vI be an N x n real matrix 
with N ~ n. The singular values aj(M ) are the eigenvalues of J M T M arranged in non-increasing order. Of 
particular importance in this paper is the smallest singular value an( M ) = infz:llz ll=I IIMzll. 

Differential Privacy. A database D' is said to be a neighbor of D if it differs from D in exactly one row. A 
(randomized) algorithm is differentially private if neighbor databases induce nearby distributions on the outputs. 

Definition 1.1 (€-Differential Privacy [13]). A randomized algorithm A is f.-differentially private if f or all neigh­
boring databases D, D ', andforall sets S of possible outputs, Pr [A (D ) E S] :s: exp(f) . Pr [A (D ' ) E S]. The 
probability is taken over the random coins of the algorithm A. 

Let X and Y be random variables taking values in a set (]. We use X ~E Y to indicate that random variables 
X and Y are f.-indistinguishable, i.e., ''is ~ 0, exp( -E) . Pr [Y E S1 :s: Pr[X E S] :s: exp (t ) . PdY E 5 ]. 
All our results are symmetric, that is, they do not depend on the order of entries in the database D. The size of 
a database is the number of rows in it. Some of our results are independent of the number of the rows in the 
database (i.e., they hold even when database i a vector) . 

In our analysis, we assume that a (private) algorithm A for a function class F on input D releases a vector 
A (D ) = (AI (D ), .. . , AIFI (D )), where each entry in the vector is an estimate of one of predicates in T . This 

assumption is without Joss of generality, bec~use if A on input D releases some other sanitized stru~~ture fj 
then we can define a new private algorithm A that first runs A on D and then releases the vector F (D ). The 
perturbation introduced doesn ' t change by this second step, and therefore, we can think of A as directly releasing 
the sanitized vector. 

Boolean Conjunctions. The domain for Boolean conjunctions is {O, 1 }d. Each x E {O, l } d is interpreted 
as an assignment to d Boolean variables X l , ... , xd. A conjunction predicate Cv : {O , l}d -----t {O, I} for v E 

{-l , O, l }disdefinedas ev (x) = 1 iff X i = 1 if Vi = 1 and Xi = Oif Vi = -1 for all i E [d]. The value of Vi 

indicates whether the variable X i appears as not negated (if Vi = 1), negated (if Vi = - 1), or absent (if Vi = 0). 
The length of a conjunction predicate is the number of coordinates of V that are non-zero. We will refer to a 
conjunction predicate of length k as a k-way conjunction. Let Ck be the function class of all k-way conjunction 
predicates on variables Xl, ... , xd. The size of Ck , ICkl = 2k (~) . Let D E ({O, l }d )n be a database. Each 
row is represents information contributed by one individual. The ith column of D contains the assignments to 
variable X l . For a predicate Cv E Ck define, ev(D ) = LXED cv (x). We use Ck(D ) to represent the vector of all 
the cu(D )'s. 

1.5 Known Upper Bounds for Differentially Private Releases 

In [4, 13] it was shown that addition of carefully calibrated noise to functions satisfying a Lipschitz condition 
is enough to ensure differential privacy. Blum et al. [4] showed that adding instance-independent random noise 
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drawn from a normal distribution with mean 0 and standard deviation J 2mk 10g (1/5)/c to each entry in Ck( D ) 
guarantees (E, 5) -differential privacy, and adding instance-independent random noise drawn from a Laplacian 
distribution with mean 0 and standard deviation 2mk/c to each entry in Ck( D ) guarantees E-differential privacy. 
The mean squared (covariance) matrix of the SuLQ mechanism is a simple diagonal matrix with each entry along 
the diagonal being equal to the variance of the additive noise distribution. Recently, Blum, Ligett, and Roth [5] 
presented an elegant algorithm that in tead of adding direct noise, preserves privacy by adapting the exponential 
sampling technique of McSherry and Talwar [29]. They show that for every class of predicates the exponential 
mechanism of McSherry and Talwar can be used to generate a synthetic database that maintains usefulness in 
that with high probability the LCXJ distance between the vector of answers output by the mechanism and the 
true vector of answers is small. For comparison with our bounds, we show in Corollary 1.5 that for k-way 
conjunctions each diagonal entry in their mean squared matrix is 0 (( n 2 dk / c) 2/3). 

Blum et al. Upper Bound. Blum, Ligett, and R~ designed an (-differentially private algorithm that, given 
a database D, outputs a new "synthetic" database D. Their work provides a high-probability bound on the L CXJ 
distance between the vector of answers output by the mechanism and the true vector of answers. For comparison 
with our bounds, w~ state their result in terms of mean squared error. We start by describing their result. To 
measure how well D represents D with respect to a specific function class F, they introduce the following 
notion: 

Definition 1.2 (( n, ,B)-usefulness [5]). An algorithm A is (n ,6) -usefulfor class of predicates F and database 
D if, with probability at least 1 - ,B, A (D ) outputs a database fj that satisfies I f j (jj ) / I B I - 1j (D ) / I D II ::; n 
fo r every f j E F . 

Theorem 1.3 ([5]). Let a, ,6 , t > O. For every class :F of predicates from {O, l}d to {O, I}. there exists an 
t-differentially private algorithm A that is (0' , ,6) -usefulfor F and all databases D E ({O, 1 }d )n with 

n> C . (VCDIM (F )dlOg(l/a) + 10g (1/,6) ) 
- a 3c t o' 

entries, where C is a sufficiently large constant. (The algorithm may not be efficient.) 

Proposition 1.4 (BLR [5] upper bound). For a class F of predicates with VC-dimension equal to VCDIM (F ), 
the Blum, Ligett, and Roth mechanism produces a synthetic database such that for each predicate fj E F, the 
mean squared error o/the estimated integer count of f j is O(n2 . VCDIM (:F) . d/t f /3. 

Proof Let D be a database. Theorem !;3 shows that if n is large enough, then with probab!}ity 1 - ,B, the 
mechanism returns a synthetic database D such that the fractional count of every predicate on D is within (): of 
the corresponding fractional count on the real database D . 

This translates to an expected square error in the estimated integer counts of at most (1 - ,6) (an)2 + f3n2 ::; 
( O'n) 2 + (3n 2 , since a count can be off by at most n. Setting /3 = 0'2, and assuming that d 2: 2, we get that 

Cd· VGDIM (F ) · log(l/a ) 
n 2: 3 a c 

(1 ) 

gives an expected square error 2n2n 2 . Isolating n from Equation I , and substituting it in 2a2n 2 , we get that the 
expected error for each count is O(n2 . VCDIM (F ) . d/c)2/3. 0 

Observing that k-way conjunctions have VC dimension at most k log d, we obtain: 

Corollary 1.5. For k -way conjunctions, the Blum, Ligett, and Roth mechanism produces a synthetic database 
such that for each conjunction predicate, the mean squared error of the estimated integer count is Q(n2 

. d· 
k / t )2/3. 
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2 Lower Bounds on Noise for Differential Privacy 

In this section, we prove lower bounds on noise needed to IS-differentially privately release a11 k-way contingency 
tables. Our results also extend to a relaxation of f-differential privacy (called (E, c5) -differential privacy) that 
satisfies sirrrilar semantics [21]. Thi s extension is simple and we di scuss it in Appendix C. Table 3 di stingui shes 
between E-differential privacy nd (t , a)-differential privacy. 

We divide differentially private algorithms into broadly three (not necessarily disjoint) categories based on 
the noise introduction process. 

• Instance-independent additive noise case: An algorithm A is in this category if the noise it adds has a 
fixed distribution (is independent of the database) and is additive. Let Z be some noise di stribution, then 
for all D , A (D ) = F(D ) + Z. Therefore, for D' a neighbor of D , A(D') = A (D ) + F(D' ) - F (D ). 
The SuLQ algorithm of Blum, Dwork, McShemj , and Nissim [4] fall s into this category. 

• Unbiased noise case: An algorithm A is in this category if for all D, lE [A (D )] = F(D ). Therefore, for 
D' a neighbor of D , lE[A (D' )] = IE [A (D )] + F (D' ) - F (D ). Here, there is a noise distribution for every 
database, but the algorithm is unbiased (i.e., expected value equals the true value). 

• Genera] case: Unlike the previous two cases, here, we make no assumptions about the algorithm. The 
algorithm of Blum, Ligett, and Roth [5] fan s into this category. 

Remark: If an algorithm A adds instance-independent additive noise, then IE [A(D )} = :F(D ) + JE [Z) (where 
Z is a random variable independent of D). Note that but for this displacement by JE [Z], algorithms that add 
instance-independent additive noise case are also unbiased (e.g. , if lE[Z] = 0 as in the case of SuLQ [4], then an 
algorithm that adds instance-independent additive noise is also unbiased). The results for instance-independent 
additive case follow directly from the unbiased case, and we state them in Appendix A. 

In the general case, we measure the perturbation introduced by a randomized algorithm A using the mean 
squared error matrix ~(A(D)) = lE [(A (D ) - F (D) ) (A (D) - :F(D )) T] . This is necessary because an algorithm 
could always add noise such that the output released is always a 0 vector for every database. This clearly satisfies 
all the privacy requirements and also the variance for each of the A j (D )' s is 0, but the deviation from the true 
answer is big. For an unbiased algorithm A the mean squared error matrix is same as the covariance matrix 
~ (A (D) ) = lE [(A (D ) - JE [A (D )]) (A (D ) - IE [A (D )]) T]. Table 3 summarizes our results. 

In Section 2.1, we consider unbiased t-differentially private algorithms. Let mk = ( ~). We show that any 
unbiased algorithm A for Ck that for every database D has an average variance (i.e. , average mean squared 
error) of o(m k/ (21;; (:2 )) for A(D) is not €-differentially private. The idea is to show that for any two neighboring 
databases D and D', with Ck (D') - Ck(D ) = ~ and unit vector U6 = ~/I I ~ II, the indistinguishability 
requirement of differential privacy along with the unbiasedness of the algorithm forces both uX~ (A (D)) U6 
(which is the expected squared length of the projection of A (D ) - Ck(D) on ~) and uXr: (A (D ' ))U6 to be 
at least 116W (square of the length of ~). Of particular interest to us are the ~ vectors with large lengths 
(close to y'rii:iJ. Then using a careful argument involving geometries of these 6 vectors we show that there 
exists a database D* such that the trace of ~ (A(D* )) is at least 'm~ / (2k (2 ). The result follow s by an averaging 
argument (since, there covariance matrix has m k diagonal entries, at least one of the diagonal entry is greater 
than mk/(2kf.2 ) ). 

In Section 2.2, we consider general E-differentially private algorithms . We show that any algorithm A for 
Ck that for every database D has an average mean squared error of min{ o(mk/ (2k('2 )), o(n/ (2k( log mk))} for 
A (D ) is not E-differentially private. The analysi ' of the general case is trickier, because it is no longer necessary 
that both uXE (A(D ))u~ and uXE(A (D' ))U6 be greater than I ~ 11 2 , but we show iliat the indistinguishabi1ity 
requirement forces at 1east one of them to be greater than 11 6 11 2

. We then look at databases picked uniforml y at 
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Mechanism 

Instance-Indep ndent 

Unbiased 

General 

Instance-Independent 

Unbiased 

General 

6 

U.B. E-diff privacy L.B. t-diff privacy (This Paper) 

o (~ ) (4] 

o (~ ) [4] 

n ( 11.2 dk) ~ mk 
, c 'c 

L.B. (E, b)-diff privacy (This Paper) 

Table 3: Upper and lower bounds on the root average mean squared error per cell entry for releasing all k-way 
contingency tables (for 1 ~ k ~ d ). Theorems A .S , 2.9 , and 2.26 prove our results for the t-differential privacy 
case. The results for (t , 5) -clifferential privacy case are proved in Theorems C.2 and C.8. Here, mk = (~). 

random, and show by an application of matrix-valued Chernoff bound that with high probability the trace of the 
mean squared matrix of a random database is at least min{ m% / (2kt2), nmk/ (2k

f log m k)}. 

2.1 Lower Bounds on Noise for Unbiased t-differential Privacy 

In the analysis instead of conjunctions we consider inner products over the domain {-I, 1 }d. In Appendix B, 
we provide the relation between these two problems. An inner product predicate iv : {-I , I} d --7 {- I, I} is 

defined as iv (x ) = It X i . Vi , where the value of Vi indicates whether X i is present (if Vi = 1 or not (if Vi = 0). 
We call the corresponding function class I k . The size of Lb ILk I = m k. Let D be a database from ( { - I, 1 }d )n . 
Define, iv(D ) = L:x ED iv(x). Let Lk(D ) be the vector of all the iv(D )'s. We analyze I -way inner products 
in Section 2.1.1 and higher way inner products in Section 2.1.2 . The analysis of the I -way case is simple and 
direct, but it provides key insights that would prove useful for analyzing higher way inner products . 

2.1.1 I-way Inner Products - Lower Bounds for Unbiased t-differentially Privacy 

Let D E ( { - 1, l}d)n be a database . Consider the problem of privately releasing Ll (D ). Notice that Ll (D ) 
is a vector whose ith entry is just the sum of the i th column of D. Consider a neighbor D' of D , and let 
~ = Ll (D' ) - Ll (D ). Now, ~ E {- 2, 0, 2}d. However, instead of working over ~ 's that are from {- 2, 0, 2}d, 
we restrict ourselves to ~'s that are from {- 2 2}d. In other words, we consider only those neighbors D " of D 
such that Ll (D" ) - Ll( D ) E {- 2, 2}d. In the remainder of this sec60n, ~ E {- 2, 2}d. 

Let ~(A(D)) be the covariance matrix of A (D ). We start by proving that for any unbiased t-differentially 
private algorithm A, both ~ T2:(A (D))~ and ~ T~ (A(D' )) ~ are n ((~ , ~)2 / t:2 ), where ~ = IE[A (D' )] -
IE[ A (D )). The proof uses the fact that projections onto ~ need to be E-indistinguishable for A (D ) and A (D' ). 

Lemma 2.1. Let A be any unbiased E-differentially private algorithm for LI. Let A (D ) ~c A (D' ). Let 
Ll (D' ) = Ll(D )+ .6.forsome.6. E {- 2,2}d. Then,IE[(A (D)-IE[A (D)], ~ ) 2] = n (( .6., ~ ) 2 / 2) =U(d2/ f. 2) 
and IE [(A (D' ) - IE [A (D') ], ~ )2] = n ((~, ~)2/E2) = D(d2/E2). 

Proof We first prove the one-dimensional version of thi s lemma. That is we show that if A is unbiased E­
differentially private such that for any two neighboring databases D and D' , I IE [.A(D )] - IE [A (D')l l ~ 1, then 
both Var [A (D )] and Var [A (D')] are D(1/E2). 
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Lemma 2.2. Let A (D ) and A (D') be distributions over nt Let A (D ) ~f. A (D' ). Let JE [A (D )] = p and 
E[A(D' )] = p + 1. Then, E[A(D)21 = n (1/E2 ) + p2 and E[A (D' )2] = 0 (1/c2 ) + p2. Therefore, Var[A (D )] = 

0 (1/c2 ) and Var[A (D')] = n (1/E2 ). The expectation is over the randomness afthe algorithm. 

