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The Price of Privately Releasing Contingency Tables, and
the Spectra of Random Matrices with Correlated Rows

Shiva Kasiviswanathan* Mark Rudelson' Adam Smith?

Abstract

Contingency tables are the method of choice of government agencies for releasing statistical summaries
of categorical data. In this paper, we consider lower bounds on how much distortion (noise) is necessary in
these tables to provide privacy guarantees when the data being summarized is sensitive. We extend a line of
recent work on lower bounds on noise for private data analysis [10, 13, 14, 15] to a natural and important
class of functionalities. Our investigation also leads to new results on the spectra of random matrices with
correlated rows.

Consider a database D consisting of n rows (one per individual), each row comprising d binary attributes.
For any subset of T attributes of size |T'| = k, the marginal table for 7" has 2k entries; each entry counts how
many times in the database a particular setting of these attributes occurs. Imagine an agency that wishes to
release all ({) contingency tables for a given database.

For constant k, previous work showed that distortion O(min{n, (n2d)'/3,v/d*}) is sufficient for satis-
fying differential privacy, a rigorous definition of privacy that has received extensive recent study. Our main
contributions are: '

e For e- and (e, §)-differential privacy (with e constant and § = 1/poly(n)), we give a lower bound
of O(min{\/n, Vd*}), which is tight for n. = €3(d¥). Moreover, for a natural and popular class of
mechanisms based on additive noise, our bound can be strengthened to Q(\/EE ), which is tight for all
n. Our bounds extend even to non-constant &, losing roughly a factor of V2k compared to the best
known upper bounds for large n.

¢ We give efficient polynomial time attacks which allow an adversary to reconstruct sensitive information
given insufficiently perturbed contingency table releases. For constant k, we obtain a lower bound of
Q(min{+/7, V/d*}) that applies to a large class of privacy notions, including K -anonymity (along with
its variants) and differential privacy. In contrast to our bounds for differential privacy, this bound (a) is
shown only for constant k, but (b) is tight for all values of n when k is constant.

e Our reconstruction-based attacks require a new lower bound on the least singular values of random
matrices with correlated rows. For a constant k, consider a matrix M with ({) rows which are formed
by taking all possible k-way entry-wise products of an underlying set of d random vectors. We show
that even for nearly square matrices with d*/ log d columns, the least singular value is Q(v/d*) with
high probability— asymptotically, the same bound as one gets for a matrix with independent rows. The
proof requires several new ideas for analyzing random matrices and could be of independent interest.

*CCS-3, Los Alamos National Laboratories, kasivisw @gmail.com.
TDepanmenl of Mathematics, University of Missouri, rudelson @math.missouri.edu.
tDepartment of Computer Science and Engineering, Pennsylvania State University, asmith@cse.psu.edu.



1 Introduction

The goal of private data analysis is to provide global, statistical properties of a data set of sensitive information
while protecting the privacy of the individuals whose records the data set contains. There is a vast body of
work on this problem in statistics and computer science. However, until recently, most schemes proposed in the
literature lacked rigor: typically, the schemes had either no formal privacy guarantees or ensured security only
against a specific suite of attacks.

The seminal results of Dinur and Nissim [10] and Dinur, Dwork and Nissim [9] initiated a rigorous study
of the tradeoff between privacy and utility. The notion of differential privacy [13] that emerged from this line
of work provides rigorous guarantees even in the presence of a malicious adversary with access to arbitrary
side information. Differential privacy requires, roughly, that any single individual’s data have little effect on the
outcome of the analysis. Recently, many techniques have been developed for designing differentially private
algorithms [4, 13, 31, 29, 2, 28, 20, 5, 17, 19, 39, 8, 12, 41, 18]. A typical objective is to release as accurate an
approximation as possible to some function f evaluated on the database D.

A complementary line of work seeks to establish lower bounds on how much distortion is necessary for
particular functions f. Some of these bounds apply only to differential privacy (e.g. [13, 18]); other bounds
rule out any reasonable notion of privacy by giving algorithms to reconstruct almost all of the data D given
sufficiently accurate approximations to f(D) [10, 14, 15]. We refer to the latter works as lower bounds for
minimal privacy.

In this paper, we investigate lower bounds on the distortion necessary for releasing a set of contingency
tables, or marginal tables, under both differential and minimal privacy. A database D in our setting consists
of n rows, each row comprising values for d binary attributes z1,...,z,. For any subset of 7" attributes of
size |T| = k, the marginal table for 7' has 2* entries; each entry counts how many times in the database a
particular setting of these attributes occurs. Alternatively, we may think of the table as counting the number of
rows in the database that satisfy each of the 2% possible conjunctions on the attributes in 7. Contingency tables
are important summary statistics for categorical data: in addition to being easy to interpret, they are sufficient
statistics for popular classes of probabilistic models [3]. Because of this, they are a format of choice for data
release by government statistical bureaus [2].

Barak et al. [2] investigated upper bounds on the noise needed to release contingency tables differentially
privately. One can also derive incomparable upper bounds from the techniques of Blum et al. [4, 5]. These
bounds are described in Tables 1 and 3. For the remainder of the introduction we identify the two notions, and
treat € and & as constants.

1.1 Our Contributions

Let Cr(D) be the set of all k-way contingency tables (equivalently, the frequencies of all possible k-attribute
conjunctions) for a database D € ({0, 1}%)™. One can think of Cyx(D) as a single real vector of length 2% (,‘f)

(1) Lower bounds for Differential Privacy: We show that algorithms which do not sufficiently distort the
contingency tables of D cannot be differentially private. Specifically, we give lower bounds on the (square
root of the) average mean squared error (MSE) per entry of differentially private estimates of Cx. The upper
and lower bounds are stated in Table 3, and discussed in Section 2. Table 1 restates the bounds of Table 3
for the special case where k, € are constants and § = 1/poly(n).

For constant k, the best known algorithms yield distortion O(min{n, (n?d)1/3, v/d*}), while our lower
bound is 2(min{y/7, Vd*}). Our bounds imply that adding carefully calibrated Gaussian noise to each
entry in Cj (as proposed in [4, 31]) is optimal for large databases (when n = Q(dk)). Moreover, for
a natural and popular class of algorithms based on adding instance-independent noise, our bound can be



Mechanism U. B. (¢, 6)-diff privacy L. B. (¢, 6)-diff privacy (This Paper)
Instance-Independent @) (\/ﬁ 4] Q (\/E’T)
General O (min {n, (n?d)* ,V&}) [4,5) 0 (min { v, V&F})

Table 1: Upper and lower bounds on the root average mean squared error per cell entry for releasing all k-way
contingency tables with k = const, € = const, and § = 1/poly(n). The diagonal entries of the mean squared
error matrix are the mean squared error of the estimates, and taking the square root of the average of the diagonal
entries gives the root average mean squared error. The n term in the upper bound for the general case comes
from an algorithm that releases a vector of n/2’s for all D’s. The O(-) and Q(-) notation hides polylogarithmic
factors in the parameters of the problem. The full version of this table (Table 3) is in Section 2.

(€3

3)

strengthened to Q(\/zﬁ) which is tight for all . Our bounds extend even to non-constant k, losing a factor
of V/2F compared to the best known upper bounds (again, for large n in the general case).

The rough idea behind these lower bounds is to bound the projection of the mean squared error matrix
of some database D along a large set of orthogonal directions. Combined with concentration inequalities for
matrix-valued random variables, this allows us to bound the trace of the MSE matrix and hence the average
MSE. This line of argument is quite different from the indistinguishability arguments used to bound the
accuracy of parity queries in [13].

Lower Bounds for Minimal Privacy: Using a disjoint set of techniques, we also show (slightly weaker)
lower bounds that apply to a large class of “privacy” definitions for statistical databases, including differen-
tial privacy. Roughly, we construct distributions on databases D for which releasing too good an approxima-
tion to Ci.( D) allows an adversary to efficiently recover almost all of D, even though the adversary’s a priori
chance of guessing any row of D is small, and the rows of D are statistically independent. The bounds are
stated in Table 2 and discussed in Section 3.

We give two types of reconstruction results, corresponding to two violations of “minimal” privacy: we
call schemes that allow these violations strongly non-private and attribute non-private, respectively. As a
point of comparison, for constant k, our bound for strong non-privacy allows the same conclusion as do
the bounds on differential privacy, namely average distortion Q(min{\/ﬁ, Vdk }) per entry is necessary. In
contrast to our bounds for differential privacy, however, this bound (a) is shown only for constant %, but (b)
is tight for all values of n when & is constant (that is, there is a non-differentially private algorithm, based
on sampling, with distortion O(y/n)).

The Least Singular Value of Random Matrices with Correlated Rows: For £ > 1, the bounds on
minimal privacy (2) above require significantly different techniques from previous work. Previous lower
bounds [10, 14, 15] were based on variants of the following reconstruction problem: given a real-valued
matrix M, and a corrupted “codeword” M s + e, the goal is to compute an approximation & to s such that the
“reconstruction error” § — s is somehow bounded in terms of the noise vector e. Typically, assuming some
norm ||el|, is small, one can bound a related norm of § — s.

The connection to data privacy is that, if s € R™ is a database with one number assigned per person, we
can think of y = M s + e as a vector of (distorted) estimates of the quantities (), s), where M; is the ith
row of M. Thus, any private data release that allows a user to estimate (M;, s), allows an attacker to obtain
y. Therefore, an algorithm for approximating s from y can be used to infer sensitive data from the release.