Proof Define X = A (D ) - p and Y = A (D' ) - p. Lets assume that X and Y are continuous random 
variables with support over lR (proofs for other situations are quite similar). Define ai = Pr[X E [i, i + 1)] and 
bi = Pr[Y E [i, i + 1)]. Note that 

L ai = Lbi = l. 
iEd': iEZ 

By requirements of differential privacy, we have e- fbi S ai S efai for all i E Z. Let Inti = [i, i + 1). Now, 

~ 00 0 

IE[X ] = 1m Z Pr[X = zldz = L 1 . z Pr[X = zl dz 2: 2: iai + 2: iai 
JR 'i= - oo Int, i=O i=-~ 

00 00 00 00 00 00 

L iai - 2: i a-i 2 - L e~ ib_ i + L e-(ib'i = - L (e- C + eC - e-f) ib _i + L e- f:.ib·i 
i=O i=O i=O i=O i=O i=O 

ex:; 

e- E lE[Y ] - (eE 
-- e- E

) Lib-i. 
i=O 

Since JE [X ] = 0 and JE [Y] = 1, therefore, for small E, 

00 

L ib_~ 2: (e-E)/(e( - e- E
) = f! (l /E). 

i=O 

Define, a new random variable Y _ as 

Pr [Y_ = z] = Pr[Y = -z I Y S O]. 

Then JE[Y-J 2: Pr[~~ol 2::0 ib- i . Rearranging the terms and using the fact that IE [Y_] S V1E[Y~], 

00 

L ib-i S JE [Y_] Pr[Y S ] S /IE [Y~ ] Pr [Y S O]. 
i= O 

Using the bound for 2:~o ib- i , we get that 

Now, define Pr [X+ = z] = Pr [X = z I X ~ 1]. Using similar analysis as above gives that 

9 



Now, 

EIX 2] = fl . z2 PriX = z]dz. 
i=-oo Tnt, 

In particular, 

Similarly, we get that 

IE [y 2] = f { Z 2 Pr[Y = z] dz < IE [y 2] . 
- i=-oo J 1nti Pr[Y :::; 0] - Pr [Y :::; 0] 

Now substituting the lower bound for IE [X~] and IE[Y~], we get that 

!1 (f~ ) = EIX2] Pr iX ::> 1] and !1 (,12 ) = EIy 2] Pr lY <; 0]. 

Hence, IE [X2] = !1 (1 / E2) and IE[y2] = !1 (1/E2). Re-substituting X and Y in terms of A (D) and A(D' ) 
completes the proof. 0 

We now extend Lemma 2.2 to the higher dimensional case. The proof has similar structure to Lemma 2.2. 
We will just present the main differences. The idea is as follows: Define, X = (A (D ) - Il (D) ,~) and 
Y = (A (D' ) - I1 (D), ~). Repeating same arguments as in the previous lemma, we get that 

00 

i=l 

Since E[Y] = L.l T L.l = 4d. Therefore, for smal1 E, 

As in Lemma 2.2 we define random variables Y_ and X +. By arguments similar to Lemma 2.2 we can show 
that 

and IE y2 = f2 d 
I - ] CPrlY <; 0]) . ( 2) 

As in Lemma 2.2, 

IE [X 2] < IE [X2] 
+ - Pr[X ~ 1] 

and 

Therefore, we now get that 

!1 ( ~:) = EIX 2] Pr iX ::> 1] and !1 (~: ) = EIy2] Pr lY < 0]. 

As in Lellll11a 2.2, we can argue that IE[X2] = O(d2/E2) and IE[y 2] = O(d2/E 2). Therefore, IE [(A (D ) -
II(D) , ~ ) 2] = O (d2/E2 ) and IE[(A (D') -II(D ), ~)2] = !1 (~/E2 ). Also, 

IE[ (A (D' ) - IE[A (D' )], Ll )2] IE [ (A(D') - II (D ) - Ll , ~)2] 

IE[(~ T (A(D') - II (D )) - d)2] 

IE[ (Y - d)2] = IE[y 2] + d2 
- 2dIE [Y ] 

> IE[y2] + d2 
- 2dVIE[y2 ] = O(d2 /t2

). 
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The last line fol1ows because JE[y2 ] = n (d2/t2). o 
The proof of the following proposition relies on the fact that there exists a databa~e D such that for every 

~ E { - 2, 2}d, D has a close neighbor Db. such that Id Db. ) - Id D ) = ~. Let D be any database which has 
at least a row of both - 1 d and 1 d. We now show that there exists a database Db. t Hamming distance 2 from 
D such that for every 6. = {- 2, 2}d, I I (Db. ) - II (D ) = 6. . Consider any vector ~ E: {- 2, 2}d. Let Dl::,. be a 
database which is identical to D except that the row - 1 d is replaced by ~/2 and the row 1 d is replaced by 6. / 2. 
The Hamming distance between D and D ~ is 2 and I I (D b.) - II (D ) = 6. . The idea now is to use the fact that 
the set of ~'s (which contains every vector from {- 2, 2}d) contains an orthonormal (Hadamard) basis. 

Proposition 2.3 (Unbiased case: I-way inner products). Let A : ({- I , l}d)n --c> lRd be any unbiased (­
differentially private algorithm for I I. Let D be any database which has at least a row of both - 1 d and 
1d. Then, tr (E(A (D ))) = O(d2/ f2 ). 

Proof The covariance matrix E(A (D )) = JE [(A (D ) -lE[.A(D )])(A (D ) - lE [A (D )])T] (i.e., the (i,j )th entry 
looks like lE [(A i(D ) - E[Ai( D )]) (A j(D ) - lE[A j (D )])]) . Consider any vector ~ E {- 2, 2}d. Since A is 
differentially private, by Claim 2.23, A (D ) ~2( A (Dl::. ) (where Dl::. is as defined above). From Lemma 2.1 2 , 

we know that ~ TE (A(D ) ) ~ = O(d2 / f.2 ) and therefore uIE(A (D ))Ul::. = n (d/ f. 2 ) (where Ul::. is the unit 
vector corresponding to ~) . This holds for every 6. E {- 2, 2}d. Consider an orthonormal basis 'Ul"" 1 Ud 

such that uJ 2: (A (D ))Ui = n (d/ t 2 ) for all i E [d] (one such example is the Hadamard basis). Identity matrix 

lId = 2:::1=1 UiU;. Now, 

d d z= tr (u; E(A (D ))Ui ) = L tr (~ (A(D) )UiUJ) = tr (~ (A (D)) . IId) = tr (I: (A(D ))). 
i = l i=l 

Note that tr ( uJ~ (A (D) )Ui ) = tr (E(A(D ) )UiUJ ) as trace is cyclically invariant. This implies that tr (E(A (D ))) 
= n (d2 /t2 ). 0 

2.1.2 k-way Inner Products - Lower Bounds for Unbiased f-differential Privacy 

Since the results in this subsection will be independent of n, for simplicity we assume n = 1 (see the proof of 
Theorem 2.9 for the simple extension to n > 1). 

Inner-Products Over the Domain {- I, 0,1 }d. First lets consider inner products over the domain {- I , 0,1 }d. 
Let Kk be the function class of all k-way inner product predicates over the domain { - 1, 0, I } d . Let r E {- I , l}d 
be a random vector with independent entries taking values - 1 and 1 with probability 1/2. Let m k = (~) . Define 
a random vector Z of length mk as Z r = Ik (r). Each entry in Zr is set to 1 with probability 1/2 and -1 with 
probability 1/2 (but the entries are not independent of each other). Define a matrix B = IEzr [zr Z; J, where the 
randomness is over Zr. 

Lemma 2.4. Let Zr = Ik (r). Then, IE zr [Zr Z,; ] = IImk , where TImk is an identity matrix of dimension m k. 

Proof We prove the lemma for k = 2 (2-way case). The proofs for bigher k's fol1ow similarly. Con ider 2-way 
inner products. Let ri denote the 'ith entry in r. Now Zr = (Z] ,l , ZI ,2 ,· .. , Zd-l,d), where Zi ,j = TjTj. Then, for 
a i- band c i- d, 

IE (z z 1 = { 1 if {o"b} = {c ,d} , 
Zr a ,b c,d 0 otherwise. 

2S ubstitute De:. for D' in Lemma 2.1. As the Hamming distance between Db. and D is two ( g l' replaced by 2t:. 
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Note that if {a,b} = {c,d} , then lEzr[Za,bZc,d] = lEzr[z;,b] = l. if {a, b} -=I- {c,d}. then there are three 
cases : if a , b, c, d are all disjoint then Ez" [Za,bZc,d] = lEzr [Za,b]lE zr [Zc,d] = 0, jf a = c then IEZr [Za ,bZc, d] = 

1Ezr [( T~ )( Tb) (r d) ] = Ezr [r~ ] IEzr [rb]lEzr [r d] = 0, and if b = d then lEzr [Za,bZc,d] = IEZr [r a] IEzrl'r cl IEzr [r~ ] = O. 
Therefore, lEzr [ZT Z.;] = ITm2 • D 

The following lemma proves an extension of Lemma 2. 1 to the k-way case. 

Lemma 2.5. Let A be any unbiased c-difJerentially private algorithm j or K k. Let A (Db) ;::::;t A(D~ ) . Let 

Kk (Db) = Kk (D b) + Z for some Z E SUpp(zr). Then, IE[ (A(Db) - IE[A (D b) ], z) 2] = D( (z, z )2 / ( 2 ) and 
lE[(A (D~ ) - IE[A(D~ ) ],z) 2 1 = D((z,z)2/E2). 

Proof Same as Lemma 2.1. We want to show E[(A (Db) - Kk(Db),z)2] = D((z ,z)2/ c2) and IE [(A (D~ ) ­
Kk (Db), z) 2] = D( (z, z )2 / c2). Compared to Lemma 2.1 , z plays the role of 6. D 

The following simple proposition lower bounds the trace of the covariance matrix. The proof follows by 
combining the above two lemmas. 

Proposition 2.6 (Unbiased case: k-way inner products over {- I , 0, 1 }d). Let A : {-I, O,l }d ----> ~mk be any 
unbiased c-differentially private algorithmfor Kk. Let Db = Od. Then, tr(E(A (Db))) = n (m~/f2) . 

Proof Let Db = Od. Let mk = ( ~) . Let T be the set of all Z E {-I, 1 }mk such th~t there exists a neighbor D~ 
of Db with JCdDD - K k( Db ) = z. Note that T = supp (zr). Let ~(A(Db)) = IE[(A (Db ) - Kk (Db )) (A (Db) -
Kd Db») T]. Then, expected value (expectation over random zr) of z;E(A (Db) )zr i 

E [tT(~ (A ( Db) )Z1'z; ) 1 = tr (~ (A (Db ) )B ) 
Zr 

< tr(~(A (Db)))II B l loo = tr (~ (A (Db)))' 

The last equality follows because B = IEzr[zrz;] = [mk' and thus IIBlloo = 1. Since for 'liz E supp(zr ), 
(z, z) = mb from Lemma 2.5 we get that 'liz E SUPP(ZT), 

Since the previous statement is true for all Z E SUpp(zr), therefore, 

D 

Going from Domain {- 1, 0, l }d to {-I , l}d. The previous argument relied on starting from a database 
Db = Od . We now consider databases from the domain {- I, 1 }d. 

Lemma 2.7. Let A be any unbiased f -differentially p rivate algorithm for I I,; . Let Dc; D~ , jj be the databases 
as defmed above. Let z = Ik (D~) - Ik( D) and 7r = ITmk - 00 T / (0,0 ). Then, lE [ (A (Dc) - IE [A (Dc) ], 7r z)2] = 
D. ((7i Z, 7rz)2/ t 2). 

Proof Using arguments similar to Lemma 2.1 shows that (7rz)T ~ (A (Dc))(7rz) = O((nz ,7r z)2j E2 ). Since 
7r Z = 'if Z , we get the desired result. D 
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Let Dc = I d. Let D~ E {- I, l}d be a neighbor of Dc. Let D = Od be an imaginary database. Then, 

Ik (D~) - I d Dc ) = Ik(D~ ) - Ik( jj ) + Id D ) - I k( Dc ). 

Let z = Ik (D~) - Ik( Dc ) and Z = Ik (D~ ) - I }c (D ). Ik (Dc ) = 1m
" , and I d D) = o m k. Let 0 = p n k. Then, 

z = Z - o. Let?T = limk - 0 0 T / (0,0) be the orthogonal projection matrix onto the orthogonal complement of o. 
Note that 00 T is a m k x m k matrix of alII's. Let 2: (A (Dc )) = JE [( A (Dc) - Ik( Dc)) (A (Dc) - Ik( Dc)) T]. The 
idea now is to extend Lemma 2.1 to show that JE[( A (Dc ) - JE [A (Dc)], ?Tz) 2] = O( (?T Z, 1TZ) 2 / (2) (Lemma 2.7), 
which in tum can be used to show the following. 

Proposition 2.8 (Unbiased case: k-way inner products over {- I , 1 }d). Let A : {- I , l} d -----+ lRm k be any 
unbiased f.-differentially private algorithm for I k. Let Dc = 1 d. Then, tr(2:(A (Dc ))) = O (m~/ £2). 

Proof Let Dc = 1 d. Since D~ can be any vector from { -1, I } d and I k (fj ) = o m k , the set of vectors Z = 

Ik ( D~) - Ik( fj ) is exactly supp(zr ). As in Proposition 2.6 (with expectation over random zr), 

JE [(?TZr)T I; (A(Dc)) (?TZr )] :::; tr (rr T ~ (A (Dc)) ?T )II B jl oo = tr (?T T2: (A(Dc)) 7f) :::; tr ( ~ (A (Dc» )). 
Zr 

The last inequality follows because ?T is an orthogonal projection matrix. Note that from Lemma 2.4. B = 
IEz, [Zr Z: ] = limk . Also \jz E supp(zr ) from Lemma 2.5 , 

Now, 

(Z, z) = Z T rrz + Z T (limk - ?T)z = Z T?T T rrz + (z, 0)2 / m k = (rrz, 7rz ) + (z, 0)2 / mk. 

If you look at the expected value of z: 7r Zr, 

Now for all Z E Supp(zr), Z T 1TZ :::; Z T Z = mk. Therefore. zJ rr Zr is a random variable whose range is between 
[0, mk ] and with expectation of m k - 1. If p is the probability that z; 1TZr takes a value greater than mk - 2. 
then 

m k - 1 = IE [z; 1TZr] :s; pmk + (1 - p)(m~ k - 2) =} 1/ 2 :::; p. 
Zr 

We can expand IEzr [(?T zr) TL;( A (Dc )) (7rZr)] as 

IE [( 7rzr ) T~ (A (Dc))( 1TZT ) ] = lE [( 7rZr) T~ (A (Dc))(rr zr ) I z; rrZr 2': m k - 2] Pr(z; ?TZr 2': m k - 2] + 
Zr Zr 

From above arguments we get that PrZ r [z; ?TZr ~ m k - 2] 2': 1/ 2, therefore 

o 

The result for Ik can be extended to Ck (see Corollary B.2). We immediately get the following result. 
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Theorem 2.9 (Unbiased case). Let m k = (~). Any unbiased algorithm A for releasing all k -way inner products 
thatjor every database D E ({ - 1,1 }d)n has an average variance of o(m k/ €2 ) for A (D ) is nol c. -differentially 
private. Also, any unbiased algorithm A for releasing all k-way conjunctions that for every database D E 

( {O, 1 }d)n has an average variance of o(m k/ (2k c2)) for A( D) is not €-differentially private. 

Proof In the above discussion we considered databases where n = 1. However, there is an easy extension 
to databases where n > 1. Let D E ({-I, l}d)n be a database with a row of Id . We can repeat the above 
arguments to show tr (2: (A ( D ) )) = 0 (m ~ / f2) . For the proof, we restrict our attention to those neighbors of D 
which are obtained by replacing the row of 1 d in D by a vector from { - 1, I} d. 0 

2.2 Lower Bounds on Noise for General E-differential Privacy 

In this section, we prove lower bounds on the perturbation introduced by any differentially private algorithm for 
Ik and Ck. Again our analysis looks at the related problem of releasing inner products . 

2.2.1 I-way Inner Products - Lower Bounds for General f-differential Privacy 

We initially prove the lower bound by setting E = 1/ 2. In Section 2.3, we strengthen the lower bound by 
introducing c into it. As in Section 2.1.1, we only consider A's from {- 2, 2}d. Let 2: (A (D )) = IE [(A(D) -
Il (D ))(A (D ) - I1 (D ))T ] be the mean squared error matrix. Let A(D ) ~1/2 A (D' ) and A = I(D' ) - I (D ). 

Unlike in the unbiased case (Lemma 2.1 ) it is not necessarily that both AT~ (A (D))A and 6.T~ (A(D' ) ) A be 
O(d2 ) , but the following lemma shows that at least one of them is D(d2 ). 

Lemma 2.10. Let A be any 1/2-differentially private algorithmJor II. Let A (D ) ~1/2 A (D ' ). Let I 1 (D' ) = 

Il (D ) + AJorsome A E {- 2, 2} d. Then m in{lE[(A (D ) - Il(D ), A )2], IE [( A(D' ) - I l(D' ), A )2]} = O(d2 ). 

Proof We prove the lemma in a slightly general setting (under the notion of (E, 8)-privacy from Appendix C). 
Lemma 2.10 follows from setting X = (A (D ) - I I (D ) , 6. ), Y = (A (D' ) - II (D' ) , A ), 8 = 0, and a = 
6. T A = 4d in the following lemma. If two random variables, X and Y are (c , 8)-indistinguishable, then the 
statistical difference3 between X and Y is at most e l / 2 - 1 + 6. 

Lemma 2.11 (Lemma 2.10, restated). Suppose X, Y are real-valued random variables with statistical d~fference 
at most e1/ 2 - 1 + o. Then, for all real numbers a, at least one oJ IE [X 2] or lE[ (Y - a ) 2] is D( a 2 (1 - 8)2 ). 

Proof Since X and Y have statistical difference at most e l / 2 - 1 + 8, we can find random variables X ' , Y' , U 
such that X' and Y' have the same marginal distributions as X and Y respectively, and X' = Y ' = U with 
probability at least 2 - e1/ 2 - 8. Moreover, if E is the event that X ' = Y ' = U, we may choose U so that it 
is independent of the event E. (See, for example, the proof Lemma 3.1.8 in Vadhan's thesis [38] for a proof of 
this .) 

We can bound the expectation of X in tenns of the expectation of U: 

IE[X ] = IE[ .. Y'] = lE[X ' IE ] Pr [E] + lE[X ' IE ]Pr [E] ~ (2 - e l
/

2 
- 8) lE[X 'IE] = (2 - e1

/
2 

- 8) JE [U] . 

Now suppose that a > 0, and that the expectation IE [U] is at least a/ 2. Then, 

lE[X2 ] ~ IE[X f ~ (2 - el/2 - 8)2 JE [U f ~ a2(2 - el /2 - 8)2/4 = D(a2(1 - 8) 2). 

Similarly, if a > 0 and IE[U] is less than a/ 2, we have JE[(Y - a)2] = O(a2 (1 - 8) 2). The cases in which 
a < ° are symmetric to the cases where a > 0, and the statement is trivially true when a = O. 0 

3The statistical difference between random variables X and Y on a discrete space X is maxscx 1 Pr [X E S1 - Pr[Y E S]I . 
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This concludes the proof of Lemma 2. I O. o 

For a database D, define T] (D ) = {~I"" ) ~n} as the (multi) set of ~ s from {-2, 2}d such that for each 
~i there exists a neighbor D' of D such that II (D' ) - I I (D ) = ~i ' In other words, consider the n neighbors 
D l ,'" , Dn of D , where Di is obtained by repJacing all the -l 's to 1 '5 and all the l's to -l's in the ith row of 
D, and set ~i = Ll(D i ) - I I(D ). Define S\ (D ) s-;;: Tl (D ), lVI1(D ), and iV1(D ) as 

Let D be set of all databases from ( { -1,1 }d)n. The proof considers databases Dr drawn at random from D. 
The following lemma bounds the largest eigenValue of Ml (Dr- ). The proof uses an application of matrix-valued 
Chernoff bound from Ahlswede and Winter [1 ]. 

Some facts used in the proof Lemma 2.13. We Jet M ~ 0 to denote that l'v1 is positive semidefinite. This 
gives an ordering of matrices namely, l'vh ~ M2 iff M2 - MI ~ O. For two matrices M I :::; M 2 , we will let 
[Ml ' N12 ] denote the set of all matrices M3 such that Nh :::; lv13 :::; M2. The matrix exponential is define as: 

00 Mi 
exp(J\1) = :L 7 ' 

i=O 

exp(M ) is diagonalizable in the same basis as M, and if A is an eigenvalue of 1\11, then eA is an eigenvalue for 
exp(M ). 

For a database D define, 
N1 (D ) = 2..: 'U6..'U~. 

6. ETl (D ) 

Proof Consider any vector v E [{d. Since Nh (D ) and lVl (D ) are posilive semidefinite, v T Ml (D )v ::; 
v T N 1 (D )v. Since, the previous inequality holds for every vector v E Ii{d, wegetthat II M I( D )l loo :::; IIN1 (D)ll oo ' 

o 

Lemma 2.13. With probability greater than 1-1/2n over D r chosen uniformlyar random from D, II M1(Dr ) 1100 = 

o (max{ n/ d, log d} ). 

Proof To prove the lemma we will show that with high probability 1·1 N 1 (Dr ) 1100 = 0 (n / d). Then by using 
Claim 2.12 we get the desired result. To prove the bound on II N 1(Dr)lloo we use the foll owing matrix-valued 
Chernoff bound of Ahlswede and Winter [1 ]. 

Theorem 2.14 ([1, 40]). Suppose f : [f] ~ [- lid, TId] and let Xl, ... , X k be arbitrary independent random 
variables distributed over [f]. Then, for all 'y E Ii{ and t > 0: 

T · d· Let T1(Dr) = {~l"'" ~n}. Now, UAU6. E [- lid lid] for ~ E {- 2, 2} . Restatmg the above theorem: 
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Corollary 2.15. Let ~j E {-2, 2}d for j E [nJ. For all " E IR and t > 0, 

b~ [~t, u~j ul, - ll: i 1lld] :; d exp( -hk) D 11![exP(T1 (u~, ul ,l - ~ )l l ioo 
Note that ~ 2.: j=l U~jUrj - ~ i "TId == I I ~ Nl(Dr)lloo;::: ~+r. Also, sinceU~lurl"" 'U~n ur?1 are all 

independent and identically distributed we can restate the corollary in a more useful fonn as (where ~ = ~l ) : 

Let diag (C1' ... , cn ) be an n x n diagonaJ matrix , with Cl, ... , Cn as the entries in the diagonal. Consider, 
II IE~ [exp (T1 (u~uI - ~ )rliloo, 

II IE~[exp(t . diag(l - lid, -lid, ... , -lld)) Jl loo 

II IE~ [exp ( diag (t - tid, -tid, ... , -tld))llioo 

II IE~ [ diag ( exp (t - tid), exp ( - t I d), ... , exp ( - t I d) ) III 00 

II IE~[(et-t/d - e-t/d ) u~ur + e-t/dTId:llloo 

( 
(et-.t/d _ e-t/d) ) (e t- t/d _ e- t/d ) - + e-t/d TId = + e-t/ d 

d d 
00 

The second last equality follows because IE~[u.6. ur l = TIdl d. Setting t = 1, the right hand of Equation 2 
simplifies to 

d ,xp(-"n) ( II IE.6. [exp (u~uX - ~)J l loo ) n dexp(- r n ) e ~ e + e- ljd 
( 

(l-l/d -lid) ) n 

(
e - 1 )n 

dexp( - '"'In ) exp( -nld) - d- + 1 

< dexp( - I'n ) exp( - n l d) exp((e - l )n l d) 

dexp( -n(r + (2 - e)ld)). 

The last inequality uses the fact that 1 + x :::; eX. We consider two cases: 

Case 1: n ;::: 8d log d. Setting r = 1 I d, implies that 

PrDr [11~Nl(Dr)lloo;::: ~ J :::; d exp ( -n(~-e)). 

which simplifie ' to PrDr [(lIn) II NI (Dr) 1100 ;::: 21 dl 'S 1/(2n ). 

Case 2: n < 8dlogd. Setting r = (Slogd)ln, implies that PrDr[(1/n)IIJV1 (Dr)II CXl ~ (161ogd)lnJ 'S 
1 I (2n). Rewriting, the above inequalities proves the desired statement. D 

Proposition 2.17 follows by using the lemma and the fact that the expected size of 8 } (Dr ) is at least n / 2 
(Claim 2.16). 

Claim 2.16. IEDr [lS'l(Dr )IJ ;::: n/2. 
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Proof Consider two neighboring databases, D and Di such that I I (Di) - II (D ) = ~ E { -2, 2} d. From 
Lemma 2.10, we know that ~ is present in at least one of SI(D ) or SI(D i ). Since every D has n uch neighbors 
Di'S, the average size of Sl (D ) is at least n / 2. Therefore, for a random database Dr , IEDr [l SI (Dr) I] ~ n / 2. 0 

Proposition 2.17 (General case: I -way inner products). Let A : ({ - 1, I} d)n -7 jRd be any 1/ 2-differentiaLly 
private algorithm for I I. Then, with probability at least l/n over Dr chosen uniformly at random from V , 
tr (E(A (Dr ))) = n (min{d2 ,nd/ logd} ). 

Proof Let H I ( Dr ) = I Sd br-)[ Ml (Dr). Consider tr (E (A ( Dr) ) H I ( Dr) ) , 

1 " T tr (E(A (Dr ))H d Dr )) = ISd Dr )1 L tr (E(A (Dr ))U,D.Uf'l) 
f'l ES l(Dr ) 

1 
IS (D )1 ~ tr (uIE (A (Dr ))Uf'l ) = n(d). 

1\ r f'lESl(Dr ) 

The last equality follows by the definition of Sl (Dr). 
Also, tr (E(A (Dr )) H l (Dr )) :s tr (~ (A (Dr )))IIHdDr )ll oo. From Claim 2.16, we know that IEDr [ISl (Dr )l] 2: 

n / 2. L t El be the event that ISl(Dr )1 < n/2. Since, IEDr [I Sl (DT)ll ~ n/2, the Pr [E l ] ~ 1- l/n . Let E2 be 
the event that 

II H l (Dr )lloo 2: max{cn/(d ISl (D r)I), (clogd)/I Sl(DT)I } 

for some constant c. From Lemma 2.13, we know that, with probability at least 1 - 1/(2n ) over Dr, 

IIHl (Drlll= :s max {dISI7Drll' 1 ;11~gll } · 
Since, II H l(Dr )lIootr(E(A (Dr ))) = n (d), it implies that with probability at least 1 - 1/(2n) over DT, (for 
some constant c' ), 

tr(1:(A (Dr 1 1 1 ::> min {:: lSI (Dr 1 I, c' l:g d lSI (Dr 1 I} . 

Since with probability at least 1 - Pr [E l ], 151 (Dr ) I ~ n/2, we get that with probability at least 1 - Pr [E l ] -

Pr [E2}, ~ (A(Dr)) = n (d2 ). Substituting, these probabilities implies that with probability at least l / n . 
E(A (Dr )) = O(min{d2 , (nd)/ logd} ). D 

2.2.2 k-way Inner Products· Lower Bounds for General E-differential Privacy 

The analysis uses ideas from Sections 2.1.2 and Sections 2.2.1. Let V C V be set of all databases from 
({ - 1, l }d)n who have at least one row of Id. The ic!ea is to show that with probability at least l / n, either a 
random database from V or a random database from V has big trace for its mean squared matrix. 

Consider the random vector Zr = I J..; (r) from Section 2.1 .2. Define another random vector zr as iff" = 
I k(ld ) - Zr = 0 - Zr, where 0 = 1mk. The fol1owing lemma is a generalization of the Lemmas 2.7 and 2.10. 

Lemma 2.18. Let A be any 1/2-differentially private algorithm for Ik . Let A (D ) ~1/2 A (D' ). Let Ik; (D' ) = 
Ik(D ) + ziorsome z E supp(i r ) and Z = 0 - Z. Then, at least one ofF., [( A (D ) - Ik (D ), 1fz)21' orJE [(A (D' )­
Ik( D' ), 7rz )2] is n ( (1f Z, 1fz) 2). 

We consider random databases for the proof. Let 15 c D be set of all databases fr~m U - 1, 1 }~n who ha~e 
at least one row of 1 d . For a database D E D, consider the n neighboring databases4 D l , D2 , . .. , Dn, where Di 

4If D has a row of 1 d (say the i th), then D = Di and z., = Omk. For uniformity, we will still treat D and D, as neighbors. 
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is obtained by replacing ith row of I! by 1 d. The databases Dl , ... ) Dn belong to D. Let Tk (D ) = {-Zl ' ... , zn } 
denote the (multi) set such that .Lk(D'i) - Ik( D ) = Zi and Zi = 0 - Zi. Define, 

Sk(D ) = {z E Tk( D ) 1 IE[( A (D ) - Ik( D ), 1rz )2] = n (m ~)} 

Mk( D ) = L zESkCD) uzu; and Nk( D ) = L ZETk(D) uzu; . 

Every database in D has at least one row of 1 d. For D E 15, define Neig (D ) to be the set of all neigh­
bors of D obtained by replacing a row of 1 d in jj by a vector from { -1, I} d. Consider a set of n databases 
D l , ... ,Dn drawn independently at random from Neig (D ). The databases D1 , •.• , Dn belong to 'O. Let 
~k (ij) = jz~ .. ~ZnL denote ~e jmulti) set such that Ik( D i ) - Ik (D ) = Zi and Zi = Zi + o. Define, 
Sk(D ) ~ Tk(D ), Mk(D ), and Nk( D ) as 

Sk(D) = {z E Tk(D ) 1 IE [( A (D) - Ik (D), 1rz)2] = DCm~)} , 

1I1d D ) = LZESkC D) uzu; and Nk( D ) = LZE'hCD) uzu; . 

The following lemma follows by modifying the parameters of Lemma 2.13. 

Lemma 2.19. With probability greater than 1-1/2n over Dr chosen un ifonnly at randomJronz V, II Mk (Dr) 1100 ::; 
II Nk(Dr)l loo = O(max{n/m k, logmk}). Also for every D E 15 with probability (over the random choices of 
D1, ... , Dn) greater than 1-1/2n, IIMk(D)lloo::; II Nk(D)lloo = O(max{n j mk,logmk} )' 

Proof Replace the parameter d in the proof of Lemma 2. 19 by m k. The proof requires that IEzr (uzru~r 1 = 
TImk / mk (or IEZr [zrzJJ = TIm k ), which can be established as in Lemma 2.4. 0 

Claim 2.20. Let Dr be a database chosen unifonnly at random from TJ and Dr be a database chosen uniformly 
at random from D. Then, at least one oflEDr [I Sk(Dr) 11 or IE 5)I Sk (Dr) 11 is at least n / 4. 

Proof Firstly V Z E supp (zr ), 
(Z, z) = (1r Z,1rz ) + (Z, 0)2 / m k. 