Previous lower bounds rely heavily on the freedom to design A by selecting the rows of M indepen-
dently (either at random [10, 14, 15] or from an algebraic code [15]). They are closely related to techniques
used to analyze the performance of random matrices in compressed sensing schemes and LP decoding
(see [7, 6], and references therein).



When k£ = 1 a similar flexibility is available in our lower bounds. However, for £ > 1 the rows of
the matrices M that arise in our lower bounds are highly correlated: the matrix M has (ﬁ) rows which are
formed by taking all possible k-way entry-wise products' of an underlying set of d random vectors. The
techniques of previous work, from the literature on both privacy and random matrices, break down.

We show that reconstruction procedures using these matrices can in fact be analyzed, by showing for
any constant k that a random rectangular 0-1 correlated matrix has approximately same the high-probability
bound on its least singular value as would a random 0-1 matrix with independent rows. Tight bounds
are known on the least singular value bound for various types of matrices (e.g., square, rectangular) with
independent random entries (see, e.g., [33, 34, 32, 37] and references therein). However, to deal with the
dependencies, we develop several new tools, which may be of independent interest. We show that if M
has less than d* / log(d) columns, then it’s least singular value Q(+/dF) with probability exponentially large
in d. For comparison, a uniformly random N x n matrix with 0-1 entries has least singular value at least
VN — +/n =1 with exponentially high probability (Rudelson and Vershynin [34]). The basic idea is to
decompose the unit sphere into different regions and to argue using epsilon-net arguments that for each
region and every vector z from that region, ||M z|| is large with high probability. Our spectral bound allows
for a reconstruction algorithm of the form § = round(M’ - (M s + €)), where s is a 0-1 vector and M’ is an
appropriate pseudoinverse of M.

1.2 Comparison to Previous Lower Bounds

Dinur and Nissim [10] showed that a mechanism which answers (or allows the user to compute) O(nlogn)
arbitrary inner product queries on a database s € R™ with noise o(y/n) is not private. Their attack was sub-
sequently extended to use a linear number of queries [14], allow a small fraction of answers to be arbitrarily
distorted [14], and run significantly more quickly [15].

In their simplest form, such inner product queries require the adversary to be able to “name rows”, that
is, specify a coefficient for each component of the vector s. Thus, the lower bound does not seem to apply to
any functionality that is symmetric in the rows of the data set (such as, for example, “counting queries”). It
was pointed out in [9] that in databases with more than one entry per row, random inner product queries (on,
say, attribute x4) can be simulated via hashing: for example, the adversary could ask for the sum the function
H(zy,...,z4_1) - T4 over the whole database, where H : {0,1}¢~! — {0, 1} is an appropriate hash function.
This is a symmetric query, but it might seem odd to a statistician (with, e.g., a 2-wise independent hash function).

Using a more algebraic approach, Dwork et al. [13] gave a lower bound for differentially private mechanisms
based on counting the number of rows that satisfy parity functions. Their attacks also require either that the
adversary “name rows”, or be able to index individual entries via hashing.

The Jower bounds we give for contingency table releases are the first for symmetric functions regularly
released by official statistics agencies. As with previous bounds based on reconstruction, we show a lower
bound of roughly y/n on the average distortion per entry (as long as n = o((z))). This \/n behavior is tight,
since a small random sample of the database allows counting queries to be answered with about this accuracy,
yet clearly precludes reconstruction of the entire database.

1.3 Relating Reconstruction Problems to Privacy Lower Bounds

Our results suggest a general connection between reconstruction problems and lower bounds for private data
release. The lower bounds for relaxed privacy definitions proceed by “embedding” an instance of the recon-
struction problem for a matrix with correlated rows into a contingency table release problem. We give two such
embeddings (or reductions), leading to two differently flavored results.

"The entry-wise product of k vectors ui, . .., ux € R% is the vector in v € R? with entries v(4) = ]_[j u;(1).



Problem Upper Bound Lower Bound (This Paper) \
O O(min{+/n, Vd}) Q(min{y/n, Vd}) 1
Ck (k > 2) | O(min{\/n, VdF}) Q (min {\/ﬁ, \/L?})

Table 2: Upper and lower bounds on root mean squared error per cell entry for releasing all k-way contingency
tables under (not) strong non-privacy with k = const. The upper bound is proved in Proposition 3.3. The lower
bounds are proved in Theorems 3.9 and 3.14. :

Let k > 1 be a constant. Consider a 0-1 matrix S € {0,1}%*", and let M® be the (§) x n matrix whose

rows consist of all the k-way entry-wise products of the rows of S. Let s € {0,1}™.

First reduction (Attribute Non-Privacy): Consider the database D = (S7|s) € ({0,1}¢T1)", That is, the
first d columns of D are given by the rows in the set .S, and the last column is s. Suppose that the adversary
knows S but wants to learn s — this corresponds to the model, common in the data privacy literature, e.g.,
[35, 27, 24], of d nonsensitive attributes (e.g., demographic information), which can be learned from other
sources, and one sensitive attribute (e.g., disease). Then the k-way contingency tables of D contain the vector

- M*=1) 5 We show (using our result (3) on least singular value) that with high probability over random S, for

every s € {0,1}", any mechanism that approximates k-way contingency tables on D with distortion &~ /1
per entry allows the adversary to compute n — o(n) bits of s (that is, to find § that agrees in almost all entries
with s), as long as 7 = o(d*~1). One can extend the reduction to get a lower bound of Q(min{\/n, Vd*~1})
for all n.

The lower bound applies to any model of privacy which purports to protect individual values of the sensitive
attribute (in particular, to differential privacy but also, e.g., the notion of privacy implicit in “K -anonymity”
[35] and its variants). Another interesting interpretation of this result is that conjunctions form a “good
enough” family of hash functions H for the purposes of the Dinur-Nissim style attack described as above.

Second reduction (Strong Non-Privacy): Consider now a database D given by diag(s)-ST, where diag(s)

is an n x n diagonal matrix with diagonal s. Because s is a 0-1 vector, this corresponds to a world where
person 7’s data is either .S5; or 0% according to the ith bit of s (where S; is the ith column of .S). As before,
assume that the adversary knows S, but not s. Then the k-way (as opposed to k£ + 1 above) contingency tables
of D contain the vector M*)s. We show (using again (3)) that with high probability over random S, for
every s € {0,1}", any mechanism that approximates k-way contingency tables on D with distortion ~ /1
per entry allows the adversary to compute n — o(n) bits of s, as long as n = o(d*). One can extend the
reduction to get a lower bound of Q2(min{+/7, V/d*}) for all n.

The distribution on databases generated by this reduction is somewhat less natural than in the first reduction,
but yields a stronger lower bound. It applies, roughly, to any notion of privacy that seeks to protect any
complete row of the database (as opposed to only individual entries). This includes differential privacy (see
Lemma 3.4), as well as its relaxations to metrics on probability distributions such as total variation distance
or KL divergence.

The schemata above for reducing lower bounds on privacy to reconstruction problems are quite general, and

they raise the question: for what types of (natural) correlations on the rows of a random matrix can we bound the
least singular values (or Lipschitz coefficients for other norms)? More generally, what properties of a function
determine how accurately it can be released privately?



1.4 Preliminaries

We use [n] to denote the set {1,2,...,n}. dg(-,-) measures the Hamming distance, and negl(n) denotes
a function that is asymptotically smaller than 1/n°¢ for all ¢ > 0. Pr[-], E[-], Var[], and supp(-), denotes
probability, expectation, variance, and support of a random variable, respectively. We often add subscripts to
Pr[-] and E[-] to emphasize the source of randomness.

Vectors are always column vectors. For a vector v, v denotes its transpose (row vector) and ||v|| denotes
its Euclidean norm. v; denotes the ith entry of the vector v. We use u, be the unit vector corresponding to v
(i.e., upy = v/||v||). For two vectors v; and vg, (v1,v2) denotes the inner product of v; and vo. For a matrix
M, tr(M) denotes the trace and || M||s denotes the operator norm. Operator norm of M, ||M || equals the
maximum eigenvalue of M. Let I; denote the identity matrix of dimension d. Let M be an N x n real matrix
with N' > n. The singular values (M) are the eigenvalues of v .M T M arranged in non-increasing order. Of
particular importance in this paper is the smallest singular value o (M) = inf ;=1 || M z||.

Differential Privacy. A database I’ is said to be a neighbor of D if it differs from D in exactly one row. A
(randomized) algorithm is differentially private if neighbor databases induce nearby distributions on the outputs.

Definition 1.1 (e-Differential Privacy [13]). A randomized algorithm A is e-differentially private if for all neigh-
boring databases D, D', and for all sets S of possible outputs, Pr[A(D) € S] < exp(e) - Pr[A(D’) € S]. The
probability is taken over the random coins of the algorithm A.

Let X and Y be random variables taking values in a set 0. We use X ~, Y to indicate that random variables
X and Y are e-indistinguishable, i.e., VS C O, exp(—¢€) - Pr[Y € 8] < Pr[X € 8] < exp(e) - Pr[Y € S].
All our results are symmetric, that is, they do not depend on the order of entries in the database D. The size of
a database is the number of rows in it. Some of our results are independent of the number of the rows in the
database (i.e., they hold even when database is a vector).

In our a.nalysis we assume that a (private) algorithm A for a function class F on input D releases a vector
A(D) = (A1(D), ..., Ajx|(D)), where each entry in the vector is an estimate of one of predicates in F. This
assumption is without loss of generality, because if A on input D releases some other sanitized structure D
then we can define a new private algorithm A that first runs A on D and then releases the vector F (D) The
perturbation introduced doesn’t change by this second step, and therefore, we can think of A as directly releasing
the sanitized vector.