Now consider the random vector Zr = .Lk (r) (where r E {- I, l}d is random). With probability at least 
1 - c- d , (zr , o) :::; Cmk (where c > 1 and C < 1 are constants). Therefore, with probability at least 1 - c-d , 

(1rZr l 1rZr ) ~ m k(l - C 2 ) (as \13 E ~upp(zr), (z, z) = mk ). 
For a database D E TJ and D E TJ defi ne, 

Rk(D ) = {z E Tk (D ) 1 IE[( A (D ) - Ik (D ),7fz )21 = O((7f Z,1r z )2)} 

Rk (D ) = {z E Tk( D ) 1 IE[( A (D ) -Ik(D ),1rz)21 = O(( 1rZ, 1rz)2) }. 

Let Dr and Dr be random databases from D and 15, respectively. Now every z E Sk (Dr ) is an independent 
copy of Zr. Therefore, each z E Sk(D r ) independently satisfies (1r Z, 1rz) = D(rnk) with probability at least 
1 - c- d . By using this along with the definitions of Sk (Dr ) and Rk( Dr) implies IE DT [I Sk (Dr ) I] ~ (1 -
c-d

) IEDr [IRk (Dr )11. Similarly, each Z E Sk(Dr ) independently sati sfie s (1rZ, 7fZ ) = D(mk ) with probability at 
least 1 - c- d , and therefore, 

~ [I Sk (Dr)IJ ~ (1 - c-d
) m: [l R k(Dr )IJ· 

D), Dr 

We show that if lE Dr[I R k(Dr)11 < n / 2, then IED)I Rk( Dr)11 ~ n/2. Let Neig(D ) to be the set of all 

neighbors of D obtained by replacing a row of 1 d in D by a vector from { -1 , l }d. Let 0 = 1 mk. 
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For any database D' E Neig(D ), we know (from Lemma 2.18) that at least one of1E[ (A (D ) - IdD ) 1 7r Z , )2] 
or IE[ (A (D' ) - Ik( D' )) 1r z)2] is O( (7rZ , 7rz)2) (where z = I k (D' ) - Ik( D) + 0), Now jf lE D,- [I Rk( Dr) I] < n / 2, 
then 

- - ~ 2 2 INeig( D )1 F= [l D' E Neig(Dr ) : IE [ (1fZ, A (Dr) - I k( Dr )) ] = D( (7rZ, 1fZ) ) I] ~ 2 r . 
Dr· 

Therefore, for a database D fl chosen uniformly at random Neig(Dr ), with probability at least 1/ 2, 

IE[( A (Dr ) - I k(Dr ), 7rz)2] = O( (1fZ, 7rz )2) where Z = Ik( D" ) - Ik( Dr) + o. 

Therefore, if IE Dr. [l Rk(Dr)IJ < n / 2, then IEi5)fRk( Dr )I] ~ n / 2. 

Therefore, at least one of lED.,. [I Rk (Dr) I] or IE Dr [I Rk (Dr) I] is at least n/2. Hence, at least one of lEDr [I Sk (Dr ) I] 

or lED)I Sk (Dr )IJ is greater than (1 - c- d
) . (n / 2) ~ n /4. 0 

Proposition 2.21 (General case: k-way inner products). Let A : ({ -1 , 1 }d)n ---; ~mk be any J) 2-differentially 
private algorithm for Tk . Let Dr be a database chosen uniformly at random from V and Dr be a database 
chosen uniformly at random from D. Then with probability at least lin, at least one of tr( I:(A(Dr ))) or 
tr (~(A ( DT' ) ) ) is O(min{ 1n~ , nmk/ (log 1nk) }). 

Proof We divide the proof into two cases based on Claim 2.20. Let 0 = 1 m k • 

Case 1: IEDr [I Sk(Dr)l] ~ n / 4. Let E(A(Dr )) = lE [( A(Dr) - Ik (Dr)) (A (Dr) - I d D'r))T]. By definition 
of Sk(Dr), 

L (7rz )TE (A (Dr))(1rz ) = L lE [( A (Dr) - I k(Dr),7rz)2] = O(7n ZISk( Dr)I)· 
ZESk( Dr ) z ESd DT ) 

On the other hand, 

L (7rz) T~ (A (Dr )) (7r z) 
zESdDr ) 

L tr (11' TI: (A (Dr))7rzZ T) = tr (n TI: (A (Dr))7r L zz T) 
z ESd DT ) z ES d Dr ) 

tr (7r TE(A (Dr) )7rmkMk (Dr)) 

< tr (rr TI:(A (Dr )) 7r )mk II Mk( Dr )IICXl 

< tT (~ (A(Dr )) )mk II Mk (Dr)IICXl' 

Let Hk (Dr ) = A1k(Dr) /I Sk(Dr) I. Equating the upper and lower bounds on L zESd Dr) (7r z) TE(A (Dr)) (7rz ) 
we get, 

DCmk ) = tr (E( A (Dr )))IIHk(Dr )ll oo. 

The remaining proof of this case is identical to Proposition 2.17. II Hk (Dr)IICXl = IINh (Dr )lloo/ ISk(Dr )l. 
Lemma 2.19 can be used to bound II Mk(Dr)lloo and by the assumption of this case, lEDr[I Sk(Dr)l] 2': n/4. 
Case 2: Ej)) ISk(Dr) I] ~ n / 4. The proof of thi s case goes as in Case 1. We define, Hk(Dr) = lvh (D7, ) /I Sk (i\.) I, 

and use Lemma 2. I 9 to bound II lYh (Dr ) IICXl' 
Since by Claim 2.20 at least one of the cases hold, we get that with probability at least 1. / n there exists a 

database such that trace of its mean squared error matrix is n (min{m~ , 1~~n;~lc})' 0 
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2.3 Strengthening the Lower Bounds - Getting E into the Bounds 

Let be the privacy parameter. Let Dv E ({-I, 1}d) 2m. Let R (D,u) E ({ - I , l}d )n be a database obtained by 
replicating each row of Dv exactly 1/(2f) times. The first observati on is that Ik( Dv) = Ik( R (Dv )) . 2f. Let A 
be a differentially private algorithm that takes as input databases of size n. Define as follows an algorithm A ' 
that takes as input databases of size 2tn. 

A LGORITH M A' (Dv) 

1. Construct the database R( Dv). 
2. Run algorithm A with input R (Dv), to get A (R (Dv)). 
3. Output 2E' A (R (Dv)). 

Claim 2.22. If A is c-differentially private then A' is 1/2-differentiaLly private. 

Proof Differential privacy composes well. We state the composition claim for the more general (c, b)-differential 
privacy. 

Claim 2.23 (Composition and Post-processing [11 , 31 , 29, 21 D. If a randomized algorithm A runs k algorithms 
A I, ' .. , Ak, where each A i is (til 8i )-differentially private, and outputs afunction of the results (that is, A (z) = 

g (A l (z), A 2 (z), ... , A k (z)) for some probabilistic algorithm g), then A is (2:7=1 ti, eC 2:~=1 6i )-differentially 
private. 

Consider a database Dv E ( { - 1, 1 }d)2m . Consider a neighbor D~ E ({ -1 ,1 }d)2m of Dv . By composition 
property of differential privacy (Claim 2.23), for every output set S 

Pr[A (R (Dv)) E S] -::; exp(1/2) Pr [A(R(D~J ) E S] =? Pr [A'(Dv) E S] -::; exp(1/2) Pr [A' (D~ ) E S]. 

Since the above inequality holds for all neighboring databases Dv and D~, A' is 1/ 2-differentially private. D 

Claim 2.24. There exists a database Dv E ({ - 1, 1}d)2W such that tr(IE [(A'(Dv ) -- 'I/r (Dv))(A' (Dv) -
'Ik(Dv))T J) = n (min{m~ , (enmk)/ logmk}). 

Proof. Since A' is 1/2-differentially private (Claim 2.22), mean s that we can apply Proposition 2.21 to con­
clude that there exists a database Dv of size 2En such that tr (IE[( A ' (Dv) - I d D·v)) (A ' (D·v ) - 'Ik (Dv))T]) = 
n (min{m~ , (t nm'k)/ log m k}). D 

Lenlma 2.25. Let A be any c-differentially private algorithm for I k. Let Du be the database such that 
tr (~ (A' (Dv ))) = n (min{m~ , (cnmk)/ log m k})' Then, 

tr (E(A (R (Dv)))) = n (min{m~/E2, (nm k)/(dogm k)}). 

Proof. We equate tr (lE [( A (R (Dv)) - Ik (R (Dv)))(A (R (Dv)) - Ik( R (Dv)))T]) in terms oftr (IE[(A' (Dv) -
Ik (Dv))(A '( Dv) - 'Ik( Dv))T]). 

tr (lE[( A (R (D·v)) - Ik( R (Dv)))(A (R (Dv)) - Id R (Dv )))T]) 

tr (IE [( A'(Dv) _ Ik( Dv) ) ( AI(Dv) _ Ik( Dv) ) T] ) 
2f 2f 2E 2f 
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The last equality follows from Claim 2.24. o 

Theorem 2.26 (General Case). Let mk = (~) . Any algorithm AJor releasing all k -way inner products that Jor 
every database D E ({- I, l}d )n has an average mean squared error oJmin{o(mk/E 2), o(n/(E logmk) )} for 
A (D ) is not E-differentially private. Also, any algorithm AJor releasing all k-way conjunctions thatJor every 
database D E ({O, l} d)n has an average mean squared error ofmin{o(m k/(2k

f 2)), o(n / (2kE logmk))} for 
A (D ) is not f -differentially private. 

3 Lower Bounds on Noise for Minimal Privacy 

In this section, we introduce a new reconstruction attack based on analyzing the least singular value of random 
correlated matrices. We then use the reconstruction attack to prove lower bounds on noise under the notion of 
strong and attribute non-privacy. Lets first formally define these notions. 

Definition 3.1 (Strongly Non-Private). An algorithm A is strongly non-private if there exists a distribution of 
databases IIJ) over the domain ({O, 1 }d)n under which the rows of the databases are statistically independent 
and there exists a set 8 ~ [n ] with 181 = O(min{n, d} ) satisfying the following properties: 

a. For any (not-necessarily polynomial time) adversary if D rv IIJ), the adversary can output any row of D 
indexed by the elements of S with probability at most 2/ 35; 

b. There exists a polynomial time adversary such that if D '" IIJ), the adversary on input A ( D ) can output 
1 - 0(1) fraction of the rows of D indexed by the elements of S with probability at least 1 - n egl (n ). 

Definition 3.2 (Attribute Non-Privacy). An algorithm A is attribute non-private if there exists a polynomial time 
adversary, a database D E ({O, l}d+l )n, a set S c [d + 1] with lSI = d, and an integer t = O(min{n, d} ) such 
that the adversary on given as input A (D ) and the columns of D indexed by the elements of 5, can reconstruct 
1 - o( 1) fraction oj the first t entries of the missing column. 

3.1 Upper Bounds for (Not) Strong Non-Privacy 

Proposition 3.3 (Strong Non-Privacy upper bound). There exist an algorithmJor releasing all k -way conjunc­
tions (Ck) that is not strongly non-private and thatfor every database D E ({O, l}d )n and for every query in 
Ck (D) with constant probability adds O (min{ ynk log d, y m kk log d} ) noise. 

Proof We call an algorithm not satisfying Definition 3.1 as not strongly non-private. Call a set S ~ [n] good 
if 181 = n (miu{n, d} ). Call a distribution IIJ) good if for every good set S the following is satisfied: if D rv IIJ) 

any (not necessarily polynomial time) adversary can output any row of D indexed by the elements of 8 with 
probability at most 2/ 3. An algorithm A is not strongly non-private if for every good distribution IIJ) and every 
set good S , no polynomial time adversary given as input A (D ) (with D rv IIJ) can reconstruct 1 - 0(1) fraction 
of the rows of D indexed by the elements of S with high probability. We construct two different not strongly 
non-private algorithms for Ck which when put together will give the claimed noise bound. 

Random Sampling. Let IIJ) be a good distribution and let S be a good set. Consider D ~ JI}) . Define an 
algorithm Asam that does the following: (1) randomly selects n/2 rows from D to construct a new database 
Dsam, (2) evaluates all the k-way conjunction predicates on Dsam , and (3) releases the vector 2 . Ck(Dsam ). 
Firstly, A sam is not strongly non-private because for all i E S, any adversary can output the ith row only if: (a) 

5The choice is 2/ 3 is arbitrary. Our results also hold for Jarg r constants. 
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if the i th row is in D sam, or (b) with probability at most 2/ 3 if the ith row is not in Dsam. Since 8 is a good set 
the probability that any adversary can output 1 - o( 1) rows of 8 is neg1igible . 

We now invoke Chernoff bound to argue about the noise. Consider some conjunction predicate Cv E Ck. 
Now for some constants b, b' , 

::; b12~ . m k 

By applying a union bound it follows that the probability that 

Adapting Differential Privacy. We use the fact that for some reasonable values of E and 8 any (E , 8)-differentially 
private algorithm is not strongly non-private . 

Lemma 3.4. Any (E, 8)-differentially private algorithm ( V( E, 5) such that (2/ 3)e f + 5 is bounded away from 1) 
is not strongly non-private. 

Proof Let Ad be an (t , 5)-differentially private algorithm satisfying the conditions of the lemma, we argue 
that Ad is also not strongly non-private. Let lIJ) be a good distribution and S be a good set. Consider D '" lIJ). 

Because of the guarantees of ( E, 8) -differential privacy, given Ad (D ), no adversary (even with unbounded time) 
can predict any row of D indexed by the element of S with probability more than (2 / 3)e€ + 5. Therefore, the 
probability that adversary can reconstruct 1 - o( 1) fraction of the rows of D indexed by the elements of S is 
negligible. D 

The SuLQ mechanism of Blum et al. [4] adds independent noise drawn according to normal distribution 
with mean 0 and standard deviation y'm k 10g(1/5)/E to each entry in Ck (D ). We set E = 0.1 and 5 = 0.1. By 
Lemma 3.4, the SuLQ mechanism for these values of t and 5 is not strongly non-private. A simple analysis of 
the c.d.f. of the normal distribution, shows that for all predicates in Ck with constant probability the noise added 
will be O( y'mk log (2krrl,k ) ). 

Putting Together. Define a new algorithm A that when yin S yIffik outputs A sam( D ), and when y'ffik < yin 
outputs the result of the SuLQ mechanism. It immediately follows that A is not strongly non-private, and has 
the claimed noise bounds. D 

3.2 I-way Conjunctions - Lower Bounds for Strong Non-Privacy 

In the analysis (for simplicity) we restrict our attention to monotone conjunctions. A monotone conjunction 
predicate m 1J : {a, l}d ~ {O, I } for v E {O, l} d is defined as mv(x ) = TIi Xi' Vi , where value of Vi indicates 
whether the variable Xi is present (if Vi = 1) or absent (if Vi = 0). Let M k be the subset of Ck restricted to 
monotone conjunctions. Since M k C Ck. a lower bound for the monotone case automatically implies a lower 
bound for the (non-monotone) general case. 

Reconstruction Attack. Let s = (Sl, ... ,sn) E {O, l }n be some (secret) vector. We show that there exists an 
adversary that can reconstruct 1 - 0(1) fraction of the first min{n , d/2} entries of s if the privacy mechanism 
allows d inner-product queries and adds min{ o( yin), o( Vd) } noise to every response. The analysis uses some 
ideas from a recent attack proposed by Dwork and Yekhanin [15]. 
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Let a = min{d/ 2, n} . Let <I> E {O, l}a be a vector with independent entries taking values 0 and 1 with 
probability 1/ 2. Let g? 1, ... , g?d E {O, l }a be d independent copies of g? Let sla = ( 81 , ... , Sa) be the first a 
entries of s. Define a matrix M of dimension d x a as follows: ith row of Mis <I>i. The attack works as follows: 
for every row r in NI, the adversary asks inner product of r with s la, and receives noisy responses. Consider 
any privacy mechanism A. Let p = A (1tl s la) be the vector of noisy responses generated by A. Now if e is the 
noise vector, then p = M s la + e. Let M = prQ be the singular value decomposition of NI. Define a matrix 
M ' = Q Tr - 1 p T. Given p, the adversary uses M ' to constructs S = (S1 ," . , 5a ) as follows: Si = 1 if the ith 
element in lvI'p ~ 1/ 2, and 0 otherwise. 

Proposition 3.5 (I-way reconstruction attack). Let M be the d x a matrix as defined above. If any algorithm 
add m in { o( Vd) , o( yin) } noise to each entry in M s, then the re exists an adversary that can reconstruct 1-o( 1) 
fraction o/thefirst min{n, d/ 2} entries of s, with probability at least 1 - exp( - cd). 

Proof We break the proof into two cases based on the relationship between d and n . 
Case 1: d ~ 2n. Let d be greater than 2n6. In this case s la = s. Now if e is the noise vector, then p = M s + e. 
Let M = prQ be the singular value decomposition of M. Here, r is a diagonal matrix of singular values of M 
and P and Q are orthogonal matrices. Pis d x d matrix, and Q is an n x n matrix. Now r is a d x n diagonal 
matrix, let r = (~) . Here C is an n x n diagonal matrix of singular values, and 0 is d - n x n zero matrix. We 
use the fonowing theorem of Rudelson and Vershynin to lower bound the least singular value of M. 

Theorem 3.6 (Rudelson and Vershynin [34 D. Let R be a d x n random matrix with d ~ n, whose elements are 
independent copies of mean zero subgaussian random variable 7 with unit variance. Let a1 (R), ... , CJ n (R) be 
the singular values of R in the non-increasing order. Then, for every r > 0, we have 

where "' , T > 0 depend (polynomially) only on the subgaussian moment of the random variable. 

Corollary 3.7. The least singular value of matrix M is n ( Vd) with probability at least 1 - exp( - cd), where c 
is an absolute constant. 

Proof Theorem 3.6 doesn ' t directly apply to matrix M as the entries of M are not centered. However, 1\11 is just 
a rank one perturbation of a random matrix whose entries are centered (M = R + (1/ 2)J , where J is the al1 l 's 
matrix and R is a random centered matrix satisfying the conditions of Theorem 3.6). The proof of Rudelson and 
Vershynin (Theorem 3.6) can be extended to handle matrices that are small perturbations of random centered 
matrices (proof of Theorem 3.10 shows how this can be done). 0 

Define C - 1 = diag (l/a1(M ), ... , l/an (M )). Define n x d matrix r- 1 as (C- 110T ). Now, r- 1r = TIn 
(identity matrix of dimension n x n ). Define a matrix M ' = QTr-1 p T. Given p, the adversary uses lvI' 
to reconstruct s. Since, M 'p = s + lVi'e. Define 5 = (51 ) " " 5n ) as follows: Si = 1 if the ith element in 
Al'p ~ 1/2, and 0 otherwise. We now ague that if an algorithm adds o(fo) noise to each entry in Als, then 
with high probability dH (S, s) = o(n ). 

Now, M 'e = QTr -1pT e and I I lvI'e I I = IIQTr- 1pT ell = 11f-1pT ell (Q is an orthogonal matrix, there­
fore multiplication by it preserves the norm). Now since, Il pT ell = Ilell (p T is an orthogonal matrix) implies 

11M' II ::; Ilr- 1 1l oo llpT ell = 11f-111 oo llell = II C-1 11=l lell· 

Corollary 3.7 implies that with probability at least 1 - exp( - d), IIC-11I oo = O(I/ .Jd). 

6For the proof it is only necessary that d be greater than (1 + ,)n for any constant, > O. 
7 A random variable Z is subgaussian if there exists b > 0 such that Pr [l ZI > a ] ~ 2 exp( -a2 /b2

) for all a > O. 
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Let us condition on the event that the smallest si ngular value of M is D( Vd). Now, 

Now if an algorithm adds o( yin) noi se to each monotone conjunction query then I'lel l = o( vnd), which implies 
that 11M' ell = o( yin). In particular it implies that M ' e cannot have D(n) coordinates with absolute value above 
1/2, therefore dH (S , s) = o(n ). Since, by Corollary 3.7 with probability at least 1 - exp ( - cd) the smallest 
singular value of M is O ( Vd ), therefore, if an algorithm adds o( yin) noise to each entry in 1\;[ s, then with 
probability at least 1 - exp( - cd)', dH (S, s) = o(n). 
Case 2: d < 2n. Let d ::; 2n. We can carry out the same analysis as in the previous case (n gets substituted 
by d/ 2 in the analysis) . So if an algorithm adds o( Vd) noise to each entry in M s, then by using the previous 
mentioned attack the adversary can construct i such that dH (t, i) = o(ltl) = o(d). 0 

Strong Non-Privacy. We construct a database Ds E ({O, l}dr" from s and <1> 1," " <l>d and show that there 
exists an adversary that can reconstruct 1 - o( 1) fraction of the first a rows of D s if given too accurate vector 
M 1(Ds ). We assume that the adversary knows <I> 1 , ... , <Pd. The database Ds E ({O, l}d)n is constructed .as 
follows : (i ,j)th entry of Ds is Si if the ith entry in <1> j = 1, and ° otherwise. Using the following we define a 
distribution over databases to prove our strong non-privacy result (Theorem 3.9). 

Lemma 3.8. Let D s be the database as constructed above. If any algorithm adds min { o( Vd) , o( yin) } noise to 
each entry in Ml (D .s ) (or C1 (Ds )) , then there exists an adversary that can reconstruct 1 - 0(1) fraction of the 
first min { n, d/ 2} rows of D s with probability at least 1 - exp ( -cd). 

Proof From Case 1 of Proposition 3.5, if any algorithm adds o( yin) noise to each entry in M 1 (Ds ) - M s, 
tben the adversary can reconstruct 1 - 0(1) fraction of S (and hence, 1 - 0(1) fraction of the rows of Ds) with 
probability at least 1 - exp( - cd). Similarly from Case 2 of Proposition 3.5, if any algorithm adds o( Vd) noise 
to each entry in M l( Ds ) = M t, then the adversary can reconstruct 1- 0(1) fraction of the first d/ 2 entries of s 
(and hence, 1 -- 0(1 ) fraction of the first d/ 2 rows of Ds) with probability at least 1 - exp( - cd). Putting these 
two statements together concludes the proof of Lemma 3.8. 0 

Theorem 3.9. Any algorithm for releasing aliI -way conjunctions (C1) that for every database D E ({ 0, I} d) n 

adds min{o(fo) , o( vId)} noise to each entry in C1(D ) is strongly non-private. 

Proof Let a = min {n , d / 2}. Let S = {I , 2, ... , a}, be a set of row positions. Let <I> be a random vector from 
{O,l}a. Let q> l, ... , <Pd be d independent copies of <P. We fix these vectors <l>y's for rest of the construction. 
We also assume that these <I> j's are known to the adversary. For a vector s E {O, l} n, let Ds be a database 
constructed as follows: (i, j )th entry in D.s is Si if the ith entry in <I> j = 1, and 0 otherwise. Define a random 
variable (probability distribution) II]) over the set of databases as follows: draw a vector Sr uniformly at random 
from {O, I} n and output D S r ' 

Consider D rv IDl. Let consider some itb row where i E S . Let E be the event that there exists a <1>j uch 
that ith entry in <I> j is 1. Conditioned on event E , an adversary can only predict the ith row of D by guessing 
the ith entry in S r . Since Sr is picked unifomlly at random, this implies that conditioned on E no adversary can 
guess the ith row of D with probability more than 1/ 2. Finally, since PrfE]! = 1/ 2d

, therefore, no adversary 
can guess the ith row of D with probability more than 1/2 + 1/2d ::; 2/ 3. Thus, II) satisfies the fi rst condition 
of Definition 3. 1. 

The attack described in Section 3.2 (Lemma 3.8) shows that there exists a polynomial time adversary that 
can reconstruct 1 - 0(1) fraction of the rows of S when given C1( D ) with min{o(yIn),o(Vd)} noise in each 
entry. Therefore, for II]) , both the conditions of Defini tion 3.1 are satisfied. D 
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3.3 Constant k-way Conjunctions - Lower Bounds for Strong and Attribute Non-Privacy 

The idea is similar to the I-way case. We will assume that k is a constant throughout this section. Let U1 
(ul (l ) , ... , ul(n )), U2 = (u2 (1), . .. , u2 (n )), ... , tik = (uk(l), ... , 'Uk(n)) E IFtn be k vectors . The entry-wise 
product of 'U 1, ... ,Uk is, Ul 0 U2 0 . .. ( ) Uk = (Ul (1) . U2 ( 1) ..... Uk (1), Ul (2) . 'U2 (2) ..... 'Uk (2) , ... , 'U l (n) . 
'U2(n) ..... 'Uk (n )). 

Reconstruction Attack. Let m~ = (dj; 1 ) . Let a = min { n, c' dk / log d} (where cl is the constant from 
Theorem 3.1 0) , Let <PI ,.'" <I>d E {O, I}a be d independent random vectors . Let <Pd+l = la (which is just 
added for ease of analysis). Define a matrix M (k) of dimension m~ x a as follows : rows of M (k) are the entry­

wise product of every set of k vectors from <I> 1, <P2, .. . , <Pd+l . The attack works in the same manner as before: 
for every row T in M (k) the adversary asks the inner product of r with 81a. The crucial difference comes in the 
analysis of the least singular value of M (k), which we bound using the following theorem. 

Theorem 3.10 (Least Singular Value). Let k be a constant. Let dk
-

1 ~ n ~ c'dk 
/ log d, where c' is a constant. 

Let A1(k) be the mk x n matrix as defined above (a = min{n, c'dk / log d} = n ). Let a1(M (k)), ... , CTn (lvI(k)) 
be the least singular values of M (k) in non-decreasing order. Then, there exists a constant Ck < I such that 
Pr [CTn (M (k)) ~ Ckdk / 2] ~ e- cd . 

Proof Outline for k = 2. The complete proof for k = 2 is presented in Section 4. The proof is a development 
of techniques introduced in [25, 26, 33, 34]. The extension to larger constant k follows easily. For k = 2 the 
idea is as follows. Instead of analyzing an(M(k)), we analyze the an(B ), where the rows of the matrix B are 

all the entry-wise products <Pi and <P j, where <Pi E {<PI, ... , <Pd/2} and <I> j E {<Pd/2+1, . . . . <I>d}. Note that, 

an (M (k)) 2: an (B ). In Lemma 4.4, we show that the vectors <P d/ 2+ 1, . . . <Pd are in a certain regular position 
with probability close to l. Then we condition on these rows and obtain a matrix consisting of d/ 2 independent 
groups of rows. Analysis of the behavior of the least singular value of such matrix is the core of the argument. 

One important tool is bounding the small balJ probability, which is the probability that the matrix B maps 
a fixed vector in the unit sphere into a small ball in the space. Instead of obtaining a uniform lower bound for 
II Bx ll , we decompose the sphere in numerous regions, and estimate the probability that II Bx l1 is smal1 for each 
part separately. The regions are defined by compressibility of the vectors. A vector is compressible, if its norm 
is concentrated on a sma]] number of coordinates. For each part we apply the epsilon-net argument especiaJly 
tailored for a certain degree of compressibility. Namely, the region is discretized, by using an epsilon-net for 
a certain epsilon. Then we obtain a uniform lower estimate on the net, using the small ball probability and 
the union bound. This estimate is extended to the whole region by approximation. This method requires a 
careful balance between the small ball probability, and the size of the net. The better the small ball probability 
is, the bigger epsilon-net we can consider, and so the bigger region we can cover. This balance dictates the 
aforementioned decomposition of the sphere. The highly compressible vectors admit a small epsilon-net, and 
can be treated as in [25, 26] . This is done in Lemma 4.12. The rest of the sphere is decomposed into regions 
defined in Lemma 4.1 3, where we use a careful epsilon-net argument to obtain a uniform lower bound for each 
region . Lemmata 4.14 and 4 .15 show that the rest of the sphere can be assembled from these regions. This 
allows to finish the proof by using the union bound . D 

Corollary 3.11. When n = c' dk / log d, the least singular value of 1\Il (k) is O(dk/ 2 ) with probability at least 
1 -- exp ( -cd). 

Proposition 3.12 (k-way reconstruction attack). If any algorithm adds min{ o( vi n / log d), o( vi dk / log d)} 
noise to each entry in M (k) s, then there exists an adversary that can reconstruct 1 - 0(1) f raction of the 
first min {n , dk / log d} entries of s, with probability at least 1 - exp( - cd ). 
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Proof We divide the proof into three cases. Let k 2:: 2. 
Case 1: n ~ d k - 1 . For n < dk - 1 , the proof follows by analyzing the Cases 2 and 3 of this proof with k 
replaced by k - 1. Consider all the entry-wise product of every set of k - 1 vectors from cI>1 , .. - , <I> d . Since 
<Pd+1 = 1 a = F \ M (k) s also contains inner-product of s with all these (k - I )-way entry-wise products . We 
get that if a private algorithm adds o( jnl log d) noise to each entry in M (k) s, then with probability at least 
1 - exp ( - cd), dH (S, s) = o(n). 
Case 2: d k - 1 ~ n ~ c ' d k 1 log d . The analysis is similar to Case 1 of Proposition 3.5. We use Theorem 3.10 
to bound the least singular value of M (k). 

Analogous to Proposition 3.5, we take the inverse M ' of M (k) (defined using the singular value decomposi ­
tion of M (k) , and show that 11 M' ell ~ Ilr-1 1100 Ileli. Let us condition on the event that the least singular value 
of M (k) is n (dk / 2 ). Then, 

11 M' ell = O(llell/dk
/

2
). 

Now if an algorithm adds o( yin) noise to each monotone conjunction query then II e II = o( dk
/ 2 yin) , therefore 

II N1'e ll = o( fo ). So again, M'e cannot have n (n) coordinates with absolute value above 1/ 2, therefore 
dH (S, s) = o(n ) (8 is constructed in the same manner as in Proposition 3.5). Since the least singular value of 
N1(k) is n(d) with probability at least 1 - exp( - cd), therefore if a private algorithm adds o( yTi) noise to each 
entry in J\,f (k )s, then with probability at least 1 - exp( - cd), dH (S, s) = o(n). 
Case 3: c' d k 1 log d < n. Let b = c' dk 1 log d. We can carry out the same analysis as in the previous case for 
this M (k ) (n gets substituted by b in the analysis). Corollary 3. 11 shows that the least singular value of l\!J (k) 

is n (dk / 2 ) with probability at least 1 - exp ( - cd). If an algorithm adds o( j dk 1 log d) noise to each entry in 
Al(k) s, then with probability at least 1 - exp( - cd), the adversary can construct i such that dH (t, i ) = o(l tl) = 
o(lbl). 0 

Remark: Substituting d = 2n in Proposition 3.5 or d = (n log d)l/k in Proposition 3.12 gives new attacks 
for achieving blatant non-privacy. Our attack requires only O(n) queries. The main difference is that the 
Fourier attack of Dwork and Yekhanin is deterministic (there is no failure probability), whereas our attack has 
an exponentially small failure probability. 