Boolean Conjunctions. The domain for Boolean conjunctions is {0,1}¢. Each z € {0,1}? is interpreted

as an assignment to d Boolean variables 1, ...,z4. A conjunction predicate ¢, : {0,1}¢ — {0,1} forv €
{~1,0,1}¢ s defined as ¢,(z) = 1iff2; = 1ifv; = land z; = 0if v; = —1foralli € [d]. The value of v;
indicates whether the variable z; appears as not negated (if v; = 1), negated (if v; = —1), or absent (if v; = 0).

The length of a conjunction predicate is the number of coordinates of v that are non-zero. We will refer to a
conjunction predicate of length & as a k-way conjunction. Let Ci be the function class of all k-way conjunction
predicates on variables z1,...,zq4. The size of Cy, |C| = 2% (f) Let D € ({0,1}%)" be a database. Each
row is represents information contributed by one individual. The ith column of D contains the assignments to
variable z;. For a predicate ¢, € Cy define, ¢,(D) = > p cu(x). We use Ci(D) to represent the vector of all
the ¢, (D)’s.

1.5 Known Upper Bounds for Differentially Private Releases

In [4, 13] it was shown that addition of carefully calibrated noise to functions satisfying a Lipschitz condition
is enough to ensure differential privacy. Blum et al. [4] showed that adding instance-independent random noise



drawn from a normal distribution with mean 0 and standard deviation v/2my log(1/d) /e to each entry in Cx (D)
guarantees (¢, §)-differential privacy, and adding instance-independent random noise drawn from a Laplacian
distribution with mean 0 and standard deviation 2my, /¢ to each entry in Cx (D) guarantees e-differential privacy.
The mean squared (covariance) matrix of the SuLQ mechanism is a simple diagonal matrix with each entry along
the diagonal being equal to the variance of the additive noise distribution. Recently, Blum, Ligett, and Roth [5]
presented an elegant algorithm that instead of adding direct noise, preserves privacy by adapting the exponential
sampling technique of McSherry and Talwar [29]. They show that for every class of predicates the exponential
mechanism of McSherry and Talwar can be used to generate a synthetic database that maintains usefulness in
that with high probability the Lo, distance between the vector of answers output by the mechanism and the
true vector of answers is small. For comparison with our bounds, we show in Corollary 1.5 that for k-way
conjunctions each diagonal entry in their mean squared matrix is O((n2dk/¢)%/3).

Blum ef al. Upper Bound. Blum, Ligett, and Roth designed an e-differentially private algorithm that, given
a database D, outputs a new “synthetic” database D. Their work provides a high-probability bound on the L,
distance between the vector of answers output by the mechanism and the true vector of answers. For comparison
with our bounds, we state their result in terms of mean squared error. We start by describing their result. To
measure how well D represents D with respect to a specific function class F, they introduce the following
notion:

Definition 1.2 ((«, B)-usefulness [S]). An algorithm A is (., B)-useful for class of predicates F and database
D if, with probability at least 1 — 3, A(D) outputs a database D that satisfies |f;(D)/|D| — f;(D)/|D|| € «
forevery f; € F.

Theorem 1.3 ([5]). Let a,B,¢ > 0. For every class F of predicates from {0,1}% to {0,1}, there exists an
e-differentially private algorithm A that is (o, B)-useful for F and all databases D € ({0, 1}%)" with

n>C. (VCDIM(.’F)dlog(l/a) . log(l/ﬁ))

a3 o
entries, where C is a sufficiently large constant. (The algorithm may not be efficient.)

Proposition 1.4 (BLR [5] upper bound). For a class F of predicates with VC-dimension equal to VCDIM (F),
the Blum, Ligett, and Roth mechanism produces a synthetic database such that for each predicate f; € F, the
mean squared error of the estimated integer count of f; is O(n® - VCDIM (F) - d/e)*/3.

Proof. Let D be a database. Theorem 1.3 shows that if n is large enough, then with probability 1 — £, the
mechanism returns a synthetic database D such that the fractional count of every predicate on D is within o of
the corresponding fractional count on the real database D.

This translates to an expected square error in the estimated integer counts of at most (1 — 3)(an)? 4- fn? <
(an)? 4- Bn?, since a count can be off by at most n. Setting 3 = o, and assuming that d > 2, we get that

0> Cd- VCDIM (F) - log(l/a)

o3e

(D

gives an expected square error 20£2n2. Isolating o from Equation 1, and substituting it in 2a°n?, we get that the
expected error for each count is O(n? - VCDIM (F) - d/¢)?/3. O

Observing that k-way conjunctions have VC dimension at most k log d, we obtain:

Corollary 1.5. For k-way conjunctions, the Blum, Ligett, and Roth mechanism produces a synthetic database
such that for each conjunction predicate, the mean squared error of the estimated integer count is O(n2 -d -

k/e)?/3,



2 Lower Bounds on Noise for Differential Privacy

In this section, we prove lower bounds on noise needed to e-differentially privately release all k-way contingency
tables. Our results also extend to a relaxation of e-differential privacy (called (e, d)-differential privacy) that
satisfies similar semantics [21]. This extension is simple and we discuss it in Appendix C. Table 3 distinguishes
between e-differential privacy and (¢, §)-differential privacy.

We divide differentially private algorithms into broadly three (not necessarily disjoint) categories based on
the noise introduction process.

¢ Instance-independent additive noise case: An algorithm A is in this category if the noise it adds has a
fixed distribution (is independent of the database) and is additive. Let Z be some noise distribution, then
for all D, A(D) = F(D) + Z. Therefore, for D' a neighbor of D, A(D") = A(D) + F(D') — F(D).
The SuLQ algorithm of Blum, Dwork, McSherry, and Nissim [4] falls into this category.

o Unbiased noise case: An algorithm A is in this category if for all D, E[A(D)] = F(D). Therefore, for
D' aneighbor of D, E[A(D")] = E[A(D)] + F(D') — F(D). Here, there is a noise distribution for every
database, but the algorithm is unbiased (i.e., expected value equals the true value).

¢ General case: Unlike the previous two cases, here, we make no assumptions about the algorithm. The
algorithm of Blum, Ligett, and Roth [5] falls into this category.

Remark: If an algorithm A adds instance-independent additive noise, then E[A(D)] = F(D) + E[Z] (where
Z is a random variable independent of D). Note that but for this displacement by [E[Z], algorithms that add
instance-independent additive noise case are also unbiased (e.g., if E[Z] = 0 as in the case of SuLQ [4], then an
algorithm that adds instance-independent additive noise is also unbiased). The results for instance-independent
additive case follow directly from the unbiased case, and we state them in Appendix A.

In the general case, we measure the perturbation introduced by a randomized algorithm A using the mean
squared error matrix 2(A(D)) = E[(A(D)~F(D))(A(D)~F(D))T]. This is necessary because an algorithm
could always add noise such that the output released is always a 0 vector for every database. This clearly satisfies
all the privacy requirements and also the variance for each of the A;(D)’s is 0, but the deviation from the true
answer is big. For an unbiased algorithm .4 the mean squared error matrix is same as the covariance matrix
S(A(D)) = E[(A(D) — E[A(D)])(A(D) — E[A(D)]) "]. Table 3 summarizes our results.

In Section 2.1, we consider unbiased e-differentially private algorithms. Let my = (‘,f) We show that any
unbiased algorithm A for Cj, that for every database D has an average variance (i.e., average mean squared
error) of o(my,/(2*€%)) for A(D) is not e-differentially private. The idea is to show that for any two neighboring
databases D and D', with Cp(D’) — Cx(D) = A and unit vector ua = A/||A||, the indistinguishability
requirement of differential privacy along with the unbiasedness of the algorithm forces both u} X(A(D))ua
(which is the expected squared length of the projection of A(D) — Cx(D) on A) and u} Z(A(D"))ua to be
at least ||A||? (square of the length of A). Of particular interest to us are the A vectors with large lengths
(close to y/my). Then using a careful argument involving geometries of these A vectors we show that there
exists a database D* such that the trace of X(A(D*)) is at least m3/(2¢?). The result follows by an averaging
argument (since, there covariance matrix has my diagonal entries, at least one of the diagonal entry is greater
than my/(2F€2)).

In Section 2.2, we consider general e-differentially private algorithms. We show that any algorithm .4 for
Cy. that for every database D has an average mean squared error of min{o(my/(2%¢%)), o(n/(2*elog my,))} for
A(D) is not e-differentially private. The analysis of the general case is trickier, because it is no longer necessary
that both u  S(A(D))ua and ul S(A(D'))ua be greater than ||A||?, but we show that the indistinguishability
requirement forces at least one of them to be greater than ||A||2. We then look at databases picked uniformly at
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[ Mechanism U.B. ¢-diff privacy L.B. e-diff privacy (This Paper)
Instance-Independent O (%L) (4] Q g%;
Unbiased O (=) [4] 0 %
General 10) (min {n, ("2‘““) . ks }) [4, 5] Q (rnin {ﬁ‘gmk, \/;E })
U.B. (¢, §)-diff privacy L.B. (¢, §)-diff privacy (This Paper)
Instance-Independent O (——W) [4] V 0 (ﬂ\}é{%‘))
Unbiased O <min {7”3, (”zed’“) . + ﬁ—g, —_W [4] | @ ( min { \/\z/i(llo;ilk , ‘/m?(i:é) })
General 0 (min {n, (Lfk)é , @}) [4, 5] ‘ Q <min { \/‘;:_‘c(llo;zk’ V/T_n'k_»z(:d) })

Table 3: Upper and lower bounds on the root average mean squared error per cell entry for releasing all k-way
contingency tables (for 1 < k < d). Theorems A.5, 2.9, and 2.26 prove our results for the e-differential privacy

case. The results for (¢, §)-differential privacy case are proved in Theorems C.2 and C.8. Here, my. = (f)

random, and show by an application of matrix-valued Chernoff bound that with high probability the trace of the
mean squared matrix of a random database is at least min{m?/(2*¢2), nms/(2Fe log my) }.