Strong Non-Privacy. We construct a database Ds E ({O , 1 }d)n as in Section 3.2: (i : j )th entry of Ds is 
Si if the ith entry in 4> j = 1, and 0 otherwise. The proof of the following lemma follows along the lines of 
Lemma 3.8. 

Lemma 3.13. If any algorithm adds m in{ o( j nl log d), o( j dk 1 log d)} noise to each entry in Mk (Ds ) (or 
Ck (Ds ») , then there exists an adversary that can reconstruct 1 - 0(1) fra ction of the first min{n , dkl logd} 
rows of D s with probability at least 1 - exp( - cd). 

Proof We split the analysis into three cases. 
Case 1: n ~ d k- 1 • M k( D s) = M (k)s. From Case 1 of Proposition 3.12, if any algorithm adds o( j nl log d) 
noise to each entry in M k (D 8 ) , then the adversary can reconstruct 1 - o( 1) fraction of the rows of s (and hence, 
1 - 0(1 ) fraction of the rows of D s) with probability at least 1 - exp ( - cd). 
Case 2: d k - 1 S; n::; c 'dk/log d. Mk (D s) = M (k)s. From Case 2 of Proposition 3.12, if any algorithm adds 
o( yin) noise to each entry in M k (D s), then the adversary can reconstruct 1 - o( 1) fraction of the rows of s 
(and hence, 1 - o( 1) fraction of the rows of D. ) with probability at least 1 - exp( -cd). 
Case 3: c' d k 1 log d < n. Let b = c' dk 1 log d. Since cP j 's are now random vectors from {O I} b, the last n - b 
rows of Ds are Od. Let t C s, be the vector containing the first b positions in s. Then , Mk (Ds) = N!(k)t. 

From Case 3 of Proposition 3.12, if any algorithm adds o( J dk 1 log d) noise to each entry in M k( D s), then the 
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adversary can reconstruct 1 - (1) fraction of the fi rst b entries of s (and hence, 1 - o( 1) fraction of the first b 
row of Ds) with probability at least 1 - exp ( - cd). 

Putting these three cases together concludes the proof of Lemma 3.13. 0 

The proof of the following theorem is identical to Theorem 3.9 with Lemma 3.13 pJaying the role of 
Lemma 3.8. 

Theorem 3.14. Let k be a constant. Any algorithm for releasing all k-way conjunctions (Ck ) that for every 
database D E ({O, l}d )n adds min{o(y'n / 10gd),0(y'dk / logd)} noise to each entry in Ck( D ) is strongly 
non-private. 

Attribute Non-Privacy. We construct a database Da E ({O, l}d-f l )n from s and <PI"'.' <Pd and show that 
there exists an adversary that when given the first d columns of Da can reconstruct a major fraction of the 
last column of Da. We assume that the adversary knows <P I, ... , <Pd. The database Da E ({O, 1 }d+l )n is 
constructed as follows : the first d columns are <Pi, ... , <Pd, and the last column is s. The proof of the following 
theorem relies on the Proposition 3.1 2. 

Theorem 3.1S. Let k be a constant. Any algorithm for releasing all constant k -way conjunctions (Ck ) that for 
every database D E ({O, 1 }d+l )n adds min{ o( yln/ log d), o( yI dk- I / log d)} noise to each entry in Ck (D ) is 
attribute non-private. 

Proof Let Da be a database with <PI, ... , <Pd in its first d columns and s in the last column. Now, Ck (Da ) 

contains all the entries of M (k-I) s. Now consider an algorithm A that releases Ck (Da ) with 

min{ o( yln/ log d), o( J dk - I / log d)} 

noise to each entry. Set t = min{n,dk-I/ logd}. By Proposition 3.12, there exists an adversary that, can 
reconstruct 1 - 0(1) fraction of first t entries of s (first t entries of the last column of Da). 0 

4 Bounding the Least Singular Value 

In this section, we provide the proof of Theorem 3.1 0. Throughout this section C , c, c' , etc. denote absolute 
constants, whose value may change from line to line. The constants in the proof are not optimized . For 'Y E N 
define the function 10gh) by induction. For LV > ° set log(l) N = max(log N, 1). If logh) is defined, then 

10gh +1) N = max(log 10gh ) N , 1). 

We start off by restating Theorem 3.10 in a more generaJ form. Fixing 'Y = 1, gives the previous statement of 
this theorem. We ignore <Pd+1 (as having that only leads to increase in the least singular vaJue). 

Theorem 4.1 (Theorem 3.10 Restated). Let k be a constant. Let d, n , r be natural numbers such that dk - l ::; 

n ::; lO~(~ d · Let mk = ( ~). Let <P E {O, l}n be a vector with independent entries taking values 0 and 1 with 

probability 1/ 2. Let <PI, ... ,<Pd be d independent copies of<P. Let M (k) be a matrix of dimension 7TLk x n whose 
rows are then entry-wise product of eve ry set of k vectors from <P I, ... , <Pd. Then there exists a constant Ck < 1 
(where Ck depends only on k) such that, 

Pr [an (l\([ (k») ::; c'k dk/ 2] ::; e-cd , 

provided d is big enough (d ~ d(k , 'Y )). 
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We now present the full proof for the k = 2 case. The extension to higher k 's is similar. We start off by 
restating Theorem 4.1 for the k = 2 case. 

Theorem 4.2 (Theorem 4.1 for k = 2). Let d, n , , be natural numbers such that d ::; n::; CI((~{2) • Let rn2 = (d2). 
log · d 

Let <I> E {O, l }n be a vector with independent entries taking values 0 and 1 with probability 1/ 2. Let <PI, . .. ,<1>d 
be d independent copies ofi.f? Let M (2) be a matrix of dimension m2 x n whose rows are then entry-wise product 
of eve ry pair of vectors from <1>1,"" <l>d (i.e. , <1>1 8 <1>2, <1>18 <1>3, ... , <1>d-l-G <1> d). Then there exists a constant 
c < 1 such that, 

provided d is big enough (d ~ d(,)). 

Over the next few subsections we prove statements needed for the proof of Theorem 4.2. In Section 4.4, we 
put together all these statements to prove the theorem. The idea is to show that 

Pr [3x E sn-l s.t. 111\1/(2) x II ::; c I d] ::; exp( - cd). 

Notations. The Euclidean sphere centered at origin is denoted by sn-l. For a vector x E IRn, x(i) represents 
the ith entry of the vector. The Euclidean distance from a point p to a subset T is denoted by dist (a, T ). For 
vectors x, y E IRn, y ~ x if each entry in Y is greater than the corresponding entry in x. We will let [x, y] denote 
the set of all vectors z such that x ::; z ::; y. 

Consider a subset T of IRn , and let Q > 0. A a-net of T is a subset N ~ T such that for every x E T one 
has dist (x, N ) ::; a . Throughout this section, we would use the following well-known result about a-nets. 

Proposition 4.3 (Bounding the size of a a -Net [30]). Let T be a subset of sn-l and let Q > 0. Then there 
exists a O!-net ofT of cardinality at most (1 + 2/ a )n. 

4.1 Norm estimates 

Let N be a natural number. Denote by W the set of all N x n matrices V satisfying 

(3) 

for all subsets] C {I, ... , n}. Here V I J denotes the submatrix of V with columns belonging to ]. 

Lemma 4.4. Let V be an N x n random ± 1 matrix (each entry in V is 1 or -1 independently with probability 
1/2). Then, 

Proof Let 3:.: E SN-l, and let y E s n-l rl IRJ. Then, (x, VI JY) is a subgaussian random variable8 of variance 
1. Hence, 

Pr [l(x, VIJy)1 > t] ::; e- ct2 

forany t ~ 1. Let ] C {1 , ... ,n} , 111 = m. Let Nbe a(I/2)-netin S N - 1 , and letPbe a (1/ 2)-netin 
sn- l n I~J . Then 

IIVIJII ::; 4 sup sup (x, VIJY). 
x EN yE P 

8A random variable Z is subgaussian if there exists b > 0 such that Pr[IZI > a] ::; 2 exp( _a2 /b2
) for all a > O. 
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The nets jV and P can be chosen so that INI ::; 6N and IPI ::; 6Tn (by substituting u = 1/ 2 in Proposition 4.3). 
Let c' be another constant. Combining this with the union bound, we get 

Pr[ll V I.] II 2: 4t1 ::; INI . IPI . e -16ct2 ::; exp (- 16ct2 + (m + N ) log G) ::; e - c't
2 

provided that t 2: e (yiN + Jm). Applying the previous inequality with t = tm = yiN + Jffi / log (en /m), 
and taking the union bound, we get 

Pr [V ¢c WI ::::t L Pr[[ IV IJII > 4tmJ ::: :t c;: r e- " ;" 
m = l J :I .]I=m m= l 

::: ; exp (-c (IN + rmJ10g :r + m log: ) ::: e-eN 

For the second inequality we used the fact (~) ::; (en/ m )m. D 

Lemma 4.5. Let A = P 'i ,j ) and AI = ( A~ ,) be two N x n matrices, whose entries are independent random 
variables, taking values 0 and 1 with probability 1/2. Let B = (bk, j ) be the N 2 x n matrix with entries 
bk,j = Ai ,j . A~' , j ' where k = (i - 1)N + i ' for i, i ' E [N ]. Let R be the N 2 x n matrix, all whose entries equal 
1/4. Then, for some constants e, c, 

Pr [IIB - RII 2: e N ] ::; exp( - eN ). 

Proof Set (ji ,j = 2 Ai ,j -1, and e~,j = 2A~ ,j - 1. Then, (j i ,j and (j~ ,j' i = 1, ... , N, j = 1, ... ,n are independent 
± 1 random variables. Let i' = 1, ... , N. Since, Ai,j = ((h ,j + 1) / 2 and A~,j = ( (j~ ,j + 1) / 2, the matrix B can 
be decomposed as 

1 1 1 
B = - B ' + - B " + - B'" + R 

4 4 4 ) 

where the matrices B', B", B m have entries b~ ,j = Bi ,j . (j~ ' ,j ' b%,j = Oi,], b%~j = B~ ' ,j for k = (i - l )N + i', 
respectively. The matrix B" consists of N copies of the N x 11 matrix U with entries (j?,j ' Hence, II B"II = 
vN · IIU II . Since U is a ± 1 random matrix, a (1/ 2)-net argument similar to the one used in Lemma 4.4 yields, 

Pr[IIB" 11 > CN] = Pr[IIUII > CVN] ::; e- cN
. 

A similar inequality holds for the norm of B ill . 
The matrix B ' can be written in a similar fashion : B I = (Ul , ... , UN ) T, where Vi is the N x n matrix with 

entries Ui' ,j = (ji,j . B~, ,j' Hence, 

N 

Pr[IIB'11 > C 1V] ::; Pr[3i s.t. IIUil1 > CVN] ::; L Pr ll lUi l1 > CVN]. 
i=l 

Ui conditioned on e = (Bi,j Ii = 1, . . . , N, j = 1, ... , n) is a ±1 random matrix. We obtain 

Together with the previous inequality this implies (for some constants c, c/) 

The result follows by combining the bounds for the norms of B' , E " , and B 'll . o 
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4.2 Small Ball Probability - Bounds for the Levy concentration function 

Starting from the works of Levy [23], Kolmogorov [22J , and Esseen [16] a number of results in probabili ty 
theory have been concerned with the question of how spread the sums of independent random variables are. 
Levy concentration is a convenient way to quantify the spread of a random variable. 

Definition 4.6. Let p > O. Define the Levy concentration fun ction if a random vector X E }RN by 

£' (X , p) = sup Pr lli X - xii ~ pl· 
xERN 

The Levy concentration function measures small ball probabilities which is the likelihood that the random 
vector .X· enters a small ball in the space. We will use the following standard lemma. 

Lemma 4.7. Let X E JRN be a random vector, and let X I be an independent copy of X . Then, for any p/'O 

Proof Let x E JRn. Then 

(Pr ll iX - xii ::; p])2 = Pr!l lX - xii :S P and II X' - xii :s p] :S Pr lll X - X/ II ::; 2pJ. 

Taking the supremum over x E JRn completes the proof. D 

For t E (0,1 ) and x = (x(I), ... , x(n)) E sn-1 define the vector xlt E JRn by 

xlt (j) = x(j) . X[-t,t] (x(j)), 

where X[- t,t] (x (j» ) is the indicator function that is 1 if -t :S xU) ::; t, and 0 otherwise. Denote 

It(x ) = supp(xlt - xlt/2) = {j E {l , ... , n} I t/2 < Ix(j) 1 :S t }. 

Lemma 4.8. Let CN :S n :S N 2. Let t > 0, and let x E sn-1 be a vector satisfying m := IIt(x)1 2 ct. Let 
U = CUi,)) be any N x n matrix with ±l entries. For j = 1, ... , n let Vj E JR. N be the vector with coordinates 

Vj (i ) = x(j) . Ui,j' Let 1')b ... , Tin be independent ±I random variables. Assume that U E W. Then, 

£. (~ EjVj ) eVN · Ilx ltll ) ::; exp ( - r'li eN) . L- ~ + log en 
J=l m m 

Proof Denote J = sUPp(X12d and I = I t (x). Let 7J~, ... I 7J~ be independent copies of T}l , ... , 1]n. Let 
1') = (171 ,··· 1 T}n ), and ',]' = ( 1}~ , ... , rJ~)· Conditioning on {?]j }jIlJ and applying Lemma 4.7, we obtain for all 
P / 0 

Consider a function F : JR.J - IR, defined by 

F(y) = L Y)Vj 

jEJ 

30 

IVyll ) 



where V is the matrix with columns Vj ,.1 E J . Then F is a convex function with the Lipschitz constant9 

L = !lVII. Note that V = U I] . H, where H is the diagonal matrix: II = diag(xj)j EJ. For lEN denote 
Iz = {j E J I 2- l t < Ix(j)1 S 21

-
lt}. Let Q = {l E N I Iz i- 0}. Then 

L ~ (2: ( 1IUIII II . j~~ Ix(j) I) 2) 1/2 
lE Q 

Since U E W , 

To bound the last expression denote Ql = {j E Q I 1111 ::; Ih I}. Since the function f (x ) = x log( en / x ) 
increases on the interval (0, 2n), 

'"""" en -'>1 2 en '"""" -21 2 2 en ~ II l l ·log -II I ·2 - t ::; Ih l·log-II I' ~ 2 t ::; Ilxltll . 109-II I' 
IEQl I 1 IEQ l 1 

Also, for any l 1:- Q 1, log 17z"1 ::; log 1~7 1 ' so 

'"""" en -21 ') ~ 1111. log T . 2 t- ::; 
IEQ\ Q l I zl ( 

'"""" 21 2) en 2 en ~ 1111· 2- t . log -11 I ::; Ilx ltll . log -II I' 
l EQ\ Q l 1 1 

Combining the previous inequalities, and using t2 . 1111 s Ilxlt 112; we obtain 

2 2 en en 
( ) 

1/2 ( N ) 1/2 
L ::; C Nt + Ilxlt II . log IlJ ::; C IIXlt II· IlJ + log IlJ 

By Talagrand's measure concentratjon theorem for convex functions [36] , 

( cs2) Pr [IF(17I] - r/1 1) - M (F ) I > s] S 2 exp - L2 ' 

where M (F ) is a median of F. This tail estimate implies 

( )
1/ 2 

IMI(F) - IE [p2] I ::; cL. 

Since Ih I = lI t (x ) I ;:::: e', 

9The Lipschitz constant is the smallest value K such that IF(a) .- F (b)1 ::; Klla - 611 for all a, b in the domain of F. 
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if the constant C f is large enough. We conclude that (3/4) . vIE [F2] ::; M(F) ::; VIE[F2]. Hence, 

This inequality and Equation 4 finish the proof. D 

Lemma 4.8 implies the following 

Corollary 4.9. Let t > O. Let x E s n-1 be a vector satisfying IIXltl1 :2: n-2
, and m = II t (x )J 2: clog N. Let 

A' = ( A~ ,) be a {O, 1} matrix of size N x n. For j = 1, ... ) n let Wj E IRN be the vector with coordinates 

wj( i ) = xU ) . A~,j' Set Vi, j = 2A~ ,j - 1, and assume that V = (Vi,]) E W. Let 1]1, . .. , 1]n be independent ±I 
random. variables. Then, with the notation of the previous lemma, 

[, (~ 1]iWj , cVN . !lXltll ) ::; exp ( - N C' N ). ~ .:.- + log en 
~=1 m m 

Proof Note that W j = ~Vj + ~o, where 0 = IN . Hence. 

n In I( n ) 
~ fJjWj = 2 ~ Th W j + 2 ~ 1)) . o. 

Since I L J= l 1]j I ::; n, and 11011 = VN, the vector ~ (2::J=l 1]j ) . d belongs to an interval in JRN oflength nvN. 
Covering this interval by balls of radius cVN . IIXlt ll, we obtain 

The result follows from Lemma 4.8, since II xltll ~ n - 2 , andm = II t(x) 1 ~ clogN. D 

For the next result we need the following simple lemma. 

Lemma 4.10. Let aI , ... , aN be independent non-negative random variables such that Pr[ai ::; I( j ::; p for all 
i E [N ]. Then, 

Pr [t aT -S ~K2 N ] -S (4p)N/2 

I Proof If 2::{: 1 a~ -S ~ K2 N , then ai -S K for at least N / 2 numbers i. D 

Proposition 4.11 (Small Ball Probability). Let A = (Ai ,]) and A' = ( A~ ,j ) be two N x n matrices, whose 
I entries are independent random variables, taking values 0 and 1 with probability 1/2. Let B = (bk,J ) be the 
N 2 x n matrix with entries bk,j = Ai,j . A~/,j' where k = i(N - 1) + i ' (obtained from Lemma 4.5). Let V be 
the N x n matrix with entries Vi,j = 2),~,j - 1. 

32 



Let t> 0, and let x E sn-l beavectorsatisfying Ilx ltll2=: n-2, andm = II t(x) 1 ~ e logN. Then 

D. . ( eN
2 

) L (Bx , eN · Ilxltll and V E W) = sup Pr [(IIBx - yll s elV'llxlt ll) and (V E W )] S exp - N en ' 

Y E Jre N 2 m + log m 

Proof Let X and Y be random variables. Then, for any measurable sets [, F 

Pr [X E £ and Y E F ] = ~ ( Pr [X E [ l YE F] . XF(Y ) ) 

S sup Pr [X E [; lYE F J, 
Y EF 

where XF(Y) is the indicator random variable which is 1 if Y E F , and 0 otherwise. Hence, 

L (Bx, eN . Il xltll and V E W) S sup L1\ (Bx, eN . Ilxltll I V ) . 
VEW 

Here £1\ is the Levy concentration function with respect to the random entries of A, while the matrix A' (and 
so V E W ) is fixed. For j = 1, ... , n denote by Wj the vector in JR N with coordinates wj (i) = x U) . A~ ,j' 

Decompose ffi. N2 = EB~l E i , where Ei = span(e(i-l)N+l, ... , eiN ) (where EB represents direct sum and ea 

is the vector with a 1 in position a and O's everywhere else). Then, for any i = 1, . . . , N , the projection of the 
vector Bx E ffi. N2 on the subspace Ei is distributed like 

Fix i, and denote 1]j = 2Ai ,j - 1. Then, 

n 

X i := L Ai ,) W ). 

j=l 

where the last term doesn't depend on the random variables 1]1 , ... , 1]n . Hence, by Corollary 4.9, 

£ (.Xi' 2cVN· !lx ltll) = L ('"' Ej W j , eVN . Ilx ltll) S exp - N . n ( d N ) 
L _ + log en 
)=1 m m 

By definition, 

Since the random variables IIXi - Yi ll are independent, the proposition follows from Lemma 4.10. 0 

4.3 Decomposition of the sphere 

To prove the main reSUlt, we wil1 decompose the sphere into several regions, and treat them by applying different 
modifications of the epsilon-net argument. The regions will be defined by the degree of compressibility of the 
vectors. We say that a vector is compressible, if it can be approximated by another vector having a relatively 
sma]] support. The idea of classifying vectors according to their compressibility comes from [33, 34]. But 
unlike [33, 34], where the vectors were divided simply into compressible and incompressible, we use here a more 
elaborate scheme. In the following subsection we investigate vectors with different levels of compressibility. 
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4.3.1 Highly compressible vectors 

Lemma 4.12. Let So be the set of all points x E sn-l, which can be decomposed as x = y + z, where 

N 
Isupp(Y) 1 ::; cO l /N ' ogn 

liz II ::; Po 

for some appropriately chosen constants Co, Po. Let A, A' , B be as in Lemma 4.5. Then 

Pr[3x E So S.t. II Bx l1 ::; eN ] ::; exp( - c' N ). 

Proof Denote U = A - 2R. Then 2U is an N x n random ± l matrix with independent entries. Then, for any 
x E sn-l , 2U.,£ E }RN is a vector with independent coordinates of variance l. Hence, 

(4) 

Also, 
P r lllUl1 2: G1 VN] ::; e- cn

. 

Let P : ]RN -'t }RN be the orthogonal projection, whose kernel is spanned by the vector 0 = IN . Then the 
previous inequality implies 

P r [II PAII ? G1 VN] = P r [II P U II 2: C1 VN] ::; e-cn
. 

Let Q : }RN2 -'t }RN2 be the block-diagonal matrix Q = diag(P , ... , P). Then II QB II ::; VN · II PAII , so 

Pr [II QB II 2: GI N ] ::; e-cn
. 

Let H = vn ' [- 0, oj, and let Yl, .. ·, Yf. E H be a (cl/2)VN-net in H. Here 

1 
f! < ri\T ' 

- fo( e1/ 2)v N 

By (4) , for any x E sn-l 

Pr[IIP Ax ll::; (cl / 2)VNJ::; Pr [dist (Ux,H)::; (cl/2)VNJ 

::; Pr [3i ::; f. s. t. d ist ( U x , Yi) ::; C1 vN] 

::; f! . £ (U X, Cl vN) ::; e-c' N . 

(5) 

For any i E {I , . . . , N} let Xi be the vector with coordinates J.: i(j) = A~,j . x (j) . Denote by PrA and 

PrA' the probability with respect to the entries of A and A' , respectively. By the PaJey- Zygmund inequalitylO 
PrA' [[I xi" ::; ~] ::; J1 for some absolute constants K" f-L < 1. Let 1/ 2 < T < 1 and let n be the event that 
II Xi " ::; K, for at least TN indices i. Then 

N . 

Pr[O] ~ L G) llyN 

k=IT Nl 

(6) 

~ N exp ( N . ( ( 1 - T) . log 1 ~ T - T . log ~) ) ~ e - eN , 

IO Paley- Zygmund inequality states for a random vari able Z that Pr[ IZ I 2': a] 2': (JE [Z2] - a)2/ lE [Z 4]. 
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jf the constant T is appropriately chosen. 
Let Co be a constant to be chosen later. Let SIT be the set of aU matrices A' that don't satisfy n. We get 

Pr [II QBx ll :S CoN ]:S sup Pr [IIQBx ll :S CoN I AI] + Pr [n ]. 
A' ESIT A 

(7) 

2 
The vector Bx E Jl{N consists of N blocks of the foml A:r:i. Hence, 

N 

II QBx l12 = 2: II PAxi I12 . 

i = l 

For A' E SIT, there exists a set I C {I , . . . , N } such that II I 2: (1 - T) N and Ilxill 2: K for all i E I. Assuming 

that II PAxi l1 2: (cl/2)VN . Ilxill for all i E I, we get 

II QBx l1 2: (cl/2)VN . t ;; · )(1 - T) N =: CoN. 

Therefore, for A' E SIT' 

~r [II QBxlI :S Co N I A'] :S ~r [3i E III S. t. II PAxili :S (cI/2)VN . Ilxilil A'] 

:S II I . e- cN :S e- c' N . 

Combining this with (6) and (7), we get that for any x E sn- I 

Pr [IIQB.TII :S CoN } :S e- cN
. 

The proof now finishes by another application of the epsilon-net argument. By the volumetric eSlimate (cf. 
Proposition 4.3), there exists a po-net N in the set {y E s n-I I Isupp(y) I :S m} of cardinality 

The last inequality follows by using (~) :S (en/ m )m. Then, 

Pr [3x E N S.t. II QBxll :S CoN ] :S INI · e - d N :S e -c" N 

if m :S caN/ log(n / N ) for some constant Co. Assume that for any x E N II QBxl1 2: Co~N. Let x' E So, and 
choose x E N such that Il x' - xII < 2po. Then the inequality (5) implies 

IIBx' ll 2: II QBx'll 2: IIQBxll - IIQBII·llx' -xii 
2: CoN - GIN· 2po 2: Co/ 2 . N 

for an appropriately chosen Po. 

4.3.2 Remaining Part of the Unit Sphere 

o 

We start with deriving a uniform lower estimate of IIBxl1 over a certain part of the sphere. To this end we 
combine the bound of Proposition 4.11 with the epsilon-net argument. 
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Lemma 4.13. Let l , m E N be such that l , m ::; n , and let b, r , t E (0, 1). Consider the set 8 (l , b, m" t) of all 
points x E s n -l, w hich satisfy !lx lt ll 2:' b, IIt(x) 1 2:' m, and can be decomposed as x = l/, + v, where 

Assume that 

Isupp(u)I ::; l, 

m 2: ClogN; 

en eoN 2 
llog- < ----. 

l b - !i + log en 
m m 

Let Band R be the matrices defined in Lemma 4.5. Then, 

( 
eN2 ) Pr [3x E 8 (l, b, m, t) s.t. II Bx ll ::; eNb, li B - RII ::; C N, and V E Wj ::; exp - N . 

Tn + log: 

(8) 

(9) 

Proof By the standard volumetric estimate (cf. Proposition 4.3), there exists a Cl b-net for the set {u E sn-l I 
Isupp(u)j :s; l } of cardinality Jess than 

Any such net is a (2c1b)-net for S (l , b, m , t). Hence, there exists a (4c1b)-net N C 8 (l , b, nt" t) satisfying 

( en) IN I ::; exp l log lb . 

Denote A = [- h, hl , where h = (vn, ... , fo) E IRn. Denote 

and let Yl, . . . , YT E A be a T-net in A. Here. 

Let x E N. By Proposition 4.11, 

T = (c/ 2)Nb , 

T < 2n . 
- T 

Pr[dist (Bx, A) ::; T and V E W] ::; P.r [3j ::; T S.t. 

Thus (9) implies that 

(1 0) 

( 
e' N

2
) (en e' N

2 
) Pr [:3x E N S.t. dist (Bx, A ) ::; T and V E W] ::; INI . exp - --N--- - :s; exp llog -z - N ' 

Tn + log ~ r Tn + log : 

( 
(c' / 2)1V2 ) < exp - , 

- Ii + log en 
m m 

(1) 

if we choose Co = c' / 2. Assume now that the fol1owing events hoJd . 
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• 3£ E S(l,b,m, t) such that IIBi l1 < T/ 2; 

• V E W; 

• liB - RII ~ e N. 

Let x E N be such that Ilx - xii ~ 4c1b. Then 

dist (Bx , A ) = dist (( B - R )x , A) 

~ dist((B - R )i, A) + II(B - R )(x - x)11 
::; dist(Bx, A) + liB - RII . Il x - xii 
< T / 2 + eN· 4Cl b ::; T 1 

where the last inequality follows from (10) and an appropriate choice of the constant Cl. Therefore t 

Pr [3x E S (l, b, m, t) S.t. IIBi l1 ::; cNb, liB - RII ::; eN, and V E W] 
~ Pr [3x E N s.t. dist (Bx , A) ~ T and V E W] 

( 
(c' / 2)N 2 

) < exp - . 
- !i + log en 

m m 

. The last step follows from Equation] 1. This completes the proof of the lemma. 

Lemma 4.13 allows to prove the uniform bound for bigger sets of vectors. 

Lemma 4.14. Let b, t < 1 be real numbers satisfying 

b 
C lo D' N < - < n 1/2. 

b - t -

D 

Let '{l (l, b, t ) be the set of all points x E sn-l, such that II x I til 2: b, and which can be decomposed as x = y + Z, 

where 

and l satisfies 

Isupp(y)1 ~ l , Ilzll ~ (cl / 2)b 

l lo . cn < cON
2 

g lb - C~ 19 + 2) log 19 , 

nt2 

where 13 = f}2 ' 

Let A, A' , B be as in Lemma 4.5. Then 

Pr [3 x E V (l , b, t ) S.t. IIBxl1 ~ cNb, liB - RII ~ C N, and V E W ] ~ exp (- cf-l) . 

(12) 

Proof Let x = y + z be a decomposition as above. Set T = (cr/2)bn - 1/ 2 (where Cl is defined in 4 .13). 
Decompose a vector y according to the sizes of its coordinates: y = u + v + 'W, where w = y lT, V = y lt - w, 
and U = Y - y lt. Then II wll ::; T,,/n ::; cl/2b. Thus, x = (u + v) + (w + z), where Isupp(u + v) 1 ::; l, and 
!I w + zll ::; c1b. Furthermore, decompose the coordinates of v in dyadic blocks: 

11 

V = L v r ) where Vr = yl 2- r t - yI 2- r - 1t· 

1=0 
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Here Tl is the smallest number such that 2- q t ::; T, so 

(nt2 ) 
Tl ::; e log [;2 . 

Since 
rl 

b2/2 ::; IIYlt - YITI12 = L II vr l1 2 , 
r=O 

it can be easily shown that there exists T ::; Tl such that Il yl2-rtll 2:: b/2, and IIvr l1 2 2:: b2 / 4Tl . Indeed, let 
2 2 ro < Tl be the biggest number such that Il yl2-rOt II 2:: b/2. Assume that Ilvr II < b 14rl for all r ::; ro. Then 

l:~~o Ilvr 112 < b2 I 4, and so 
rl 

Il yb-ro- 1 tI1 2 2:: L IIvr l1 2 2:: b
2
/4 , 

which contradicts the maximality of ro. 
Therefore, this r satisfies 

For this definition of m, 

r=ro+l 

en 
log - ::; 2 log '!9 , 

m 

and so the inequality (1 2) implies condition (9). Since bit ~ C log N , the condition (8) is also satisfied. In the 
notation of Lemma 4.13 this means that x E S(l, b/2 , m , 2- r t ). Thus, we have shown that 

rl 

V (l , b, t) c U S(l , b/2, m , 2- r t). 
r=O 

Thus by Lemma 4.13, 

Pr[:3x E V (l ,b, t ) S.t. IIBx ll::; cNR liB - RII ::; C N, and V E W] ::; Tl . exp ( _---:-c
N

:---CN_
2

_ ) - + log en 
m m 

:c; exp ( - ( ~~ :~)210g19 ) . 

Since by the assumptions of the Lemma, '!9 ::; cnl log2 N the last quantity does not exceed e- cN . 

We now provide a uniform estimate for the II Exl1 over x E sn-1 \ So. 