2.1 Lower Bounds on Noise for Unbiased ¢-differential Privacy

In the analysis instead of conjunctions we consider inner products over the domain {—1, 1}‘1. In Appendix B,
we provide the relation between these two problems. An inner product predicate 4, : {—1,1}¢ — {—1,1} is
defined as i, (z) = Hl x; - v;, where the value of v; indicates whether z; is present (if v; = 1) or not (if v; = 0).
We call the corresponding function class Z. The size of Zy, |Zi| = my. Let D be a database from ({—1,1}4)".
Define, i,(D) = > ,cpiv(z). Let I (D) be the vector of all the 4,(D)’s. We analyze 1-way inner products
in Section 2.1.1 and higher way inner products in Section 2.1.2. The analysis of the 1-way case is simple and
direct, but it provides key insights that would prove useful for analyzing higher way inner products.

2.1.1 1-way Inner Products - Lower Bounds for Unbiased c-differentially Privacy

Let D € ({—1,1}%)" be a database. Consider the problem of privately releasing Z; (D). Notice that Z; (D)
is a vector whose ith entry is just the sum of the ith column of D. Consider a neighbor D’ of D, and let
A =1T;(D") - I;(D). Now, A € {—2,0,2}¢. However, instead of working over A’s that are from {-2, 0,2}¢,
we restrict ourselves to A’s that are from {—2, 2}¢. In other words, we consider only those neighbors D" of D
such that Z; (D) — Z; (D) € {—2,2}¢. In the remainder of this section, A € {—2,2}%.

Let Z(A(D)) be the covariance matrix of .A(D). We start by proving that for any unbiased e-differentially
private algorithm A, both ATEZ(A(D))A and ATS(A(D'))A are Q((A, A)2/e?), where A = E[A(D')] —
E[A(D)]. The proof uses the fact that projections onto A need to be e-indistinguishable for .A(D) and A(D").

Lemma 2.1. Let A be any unbiased e-differentially private algorithm for I\. Let A(D) =, A(D"). Let
T1(D") = Ty (D) + A for some A € {—2,2}% Then, E[{A(D)-E[A(D)], A)?] = Q((A, A)?/e?) = Q(d*/€?)
and E[(A(D") — E[A(D")], A)?] = Q((A, A)? /) = Q(d?/€?).

Proof. We first prove the one-dimensional version of this lemma. That is we show that if A is unbiased e-
differentially private such that for any two neighboring databases D and D, | E[A(D)] — E[A(D")]| < 1, then
both Var[A(D)] and Var[A(D’)] are Q(1/€?).



Lemma 2.2. Let A(D) and A(D') be distributions over R. Let A(D) =, A(D’). Let E[A(D)] = p and
E[A(D")] = p+1. Then, E[A(D)?] = Q(1/€*) + p? and E[A(D")?] = Q(1/€%) + p?. Therefore, Var|A(D)] =
Q(1/€?) and Var|A(D')] = Q(1/€2). The expectation is over the randomness of the algorithm.

Proof. Define X = A(D) — pand Y = A(D') — p. Lets assume that X and Y are continuous random
variables with support over R (proofs for other situations are quite similar). Define a; = Pr[X € [{,¢ + 1)] and

b; = Pr[Y € [i,¢+ 1)]. Note that
Z a; = Zbl =1.
1EZL 1€EZL
By requirements of differential privacy, we have e™“b; < a; < efq; forall i € Z. Let Int; = [i,i 4+ 1). Now,

EX] = /zPr = glds = Z/ zPr[X dz>Zzaz i ia;

i=—00 1=—00

= Z ia; — Lza_ > — Ze h_; + Ze “ib; = — Z(e‘ﬁ +ef —e by + ie*‘ibi
1=0 =0
0o oo 00 o0 -1 o0
= ¢ (Zib,i - Zib_i> —(ef—e )Y ibi=e" (Z ibi+ ibi) —(ef—e7)D b

=0 =0 i=0 i=0 1=—00 =0

= e ‘E[Y]— (e —e” Zzb_

Since E[X] = 0 and E[Y] = 1, therefore, for small ¢,

o9}

D b, = (e7)/(ef —e7F) = Q(1/e).

=0

Define, a new random variable Y_ as

PrlY_ =z =PilY =—§|Y £ 0.

Then E[Y_] > ——r—ﬁ,—<—0— 3.2 ib_;. Rearranging the terms and using the fact that E[Y_] < 4/E[Y?],

i ib_; < E[Y_]Pr[Y < 0] < /E[Y2Z]Pr]Y <0].

=0

Using the bound for 3.2 ib_;, we get that

E[Y? = Q ((Wlfls_(ﬂY) .

Now, define Pr[ Xy = z] = Pr[X = z| X > 1]. Using similar analysis as above gives that

=0 (smis) )



Now,

2]—2/ 22 Pr[X = z]dz.

1=—00

2PrX =2]dz _  E[X?]
Xi]_z/ Pr[X>1] SEx>1

In particular,

Similarly, we get that

\ /\

—d 2 ‘)
2 ZPrlY = zldz . E[Y*
E[YZ] = i;m /Inti Pr[y <0] = Pr[Y
Now substituting the lower bound for E[X?] and E[Y2], we get that

1 1
Q ((—2> =E[X?|Pr[X >1] and Q (?2) =E[Y?Pr[Y <0].
Hence, E[X?] = Q(1/€?) and E[Y?] = Q(1/€%). Re-substituting X and Y in terms of .A(D) and A(D")
completes the proof. O

We now extend Lemma 2.2 to the higher dimensional case. The proof has similar structure to Lemma 2.2.
We will just present the main differences. The idea is as follows: Define, X = (A(D) — Z;(D),A) and
Y = (A(D') — Z;(D), A). Repeating same arguments as in the previous lemma, we get that

o0
E[X] > eE[Y]— (ef — ™) ) ib_s.
i=1
Since E[Y] = ATA = 4d. Therefore, for small ¢,

Sona(52)-a().

As in Lemma 2.2 we define random variables Y_ and X . By arguments similar to Lemma 2.2 we can show

that . "
E[X2]=Q ((2—13?[;?1]) ) and E[Y?]=Q ((deﬂ) ) .

As in Lemma 2.2,
IE[YQ]

E[X?]
ELX3] < Pr[Y <0

S P> and E[Y?] <

Therefore, we now get that

2

O (dﬁ) =E[X)Pr[X >1] and Q (f—z

= ) =E[Y?|Pr[Y < 0].

As in Lemma 2.2, we can argue that E[X?] = Q(d?/e?) and E[Y?] = Q(d?/e?). Therefore, E[{A(D) —
T,(D), AY?] = Q(d?/e?) and E[(A(D') — T (D), AY?] = Q(d?/e2). Also,
E[(A(D") — E[A(D")],A)"] = E[(A(D)-T(D) - A,A)
= E[(AT(AD") - (D)) — d)?]
E[(Y — d)?] = E[Y?] + d* - 2dE[Y]
E[Y?] + d? — 2d/E[Y?] = Q(d?/€?)

10
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The last line follows because E[Y 2] = Q(d?/€?). 0

The proof of the following proposition relies on the fact that there exists a database . such that for every
A € {-2,2}4, D has a close neighbor Da such that Z; (Da) — Z1 (D) = A. Let D be any database which has
at least a row of both —1% and 1. We now show that there exists a database D at Hamming distance 2 from
D such that for every A = {—2,2}2, 71 (Da) — Z; (D) = A. Consider any vector A € {—2,2}%. Let D bea
database which is identical to D except that the row —1¢ is replaced by A /2 and the row 1% is replaced by A /2.
The Hamming distance between D and Da is 2 and Z; (Da ) — Z1(D) = A. The idea now is to use the fact that
the set of A’s (which contains every vector from {—2, Q}d) contains an orthonormal (Hadamard) basis.

Proposition 2.3 (Unbiased case: 1-way inner products). Let A : ({—1,1}%)* — R? be any unbiased e-

differentially private algorithm for ;. Let D be any database which has at least a row of both —1¢ and
19, Then, tr(2(A(D))) = Q(d?/€%).

Proof. The covariance matrix £(A(D)) = E[(A(D) — E[A(D)]))(A(D) — E[A(D)])T] (i.e., the (i, j)th entry
looks like E[(A;(D) — E[A;(D)])(A;(D) — E[A;(D)])]). Consider any vector A € {—2,2}%, Since A is
differentially private, by Claim 2.23, A(D) =~ A(Da) (where D is as defined above). From Lemma 2.12,
we know that ATE(A(D))A = Q(d?/e?) and therefore ul Z(A(D))ua = Q(d/€?) (where ua is the unit
vector corresponding to A). This holds for every A € {~2,2}¢. Consider an orthonormal basis u1, ..., ug
such that uTZ(A(D))uz = Q(d/€?) for all i € [d] (one such example is the Hadamard basis). Identity matrix
I; = Zf 1 Uil T Now,

d
Z r(u] Z(A(D)) uz)-—Ztr A(D)uu] ) = tr(Z(A(D)) - 1) = tr(S(A(D))).