Lemma 4.15. Assume that 
eN 2 

n < ( ) . - (log 'Y N )2 

Let A, A', B be as in Lemma 4.5. If N 2:: N ( 1'), then 

PI' [3x E s n- 1 \ S o S.t. II Bxl1 ::; c'Y N , li B - RII ::; C N , and V E W] ::; exp (-eN) . 
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Proof We define the numbers to < II < . .. < l"( by induction. Set 

Io = co N 
log n / N 

For 1 ::; j ::; 'Y set bj = Po . (cl/2)J- l, and tj = ~. Remember, that Po is a constant from Lemma 4.]2, 
and Cl is a constant from Lemma 4.1 3. 

Also, define sets S'J by 
j-l 

Sj := (s n-l \ So) \ U V (li' bi , t i). 
i=O 

We claim that any x E S'j satisfies Ixltj II 2: bj . Indeed, assume that llx ltj II < bj . Since x rJ- So, 
Il xltIl1 2: b1 = Po· Hence, there exists i ::; j such that IIXlti-I II 2: bi- 1, while II xlti II ::; bi = (cl / 2)bi-1. Any 
x E sn-l satisfies Isupp(x - xk) 1 ::; (";2 = li-l, so X E V (li-l, bi-l, ti-l). 

The numbers l j will be chosen so that 

Pr [3 x E Sj n V (ljl bj , tj) S. t. II Ex l1 ::; cNbj liB - RII ::; C N, and V E Wj ::; exp (-elv) 

for any j E {I , ... , f }. Set 
cN2 

h =--. 
10g3 N 

then l = h satisfies condition (12) with t = tl and b = b1. By Lemma 4.14, the inequality (13) is satisfied. 
nt2 

Let j > 1, and assume that l j-l is already constructed. Set 19 j = fl. Then for any 1 ::; j ::; 'Y 
J 

1\ 19 j Nti C log3 N 
- -<-< . <l. 

n - bJ - N Po(ct / 2)J-l - . 

provided that N > N ( 'Y ) . If 

then 
en c log2 '!9 j 

log -Z b ::; log ( / ) . - 1 ::; log '!9 j , 
j j Po Cl 2 J 

whenever N > N ('Y) for some appropriately chosen N ('Y). Thus, condition (12) is satisfied. Again, in this case 
Lemma 4.14 implies (13). 

Note that by construction lj 2: lO/f'!~) N for any j > 1. Thus the claim of the lemma follows by summing 

up inequalities (13) over j = 1, ... ,f, D 

4.4 Proof of the Theorem 4.1 

Assume that 

Then 
cN2 

n< . 
- 100'("(+1) N 

b 
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Set N = ld/2J, and let A and A' be matri ces whose rows are the vectors <1>1"'" <I>N and <PN+l, "" <Pd, 
respectively. Form the matrix B , as in Lemma 4.5 . Then O"n( A1(2») 2: O"n( B ) (as B is constructed out of a 
subset of rows of M (2». We have, 

Pr [O"n (M (2») ~ cl'+l N]·~ Pr [3x E s n-l S.t II Bxl 1 ~ c '"y+ 1 N] 

~ Pr [3x E s n -l II Bx l1 ~ cl' + l N , li B - RII :s; CN, and V E W] + P r [liB - RII > CN ] + Pr [V 1- W]. 

The last inequality uses the fact that for any events E 1 , E2 , E3 , Pr [E l ] ~ Pr [El and E2 and E31 + Pr[E2] + 
Pr [E3]. The proof finishes by combining Lemmas 4.4, 4.5, 4.1 2, and 4 .15. These lemmas bound each of the 
probability term on the right hand side to exp ( - cd) (for some absolute constant c). D 
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A Lower Bounds for Instance-Independent Additive Case 

l~way inner products. Let A be an algorithm that adds instance-independent additive noise. Let Z E }Rd be the 
additive noise distribution. The covariance matrix 11 , L; (A (D )) = lE[(A (D ) - JE [A (D )]) (A (D ) - JE[A(D)]) T j, 

is independent of D (i.e., VD, :E(A (D)) = ~ = IE[( Z - E[Z ])(Z - E [Z ])T]). The proof of the fonowing 
lemma i identical Lemma 2.1. 

Lemma A.I. Let A be any c-differentially private algorithm for II that adds instance-independent additive 
noise. Let A (D ) = h,d(D) + Z. Let A(D ) ~( A (D' ) = A (D ) + I::!. for some vector ~ E { -2, 2}d. Then, 

IE[ (A (D) - IE [A (D )], ~)2l = JE[ (A (D' ) - IE [A (D' )), ~)2 l = JE! (Z - E [Z ])(Z - E [Z]) T] = f2(d2/c2 ). 

The rest of the proof follows as in Section 2. 1. 1. We get the fol1owing result. 

Proposition A.2 (Instance-independent additive case: I-way inner products). Let A : ({ - 1, l}d )n ----- ]Rd be any 
f. -differentially private algorithm for II that adds instance-independent additive noise. Let D be any database 
which has at least a row of both - 1 d and 1 d. Then, t r (L: (A (D ))) = D( d2 / c2 ) . 

k~way inner products. The analysis is same as for unbiased case which is explained in Section 2.1.2. We get 
the following results. 

Lemma A.3. Let A be any c-differentially private algorithm for Ik that adds instance-independent additive 
noise. Let Dc, D~, fj be the databases in Section 2.1 .2. Let Z = IdD~ ) - I k( D ) and 1f = llm k - 00 T / (0,0). 
Then, JE[(A (Dc) - lE [A (Dc)],1fz)2] = D((1fz,1fz? /c 2 ). 

Proposition A.4 (Instance-independent additive case: k-way inner products over { - 1,1 }ti ). Let A : { - l,l} d ----­
Ittmk be any E.-differentially private algorithmfor Ik that adds instance-independent additive noise. Let D c = 1 d. 

Then, t -r(~ (A (Dc))) = O(mk/c2). 

Theorem A.S (Instance-independent additive case). Let mk = (~). Any algorithm A for releaSing all k -way 
inner products that adds instance-independent additive noise and thatfor every database D E ( { - 1, 1 }d )n has 
an average variance ofo(m k/ c2) fo r A (D ) is not E-differentially private. Also, any algorithm Afar releasing all 
k -way conjunctions that adds instance-independent additive noise and that for every database D E ({O, l} d)n 
has an average variance of o(mk/ (2kE2 )) for A (D ) is not t -differentialiy private. 

II AJ] our results for instance-independent case also hold if we replace the covariance matrix, by mean squared error malrix 
L:(A(D )) = IE [(A (D ) - I I (D ))(A(D ) - Ii ( 0 )) T] = E [ZZTJ . 
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B Going From Inner Products to Conjunctions 

Let D± be a database from ({ -1 , l}d)n. Let the Boolean variables Yl, . . . , Yd represent the d columns of D± 
(i.e., column i in D± contains assignments to variable Yi ). Define variables Xl, ... , X d as X i = (Yi + 1) / 2. 
Construct Do E ({O, 1 }d )n from D± by replacing all the - l's by O's. The variables X l , ... , Xd represent the d 
columns of Do. 

Let us set k = 2, and look at all the 4 possible conjunctions on two variables Xi and X2. The conjunction 
predicates on X l , X2 and the inner product predicates on Yi , Yj can be related using a Hadamard matrix as, 

( n ) C 1 1 
1 ) ex,", (Do) ) iYj (D±) _ 1 -1 1 -1 Ci; ,iXJ( Do) 

iYiYj (D±) - 1 1 - 1 -1 CXiX2 (Do) 
(13) 

iYi (D±) 1 -1 -1 1 cXlxj (Do) , , , "" 
, 

'" '" '" U H V 

Therefore, IIUII = II HV II , or IIUII = 211 VII· 
Now consider the vectors, I 2(D±) (= 2-way inner product predicates evaluated on D±) , I I (D±) (= I-way 

inner product predicates evaluated on D±), and 'Io (D±) = (n ), and let L<2 (D±) be a concatenation of these 
three vectors . By an extension of Equation 13, it can be shown that 

where diag (H , ... , H ) is a block diagonal matrix and II is a suitable projection matrix . Therefore, 

In general, for higher k' s, II Ik (D±)!1 :=; 2k/21I Ck (Do)ll. The following proposition and coronary follow imme­
diately. 

Proposition B.l. If there exists an algorithm A for Ck that has tr (~ (A(Do))) ~ T, then there exists an 
algorithm B for Lk that has tr ('E (8 (D ±))) :=; 2k/2T. 

Corollary B.2. If there exists a database D E ( { -1, 1 }d )n such that no algorithm 8 for Ik has tr ('E (8 (D ))) :s; 
T, then there exists a database D* E ({O, 1 }d)n such that no algorithm Afor Ck has t r( 'E(A (D* ))) :=; T / 2k/2. 

C Extension to (E, b)-differential Privacy 

Our results extend to (f, 6) -differentia1 privacy. LetS start by formally defining (f, 6)-differential privacy. 

Definition C.l ( (f, 6)-differential privacy [13]). Let 6 = 6(n) be a negligible function ofn. A randomized 
algorithm A is (E, 6)-differentially private iffO,. all neighboring databases D , D ', andfor all sets S ofpossible 
outputs Pr[A (D ) E S] :s; exp (t ) . Pr [A (D' ) E S] + 6. The probability is taken over the random coins of the 
algorithm A . 

Let X and Y be random variables taking values in a set O . We use X ~(t,5) Y to indicate that random 
variables X and Y are (E, b)-indistinguishable, j .e., 

\IS ~ 0, exp( -E) . Pr [Y E S] - 6 :=; Pr [X E S ] :s; exp(E) . Pr [Y E S ] + 6. 
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C.I Lower Bounds for Instance-Independent Additive (E, b)-differential Privacy 

If A is an (t, b)-differentially private algorithm that adds instance-independent additive noise then there is an 
easy extension of Theorem A.S. 

Theorem C.2 (Instance-Independent Additive Noise: Extension of Theorem A.S). Let m k = (~). Anyalgo­
rithm Afor releasing all k -way inner products that adds instance-independent additive noise and that for every 
database D E ({ - 1, l} d)n has an average variance of o(m k(l - 5)2 / f.2) for A(D) is not (E, 5)-differentially 
private. Also, any algorithm A for releasing all k -way conjunctions that adds instance-independent additive 
noise and that for every database D E ({O, 1 }dt" has an average variance of o(m k(l - 5)2/ (2kf.2 )) for A (D ) 
is not (E , 8)-differentially private. 

C.2 Lower Bounds for Unbiased (E, b)-differential Privacy 

Unlike the instance-independent additive noise case, there is no extension of the lower bound in Theorem 2.9 to 
( E, 8) -differential privacy. In fact, we now show that any (E, 5) -differential privacy mechanism can be converted 
into an unbiased (E , b)-differential privacy mechanisms with a little more noise. We analyze lower bounds for 
general (E , b)-differential privacy mechanisms in the next subsection. 

Lemma C.3. Let F be any function class. Let A be any (E, 5) -differential privacy mechanism for F, there exists 
an unbiased (E , 25)-differential privacy mechanism B for F such that for all databases D, tr(~(B(D) )) ::; 
tr (E (A (D) )) + (I F in 2 ) /6. 

Proof Define B as follows: 

{ 
A (D) 

B(D ) = F(D)-(l-/) IE [A (D )] 
with probability 1 - b, 

with probability 5. 

B is unbiased because for all D, IE[B(D )] = F (D). Since, A is (E, o)-differentially private, B is (E,28 )­
differentially private. 

Let m = IFI. Let F (D ) = (fr (D ), ... , f m(D )). Similarly, let A(D) = (AdD), ... , Am (D )) and 
B(D) = (B1(D), ... , Bm (D )). Then, for every j E [m), IE[( B j (D ) - fj( D )?] can be bounded as, 

IE[(Bj(D) ~ !j (D ))2] = (1 ~ 6) lE[( Aj(D) ~ jj(D ))2] + <5 ( ! , (D) ~ (1 ~ 6) lE [A j (D )] ~ !J (D)) 2 

(1 - 6) lE [( A j (D ) _ fj( D ))2] + (1 - 5)2(fj(D~ - lE [A J (D )])2 

< IE [( A j(D ) - f j( D ))2] + n 2 /5. 

The last inequality follows because 0 ::; f j( D ) ::; nand 0 ::; IE[A j (D )] ::; n. Therefore, 

m m 

j=l j = l 

o 
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C.3 Lower Bounds for General (E, o)-differential Privacy 

We state the extensions of the statements in Section 2.2 to (£, b) -differential privacy. Let us first consider I-way 
inner products (Il ). 

Lemma C.4 (Extension of Lemma 2.10). Let A be any (1/2, b)-differentially private algorithm for II . Let 
A (D ) ~(1/2,o) A (D' ). Let I I (D ' ) = Ll( D ) + ~for some ~ E {- 2, 2} d. Then at least one of lE [( A (D ) -
I 1 (D ), ~)2l or IE [(A (D' ) - I 1 (D' ): ~?l is D(d2 (1 - b) 2). 

Proof As in Lemma 2.1 0 we set X = (A (D ) - I 1(D ), ~) , Y = (A (D' ) - I 1(D' ), ~) . and a = ~ T ~ = din 
Lemma 2.11. 0 

Using Lemma C.4 instead of Lemma 2.10 in the pr of of Proposition 2.17 we get the fol1owing result. 

Proposition C.S (Extension of Proposition 2.17). Let A : ({- I , l}d)n ----+ }Rd be any (1/2, 6) -differentially 
private algorithm for I I. Then. with probability at least l /n over D chosen uniformly at random from V , 
tr (E(A(D))) = O(min{d2 (1 - 8)2,nd(1 - b) 2/ log d} ). 

Even for higher way inner products, the extension is easy. Let E(A (D )) = IE[(A (D ) -- Lk (D»)(A (D) -
Lk(D» T]. Using the same framework as in Section 2.2.2 we get. 

Lemma C.6 (Extension of Lemma 2.18). Let A be any (1/2, 6)-differentially private algorithm for Tk . Let 
A(D ) ~(1/2,5) A (D' ). Let I Ic (D') = Lk(D ) + Z for some i E supp(zr ) and Z = 0 - Z. Then, at least one of 
IE[ (A (D ) - Ik (D ), 7fz) 2] or lE [ (7rZ, A (D ') - Lk(D ') )2] is !1( (IT Z, 7rz )2 (1 - 6)2). 

Using this lemma, Proposition 2.21 can be extended a follows. 

Proposition C.7 (Extension of Proposition 2.21). Let A : ({ -1, 1 }d )n ----+ IRIDk be any (1/ 2, a) -differentially 
private algorithm for Lk. Let D r be a database chosen uniformly at random from V and Dr be a database 
chosen uniformly at random from D. Then with probability at least l/n, at least one of tr ('E (A (D r))) or 
tr (E (A (D r )) is o (min{m% (1 - b)2, nmk (1 - 6) 2/ logmk}). 

By using the trick described in Section 2.3 we can introduce E into the lower bound. The algorithm A' will 
be (1/ 2, (eE6)/( 2E» -differentially private (using Claim 2.23). For sman t , ef 6/( 2E) ~ 5. 

Theorem C.8 (Extension of Theorem 2.26). Let m k = (%) . Any algorithm A for releasing all k-way inner 
products that for every database D E ({ - 1, I} dt has an average mean squ.ared error of 

for A (D ) is not ( 1 b)-differentially private. Also, any algorithm Afor releasing all k-way conjunctions that f or 
every database D E ({O l}d )n has an average mean squared error of 

for A (D ) is not (E ) b)-differentially private. 
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