Note that tT(uTE(A(D))ul) = tr(S(A(D))usu] ) as trace is cyclically invariant. This implies that tr(S(A(D)))
= Q(d?/e?). O

2.1.2 k-way Inner Products - Lower Bounds for Unbiased ¢-differential Privacy

Since the results in this subsection will be independent of n, for simplicity we assume n = 1 (see the proof of
Theorem 2.9 for the simple extension ton > 1).

Inner-Products Over the Domain {—1,0,1}% First lets consider inner products over the domain {~1, 0, 1},
Let Kj; be the function class of all k-way inner product predicates over the domain {—1,0,1}¢. Letr € {-1,1}¢
be a random vector with independent entries taking values —1 and 1 with probability 1/2. Letmy = ({). Define
a random vector z of length my. as z. = Zy(r). Each entry in z; is set to 1 with probability 1/2 and —1 with
probability 1/2 (but the entries are not independent of each other). Define a matrix B = E,,[2-z, |, where the
randomness IS OVer z,.

Lemma 2.4. Let z, = Ty,(r). Then, E,_[2,2, | = Ly, where L, is an identity matrix of dimension my,.

Proof. We prove the lemma for k£ = 2 (2-way case). The proofs for higher k’s follow similarly. Consider 2-way
inner products. Let ; denote the ith entry in 7. Now 2, = (21,1, 21,2, .., 2d—1,d), Where z; ; = 7;r;. Then, for

a # band ¢ # d,
lif {a,b} = {c,d},
Blred = { 11500 = 00

o

0 otherwise.

2Substitute Da for I in Lemma 2.1. As the Hamming distance between Da and D is two ¢ gets replaced by 2¢.
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Note that if {a,b} = {c,d}, then E, [z, p2.4] = ]Ezr[zgyb] = 1. If {a,b} # {c, d} then there are three

cases: if a,b,c,d are a]l disjoint then E;, (24 p2c,d] = Bz, [2ab] Bz [2cq] = 0, if @ = cthen E,_ [z,p204] =
IEfv’r [( )(rb)(,d) [ ] ]Ezr [Tb] ]Ezr [Td] - 0 and if b = d then Ez,. [Za b<c d] ]Ezr [7 CL] ]Ezr [rC] IE' ]: ] 0.
Therefore, E,_[2.2, | = L, O

The following lemma proves an extension of Lemma 2.1 to the k-way case.

Lemma 2.5, Let A be any unbiased e-differentially private algorithm for Ky. Let A(Dp) =~. A(D}). Let
Kk(D}) = Ki(Dp) + z for some z € supp(zr). Then, E[{A(Dy) — E[A(Dy)], 2)?] = Q{z,2)?/€?) and
E[{(A(D;) — E[A(Dy)], 2)?] = Q((z, 2)/€?).

Proof. Same as Lemma 2.1, We want to show E[{A(Dp) — Ki(Ds), 2)?] = Q((2,2)?/€?) and E[{A(D}) —
Ki(D}), 2)?] = Q({z, z)2/€?). Compared to Lemma 2.1, z plays the role of A. 0

The following simple proposition lower bounds the trace of the covariance matrix. The proof follows by
combining the above two lemmas.

Proposition 2.6 (Unbiased case: k-way inner products over {—1,0, 1}9). Let A : {~1,0,1}¢ — R™* be any
unbiased e-differentially private algorithm for K. Let Dy = 0% Then, tr(S(A(Dp))) = Q(m2/e2).

Proof. Let Dy = 0. Let my, = (z) Let 7 be the setof all z € {—1,1}™* such that there exists a neighbor Dy
of Dy, with Ky (D}) — K (Dp) = z. Note that 7 = supp(zr). Let X(A(Dy)) = E[(A(Ds) — Ki(D)) (A(Dy) —
K1(Ds)) T]. Then, expected value (expectation over random zy) of z,! S(A(Dy))z is

B[] S(ADs))zr] = Eltr(z T(A(Dy)2)]
= Eftr(2(A(Ds))2r2 )] = tr(Z(A(D)) B)
< (AL Blloo = tr(Z(AD))).

The last equality follows because B = E, [z,2] = Ly, and thus ||B||ec = 1. Since for Yz € supp(z,),
(z,z) = my, from Lemma 2.5 we get that Vz € Supp(z7)

E[(A(Ds) — Ki(Dp), 2)°] = 2" S(A(Dy))z = Qmi /).
Since the previous statement is true for all z € supp(z,), therefore,

[z S(A(De)) 2] = E[E[A(Ds) - Ki(Ds), 2 )% = Q(m}/€).

Zy

Therefore, tr(Z(A(Dp))) = Q(m3/e?). O

Going from Domain {—1,0,1}¢ to {—1,1}¢. The previous argument relied on starting from a database
Dy, = 0%, We now consider databases from the domain {—1, 1},

Lemma 2.7. Let A be any unbiased e-differentially private algorithm for Iy. Let D, ¥ 8 D be the databases
as defined above. Let z = Ty(D%) — I1(D) and 7 = Ly, — 00" /{0,0). Then, E[{A(D,) — E[A(D,)], 72)?] =
Q(rz,mz)2/e?).

Proof. Using arguments similar to Lemma 2.1 shows that (72) T L(A(D,))(r2) = Q((r%,72)?/€?). Since
7wz = 7wz, we get the desired result. O

12



Let D, = 1% Let BE {1, 1} be a neighbor of D.. Let D = 0%be an imaginary database. Then,
Ti(D}) — Zk(De) = Zu(D}) — Zu(D) + Ti(D) - Ze(De).

Let z = Tx(D%) — Ti(De.) and z = Ti(D’) — (D). Ti(D.) = 1™+, and Zy(D) = 0™*. Let 0 = 1™ Then,
Z=2z—o.Letm =1, —o00'/(o,0) be the orthogonal projection matrix onto the orthogonal complement of o.
Note that 0o is a 1, X my matrix of all 1’s. Let 3(A(D,)) = E[(A(D.) — Ze (D)) (A(D,) — Zk( ) T]. The
idea now is to extend Lemma 2.1 to show that E[{A(D.) — E[A(D.)],72)%] = Q({rz,72)?/€%) (Lemma 2.7),
which in turn can be used to show the following.

Proposition 2.8 (Unbiased case: k-way inner products over {—1,1}9). Let A : {~1,1}¢ — R™* be any
unbiased e-differentially private algorithm for Ty.. Let D, = 19, Then, tr(S(A(D,.))) = Q(m3/€?).

Proof. Let D, = 1%. Since D/, can be any vector from {1, 1} and Z (D) = 0™*, the set of vectors z =
Ir(DL) — Zk(D) is exactly supp(z,). As in Proposition 2.6 (with expectation over random z;),

E((r2r)" D(A(De))(m27)] < tr(m" B(A(D))m)|| Blloo = tr(m " D(A(D))7) < tr(B(A(De))).

The last inequality follows because 7 is an orthogonal projection matrix. Note that from Lemma 2.4, B =
E. [%2]] = Ly, . Also Vz € supp(z,) from Lemma 2.5,

(72) TE(A(D))(72) = Q({mz, m2)%[€%).
Now,

-

(z,2) =2 Tz + ZT(]Imk —mz=2"

7wz 4 (2,02 /my = {nz,72) + (z,0)2 /my.
If you look at the expected value of z, 7z,

IEE[Z,TWZT] = E[tr(nz,2, )] = tr(aly,) = tr(x) = my — 1.

Zr

Now for all z € supp(zr), 2 7z £ 21z = mg. Therefore, z;'-'/r,zr is a random variable whose range is between
[0, mz] and with expectation of my — 1. If p is the probability that z, 72, takes a value greater than my — 2,
then
mg — 1= E[z] 72,] < pmy + (1 —p)(my — 2) = 1/2 < p.
2r
We can expand E,, [(72,) TZ(A(D,))(7z,)] as
E[(m2) " E(A(De))(mz)] = El(mzr) " S(A(De)) (n2r) | 2/ mar > my, — 2] Prle] mar > my ~ 2] +

E[(7z) TE(AD)) (72) | 2, 72 < g, — 2] Prlz,) 7z, < my — 2].

Zr

From above arguments we get that Pr,,_[z] 7z, > my — 2] > 1/2, therefore

E[(72,) T S(A(D.))(72r)] = E[(m2z) T S(A(D))(72,) | 20 w2 > Mg — 2]% +0 = Q((mg, — 2)%/(26%)).

Zr 2

Since E,_[(72,) T Z(A(D.))(7z)] < tr(S(A(D,))), we get that tr(E(A(D,))) = Qm2 /€?). O

The result for Z, can be extended to Cx (see Corollary B.2). We immediately get the following result.
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Theorem 2.9 (Unbiased case). Let my = (Z) Any unbiased algorithm A for releasing all k-way inner products
that for every database D € ({—1,1})™ has an average variance of o(my/€%) for A(D) is not e-differentially
private. Also, any unbiased algorithm A for releasing all k-way conjunctions that for every database D &
({0, 1}%)™ has an average variance of o(my/(2F€?)) for A(D) is not e-differentially private.

Proof. In the above discussion we considered databases where n = 1. However, there is an easy extension
to databases where n > 1. Let D € ({—1,1}%)" be a database with a row of 1%, We can repeat the above
arguments to show tr(Z(A(D))) = Q(m2/€). For the proof, we restrict our attention to those neighbors of D
which are obtained by replacing the row of 1% in D by a vector from {~1, l}d. O

2.2 Lower Bounds on Noise for General ¢-differential Privacy

In this section, we prove lower bounds on the perturbation introduced by any differentially private algorithm for
Zy and C. Again our analysis looks at the related problem of releasing inner products.

2.2.1 1-way Inner Products - Lower Bounds for General e-differential Privacy

We initially prove the lower bound by setting ¢ = 1/2. In Section 2.3, we strengthen the lower bound by
introducing € into it. As in Section 2.1.1, we only consider A’s from {—2,2}%. Let £(A(D)) = E[(A(D) —
T:1(D))(A(D) — Z1(D)) ] be the mean squared error matrix. Let .A(D) ~172 A(D') and A = Z(D') — Z(D).
Unlike in the unbiased case (Lemma 2.1) it is not necessarily that both ATS(A(D))A and ATS(A(D')A be
Q(d?), but the following lemma shows that at least one of them is Q(d?).

Lemma 2.10. Let A be any 1/2-differentially private algorithm for I,. Let A(D) 71,5 A(D'). Let T;(D') =
T:(D) + A for some A € {—2,2}%. Then min{E[{A(D) — Z1(D), A)?|,E[{A(D") — Z1(D"), A)?]} = Q(d?).

Proof. We prove the lemma in a slightly general setting (under the notion of (¢, §)-privacy from Appendix C).
Lemma 2.10 follows from setting X = (A(D) — Z1(D),A), Y = (A(D') — I1(D"),A), § = 0, and a =
ATA = 4d in the following lemma. If two random variables, X and Y are (e, §)-indistinguishable, then the
statistical difference’ between X and Y is at most e}/2 — 1 + 4.

Lemma 2.11 (Lemma 2.10, restated). Suppose X,Y are real-valued random variables with statistical difference
at most /2 — 1 + 8. Then, for all real numbers a, at least one of E[X?| or E[(Y — a)?] is Q(a?(1 — §)?).

Proof. Since X and Y have statistical difference at most e'/2 — 1+ &, we can find random variables X’ Y U
such that X’ and Y’ have the same marginal distributions as X and Y respectively, and X’ = Y’ = U with
probability at least 2 — e'/2 — §. Moreover, if E is the event that X’ = Y’ = U, we may choose U so that it
is independent of the event E. (See, for example, the proof Lemma 3.1.8 in Vadhan’s thesis [38] for a proof of
this.)

We can bound the expectation of X in terms of the expectation of U:

E[X] = E[X'] = E[X'|E] Pr[E] + E[X'|E] Pr[E] > (2 - /2 = §) E[X'|E] = (2 - ¢'/2 — §) E[U].
Now suppose that a > 0, and that the expectation E[U] is at least a/2. Then,
E[X?] > E[X]? > (2 — €2 — 62 E[U]? 2 a?(2 — €2 - §)2/4 = Q(a*(1 - 6)?).

Similarly, if @ > 0 and E[U] is less than a/2, we have E[(Y — a)?] = Q(a?(1 — §)?). The cases in which
a < 0 are symmetric to the cases where a > 0, and the statement is trivially true when a = 0. O

3The statistical difference between random variables X and Y on a discrete space X is maxscx | Pr[X € S| — Pr[Y € S]).
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This concludes the proof of Lemma 2.10. O

For a database D, define 71 (D) = {A1,...,A,} as the (multi) set of A’s from {—2, 2}% such that for each
A; there exists a neighbor D’ of D such that Z;(D’) — Z; (D) = A,. In other words, consider the n neighbors
Dy,...,Dy, of D, where D; is obtained by replacing all the —1’s to 1’s and all the 1’s to —1’s in the ith row of
D, and set A; = Z;(D;) — Z1(D). Define S,(D) C T1(D), M1(D), and N1(D) as

S1(D) = {A € (D) | E{A(D) — T1(D), A)*] = Q(d*)},
MI(D) = ZAESl(D) UA'U}; and Nl(.D) = EAETl(D) 'U/AU_AI—
Let D be set of all databases from ({—1, 1}¢)™. The proof considers databases D, drawn at random from D.

The following lemma bounds the largest eigenvalue of M7 (D, ). The proof uses an application of matrix-valued
Chernoff bound from Ahlswede and Winter [1].

Some facts used in the proof Lemma 2.13. We let M > 0 to denote that M is positive semidefinite. This
gives an ordering of matrices namely, M; < Ms iff My — M; > 0. For two matrices M7 < Ms, we will let
[M7, M3] denote the set of all matrices M3 such that M7 < M3z < Mp. The matrix exponential is define as:

= M
exp(M) :Z T
=0

exp(M) is diagonalizable in the same basis as M, and if ) is an eigenvalue of M, then e is an eigenvalue for
exp(M). '
For a database D define,
Ni(D) = Z UATL.
AeTy (D)

Claim 2.12. ||M1(D)||oo < || N1(D)]co-

Proof. Consider any vector v € R Since Mj(D) and N;(D) are positive semidefinite, v My(D)v <

v T N1(D)v. Since, the previous inequality holds for every vectorv € R?, we get that || M1 (D)||oe < ||N1(D)||so-
O

Lemma 2.13. With probability greater than 1—1/2n over D, chosen uniformly at random from D, ||M1(D.)||co =

O(max{n/d,logd}).

Proof. To prove the lemma we will show that with high probability ||N1(D;)||ec = O{(n/d). Then by using
Claim 2.12 we get the desired result. To prove the bound on ||N1(D;)||e We use the following matrix-valued
Chermoff bound of Ahlswede and Winter [1].

Theorem 2.14 ([1, 40]). Suppose [ : [€] — [—1a4, 14| and let X, ..., Xy be arbitrary independent random
variables distributed over [€]. Then, for all vy € Randt > 0:

.
F(X;) £ 41y | < dexp(—tvk) [ ] 1| Elexp(tf(X))lloo-

1 =1

Pr

| =
-

<
Il

Let 71 (D;) = {A1,...,Ar}. Now, uAug € [~I4,14) for A € {~2,2}% Restating the above theorem:
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Corollary 2.15. Let A; € {—2,2}¢ for j € [n]. Forally € Randt > 0,

1 n n ]d
= _ e < |
TQLMM 4 £, m@twﬂemmM%>dmL
1 n o T Iy il 1 ’ ; T 7 T s

Note that - > %, uAUA, — % 7a = || N1(Dp)lloo 2 3+77- Also, since ua,up , .- ., ua,up  are all

independent and identically distributed we can restate the corollary in a more useful form as (where A = A):
- n

Prp, [[[AN(D)]|, = §+] < dexp(=tyn) (|[Ealexp(Ti(uau - || )" @

Let diag(cy,...,cn) be an n x n diagonal matrix, with ¢i,...,¢, as the entries in the diagonal. Consider,

| Ealexp(Ti(uaruh — 4))]lloos

HIEA[exp(Tl(uAuZ — %))]HOO = ||Ealexp(t- diag(1 —1/d,-1/d,...,~1/d))]||co
= ||Ealexp(diag(t —t/d,—t/d,...,—t/d))]|lcc
= ||Ea[diag(exp(t - t/d),exp(—t/d),. .. ,exp(—t/d))]l|eo
[

= ||Eal(e""¥? — e/ Yupul +e” t/dﬂd|||

t—t/d _ —t/d
= H(—-———e de )+e_‘/d) I,

The second last equality follows because Ea [uaug] = Iz/d. Setting ¢ = 1, the right hand of Equation 2
simplifies to

t—t/d _ —t/d
_ e

—t/d
- :

o0

dexp(—",'n)(HIEA[eXp(uAuX — %)]Hoc)n = dexpl—yn) ((61 1/dd_ e~1/d) . el/d)n

i
< dexp(—yn)exp(—n/d)exp((e — 1)n/d)
= dexp(—n(y+ (2 —e)/d)).

The last inequality uses the fact that 1 4+ = < e®. We consider two cases:

= dexp(—yn)exp(—n/d) (—— + l)n

Case 1: n > 8dlogd. Setting v = 1/d, implies that

Prp, [

M(D)] |, 2 3] < dexp (232).

which simplifies to Prp, [(1/7n)||N1(Dy)||eo = 2/d] < 1/(2n).

Case 2: n < 8dlogd. Setting v = (8logd)/n, implies that Prp_[(1/n)||N1(D;)||lec > (16logd)/n] <
1/(2n). Rewriting, the above inequalities proves the desired statement. O

Proposition 2.17 follows by using the lemma and the fact that the expected size of S;(D;) is at least n/2
(Claim 2.16).

Claim 2.16. Ep,[|S1(D,)|] > n/2.
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Proof. Consider two neighboring databases, D and D; such that 7, (D;) — Z1(D) = A € {-2,2}%. From
Lemma 2.10, we know that A is present in at least one of S1 (D) or S1(D;). Since every D has n such neighbors
Dy’s, the average size of S1(D) is at least n/2. Therefore, for a random database D,., Ep_[|S1(D.)|] = n/2. O

Proposition 2.17 (General case: 1-way inner products). Let A : ({—1,1}%)® — R? be any 1/2-differentially
private algorithm for I;. Then, with probability at least 1/n over D, chosen uniformly at random from D,
tr(Z(A(D,))) = Q(min{d? nd/logd}).

Proof. Let H1(Dr) = 1gripy M1(D;). Consider tr(S(A(D;)) H1(Dr)),

1
—_— tr(S(A(D))uau

- gfﬁﬂ S tr(uES(AD,))ua) = (d).

AGSl (Dr)

tr(E(A(DT))Hl(Dr))

The last equality follows by the definition of 51 (D, ).

Also, tr(2(A(D,))H1(D,)) < tr(2(A(D,)))||H1(D7)||oo. From Claim 2.16, we know that Ep_[|.51 (D, )|]
n/2. Let Fj be the event that |S;(D,)| < n/2. Since, Ep, [|S1(Dy)|] = n/2, the Pr[E1] < 1—1/n. Let E; be
the event that

11 (D)oo > max{en/ (d]$1(D,)]), (clog d)/|S1(Dx)}

for some constant ¢. From Lemma 2.13, we know that, with probability at least 1 — 1/(2n) over D,,

en clogd }
d|S1(Dy)]" 151(Dy)]

Since, ||H1(Dr)||ootm(Z(A(D;))) = Q(d), it implies that with probability at least 1 — 1/(2n) over D,, (for
some constant ¢’),

memusmw{

2
r(S(AD) 2 min { 15D IS -

Since with probability at least 1 — Pr[Eq], |S1(D;)| > n/2, we get that with probability at least 1 — Pr[E;] —
Pr[Es), Z(A(D,)) = Q(d?). Substituting, these probabilities implies that with probability at least 1/n,
S(A(D,)) = Q(min{d?, (nd)/ logd}). O

2.2.2 k-way Inner Products - Lower Bounds for General e-differential Privacy

The analysis uses ideas from Sections 2.1.2 and Sections 2.2.1. Let D C D be set of all databases from
({=1,1}%)™ who have at least one row of 1¢. The idea is to show that with probability at least 1/, either a
random database from D or a random database from D has big trace for its mean squared matrix.

Consider the random vector z, = Zj(r) from Section 2.1.2. Define another random vector 2, as 2z, =
71(1%) — 2, = 0 — 2, where 0 = 1™*, The following lemma is a generalization of the Lemmas 2.7 and 2.10.

Lemma 2.18. Let A be any 1/2-differentially private algorithm for Iy. Let A(D) =15 A(D'). Let Iy,(D') =
Ty (D) + % for some % € supp(Z;) and z = o— 2. Then, at least one of E[{A(D) — I(D), w2)?] or E[{A(D') —
(D", w2)?] is Q({mz, w2)2),

We consider random databases for the proof. Let D C D be set of all databases from ({1, 1}@" who have
at least one row of 1%. For a database D € D, consider the n neighboring databases* Dy, Do, ..., D,, where D;

“If D has arow of 1¢ (say the sth), then D = D; and z; = 0™k, For uniformity, we will still treat D and ]’:)L as neighbors.
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is obtained by replacing ith row of D by 14, The databases D, . .., Dy, belong to D. Let Tp(D)={21,.2:124}
denote the (multi) set such that Z(D;) — Zx(D) = % and z; = o — Z;. Define,

Sk(D) = {z € T(D) | E[{A(D) — Zx(D), 72)?] = Q(m32)}
My(D) =3 cs,(D) uzul and  Ng(D) = > 2eTy(D) Uy,

Every database in D has at least one row of ld For D € D, define Neig(D ) to be the set of all neigh-
bors of D obtained by replacing a row of 14 in D by a vector from {—1 l}d Consider a set of n databases
Dl, ..., Dy drawn independently at random from Neza(D) The databases Dy,..., D, belong to D. Let

( {zl, .. .,zn} denote the (multi) set such that Zx(D;) — I(D) = Z; and z; = Z; + o. Define,
Sk(D

) =
D) C T(D), My(D), and Ni(D) as
5e(D) = {z € T(D) | E[(A(D) ~ Z(D), 72)*] = Q(m})},
Mk(D) = Zzeé‘]c(f)) uzu;— and Nk(D) = Zzeﬁ(f?) uzu;r.
The following lemma follows by modifying the parameters of Lemma 2.13.

Lemma 2.19. With probability greater than 1—1/2n over Dy chosen uniformly at random from D, ol Dp}|oe 5
|| Ne(Dr)|loo = O(max{n/m,log myi}). Also for every D € D with probability (over the random choices of
Dy,...,D,) greater than 1 — 1/2n, ||Mg(D)||oco < ||Nk(D)||oo = O(max{n/my,log mg}).

Proof. Replace the parameter d in the proof of Lemma 2.19 by my. The proof requires that E,_[u.. u,

5]
I, /My (or E,, [zrz;r] = I, ), which can be established as in Lemma 2.4. ’

o

Claim 2.20. Let D, be a database chosen uniformly at random from D and D, be a database chosen uniformly
at random from D. Then, at least one of Ep, [|Sk(Dr)|] or Ep _[|Sk(Dy)|] is at least n/4.

Proof. Firstly Vz € supp(z,),
(2,2) = (mz,72) + (2,0)% /my.

Now consider the random vector z, = Zj(r) (where 7 € {—1,1}¢ is random). With probability at least
1-¢g%4 (2r,0) < Cmy (where ¢ > 1 and C < 1 are constants). Therefore, with probability at least 1 — ¢4,
(Tzp, w2p) > my(1 — C?) (as Vz € supp(2r), (2, 2) = my).

For a database D € D and D € D define,

Ry(D) = {2 € T(D) | ELA(D) - Tu(D), 72)%] = Q(mz, 72))}
R(D) = {z € TulD) | EQAD) - T(D),m2)%) = Q(rz, m2))}.

Let D, and ﬁr be random databases from D and ’5, respectively. Now every z € Si(D,) is an independent
copy of z,. Therefore, each z € Si(D,) independently satisfies (7z,7z) = Q(my) with probability at least
1 — ¢~%. By using this along with the definitions of Si(D,) and Rg(D,) implies Ep, [|Sk(D;)|] = (1 -

¢ %) IEDT[|R,¢ (D,)|]. Similarly, each z € Si(D,) independently satisfies (72, 7z) = 2(my) with probability at
least 1 — ¢4, 4 and therefore,

E [|Se(Dn)]] 2 (1 - ¢=?) E[|Ri(D;)]].
Dy Dy

We show that if Ep_[|Rx(D,)|] < n/2, then Eﬁr[lﬁk(ﬁT)H > n/2. Let Neig(D) to be the set of all
neighbors of D obtained by replacing a row of 1¢ in D by a vector from {—1,1}% Leto = 1™+,
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For any database D’ € Neig(D), we know (from Lemma 2.18) that at least one ofE[(.A(ﬁ) —Te(D), 2, ¥4
or E[(A(D) — i (D'), 72)?] is Q(rz,72)?) (where z = Ty (D') — Ix(D) +0). Now if Ep_ || Ri(D,)|] < n/2,
then

E(|D € Neig(D;) : Bltrz, AB,) = Tu( D)) = Az, 2} = e

Therefore, for a database D" chosen uniformly at random Neig(ﬁr), with probability at least 1/2,
E[(A(D,) — Zp(D,), m2)?] = Q({rz,72)?) where z = Ti(D") — T (D,) + o.

Therefore, if Ep, [| R (D;)|] < n/2, then Eﬁ[kﬁk(ﬁ,»)u > n/2.
Therefore, atleast one of Ep, [| Rk (Dr)|] orE5_ [Iﬁk(ﬁr)]] is at least n/2. Hence, at least one of Ep_[|Sk(D;)|]
or ]EET[|§;C(1~),.)|] is greater than (1 — ¢™%) - (n/2) > n/4. O

Proposition 2.21 (General case: k-way inner products). Let A : ({—1,1}%)® — R™* be any 1/2-differentially
private algorithm for Iy. Let D, be a database chosen uniformly at random from D and D, be a database
chosen uniformly at random from D. Then with probability at least 1/n, at least one of tr(X(A(D,))) or
tr(S(A(Dy))) is Q(min{m%, nmy/(log my)}).

Proof. We divide the proof into two cases based on Claim 2.20. Let o = 1™,
Case 1: Ep_[|Sk(D;)|] > n/4. Let £(A(D,)) = E[(A(D;) — Zx(D,))(A(D,) — Zx(D;))T]. By definition
of Sk(Dr),

Y (@) EAUD) ()= D E[{ADr) - Zi(Dy), m2)%] = Q(mi|Sk(Dy))).

ZES};(Dr) ZESI;(DT)
On the other hand,
Y (@) SUD))(rz) = tr(x TS(A(D, )2z ") = tr (vrTz<A<zz~>>7r >, =
ZESk(DT) Z€SA(DT) ZESk(Dr)

tr(r | S(A(D,))mmiMy (D))
7(7FTZ(-A( )T )| | M (Dr)| oo
tr(Z(A(D)))m|| Mi(Dr)loo-

Let Hi(D,) = My(D,)/|Sx(Dr)|. Equating the upper and lower bounds on Zze k(D )(WZ)TE(.A(DT))(WZ)
we get,

IA A

Q(my) = tr(S(AD) He(Dr)loo-

The remaining proof of this case is identical to Proposition 2.17. ||Hg(Dr)|lee = ||Mr(Dr)|loo/|Sk(Dr)].
Lemma 2.19 can be used to bound || M}, (D»)||c and by the assumption of thls case, Ep, [|Sk(Dr)l] = n/4.
Case2: Eg_ ISk (Dy)|] > n/4. The proofofthls case goes as in Case 1. We define, Hy (D, ) = My(D,)/|Sk(D,)),
and use Lemma 2.19 to bound ||A[k( Moo

Since by Claim 2.20 at least one of the cases hold, we get that with probability at least 1/n there exists a

database such that trace of its mean squared error matrix is 2(min{m3, kg d
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2.3 Strengthening the Lower Bounds - Getting ¢ into the Bounds

Let € be the privacy parameter. Let D,, € ({—1,1}%)%", Let R(D,) € ({—1,1}%)" be a database obtained by
replicating each row of D, exactly 1/(2¢) times. The first observation is that Zy (Dy) = Zy(R(D,)) - 2¢. Let A
be a differentially private algorithm that takes as input databases of size n. Define as follows an algorithm A’
that takes as input databases of size 2en.

ALGORITHM A'(D,)

1. Construct the database R(D,).
2. Run algorithm A with input R(D,), to get A(R(D,)).
3. Output 2¢ - A(R(D,)).

Claim 2.22. If A is e-differentially private then A’ is 1/2-differentially private.

Proof. Differential privacy composes well. We state the composition claim for the more general (e, ¢ )-differential
privacy.

Claim 2.23 (Composition and Post-processing [11, 31, 29, 211). If a randomized algorithm A runs k algorithms
A1, ..., Ak, where each A; is (¢;, §;)-differentially private, and outputs a function of the results (that is, A(z) =
g(A1( z), A2(2), ..., Ax(z)) for some probabilistic algorithm g), then A is (fo_ €;,€° ZZ 1 0;)-differentially
private.

Consider a database D, € ({—1,1}%)?", Consider a neighbor D/, € ({~1,1}%)%" of D,,. By composition
property of differential privacy (Claim 2.23), for every output set S

Pr[A(R(D,)) € S] < exp(1/2) Pr[A(R(D.)) € 8] = Pr[A'(D,) € 8] < exp(1/2) Pr[A'(D.) € 8].
Since the above inequality holds for all neighboring databases D,, and D.,, A’ is 1/2-differentially private. [

Claim 2.24. There exists a database D, € ({—1,1}%)%" such that tr(E[(A'(Dy) — Zi(D,))(A'(D,) —
Zi(Dy))T]) = Qmin{m2, (enmy,)/ log my}).

Proof. Since A’ is 1/2-differentially private (Claim 2.22), means that we can apply Proposition 2.21 to con-
clude that there exists a database D, of size 2en such that tr(E[(A'(Dy) — Ze(Dy)) (A'(Dy) — T (D)) T]) =
Q(min{m?, (enmy)/log mi}). O

Lemma 2.25. Let A be any e-differentially private algorithm for Iy. Let D, be the database such that
tr(S(A'(Dy))) = Q(min{m2, (enmy)/ logmy}). Then,

tr(S(A(R(Dy)))) = Q(min{mi/e?, (nmy)/ (e log my)}).

Proof. We equate tr(E[(A(R(Dy)) — Ti(R(D»))) (A(R(Dy)) — Zx(R(Dy))) T]) in terms of tr(E[(A'(D,) —
Zi(Dy)) (A (Dy) — Te(D,))T)).

tr(E[(A(R(Dy)) — Te(R(Du))) (A(R(Dy)) — Te(R(D))) T])
A(Dy)  Te(Dy)\ (A(Dy)  Ti(Dy) i
= (E 2¢ 2e )( 2 AQe ) J)

= L t(EA(D,) = Tu(D))(A(Dy) - Tu(Do))])

: m nmg
= | minq —¢,
( { 2 elogmy >




The last equality follows from Claim 2.24. 0

Theorem 2.26 (General Case). Let my = (z) Any algorithm A for releasing all k-way inner products that for
every database D € ({—1,1}%)" has an average mean squared error of min{o(my/€?), o(n/(elogms))} for
A(D) is not e-differentially private. Also, any algorithm A for releasing all k-way conjunctions that for every
database D € ({0,1}%)" has an average mean squared error of min{o(my/(2%¢?)), o(n/(2Felogmy))} for
A(D) is not e-differentially private.

3 Lower Bounds on Noise for Minimal Privacy

In this section, we introduce a new reconstruction attack based on analyzing the least singular value of random
correlated matrices. We then use the reconstruction attack to prove lower bounds on noise under the notion of
strong and attribute non-privacy. Lets first formally define these notions.

Definition 3.1 (Strongly Non-Private). An algorithm A is strongly non-private if there exists a distribution of
databases D over the domain ({0, 1}4)™ under which the rows of the databases are statistically independent
and there exists a set S C [n] with |S| = Q(min{n, d}) satisfying the following properties:

a. For any (not-necessarily polynomial time) adversary if D ~ D, the adversary can output any row of D
indexed by the elements of S with probability at most 2/3°;

b. There exists a polynomial time adversary such that if D ~ D, the adversary on input A(D) can output
1 — o(1) fraction of the rows of D indexed by the elements of S with probability at least 1 — negl(n).

Definition 3.2 (Attribute Non-Privacy). An algorithm A is attribute non-private if there exists a polynomial time
adversary, a database D € ({0,1}1)", aset S C [d+1] with|S| = d, and an integer t = Q(min{n, d}) such
that the adversary on given as input A(D) and the columns of D indexed by the elements of S, can reconstruct
1 — o(1) fraction of the first t entries of the missing column.

3.1 Upper Bounds for (Not) Strong Non-Privacy

Proposition 3.3 (Strong Non-Privacy upper bound). There exist an algorithm for releasing all k-way conjunc-
tions (Cy,) that is not strongly non-private and that for every database D € ({0, l}d)” and for every query in
Ci.(D) with constant probability adds O(min{+/nk log d, /myklog d}) noise.

Proof. We call an algorithm not satisfying Definition 3.1 as not strongly non-private. Call a set S C [n| good
if |S| = Q(min{n, d}). Call a distribution D good if for every good set S the following is satisfied: if D ~ D
any (not necessarily polynomial time) adversary can output any row of D indexed by the elements of S with
probability at most 2/3. An algorithm A4 is not strongly non-private if for every good distribution ID and every
set good S, no polynomial time adversary given as input A(D) (with D ~ D) can reconstruct 1 — o(1) fraction
of the rows of D indexed by the elements of S with high probability. We construct two different not strongly
non-private algorithms for C;, which when put together will give the claimed noise bound.

Random Sampling. Let I be a good distribution and let S be a good set. Consider D ~ . Define an
algorithm A, that does the following: (1) randomly selects 7/2 rows from D to construct a new database
Dgam, (2) evaluates all the k-way conjunction predicates on Dsgpm, and (3) releases the vector 2 - Cr(Dsom)-
Firstly, Agum 18 not strongly non-private because for all ¢ € S, any adversary can output the ith row only if: (a)

5The choice is 2/3 1s arbitrary. Our results also hold for larger constants.
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if the ith row is in Dy, or (b) with probability at most 2/3 if the sth row is not in D gy, Since S is a good set
the probability that any adversary can output 1 — o(1) rows of .S is negligible.

We now invoke Chernoff bound to argue about the noise. Consider some conjunction predicate ¢, & Cj.
Now for some constants b, b,

blog (2~
Pr |12 - ¢,(Dsam) — co(D)| = bnlog(?kmk)} < exp (—2 ‘- og( mk)) < 1

n - b’ka;C'

By applying a union bound it follows that the probability that

Ve, € Ck, Pr [l? + 8 (D g } = i} 2 \/bnlog(kak)} < 517

Adapting Differential Privacy. We use the fact that for some reasonable values of € and J any (e, §)-differentially
private algorithm is not strongly non-private.

Lemma 3.4. Any (€, 6)-differentially private algorithm ( ¥(e, ) such that (2/3)e + 8 is bounded away from 1)
is not strongly non-private.

Proof. Let A, be an (e, ¢)-differentially private algorithm satisfying the conditions of the lemma, we argue
that 4, is also not strongly non-private. Let D) be a good distribution and S be a good set. Consider D ~ ID.
Because of the guarantees of (e, §)-differential privacy, given .A4(D), no adversary (even with unbounded time)
can predict any row of D) indexed by the element of S with probability more than (2/3)e® + §. Therefore, the
probability that adversary can reconstruct 1 — o(1) fraction of the rows of D indexed by the elements of S is
negligible. ]

The SuLQ mechanism of Blum et al. [4] adds independent noise drawn according to normal distribution
with mean 0 and standard deviation y/my log(1/d) /€ to each entry in Cx(D). We set e = 0.1 and § = 0.1. By
Lemma 3.4, the SuLQ mechanism for these values of ¢ and § is not strongly non-private. A simple analysis of
the c.d.f. of the normal distribution, shows that for all predicates in Cj, with constant probability the noise added
will be O(y/my log(2kmy)).

Putting Together. Define a new algorithm A that when y/n < /my outputs Agem, (D), and when /my, < /n
outputs the result of the SuLQ mechanism. It immediately follows that A is not strongly non-private, and has
the claimed noise bounds. O

3.2 1-way Conjunctions - Lower Bounds for Strong Non-Privacy

In the analysis (for simplicity) we restrict our attention to monotone conjunctions. A monotone conjunction
predicate m,, : {0, 1}d — {0,1} for v € {0, l}d is defined as my(x) = [ [, z; - v, where value of v; indicates
whether the variable z; is present (if v; = 1) or absent (if v; = 0). Let M, be the subset of Cj. restricted to
monotone conjunctions. Since My C Cy, a lower bound for the monotone case automatically implies a lower
bound for the (non-monotone) general case.

Reconstruction Attack. Lets = (s1,...,,) € {0,1}" be some (secret) vector. We show that there exists an
adversary that can reconstruct 1 — o(1) fraction of the first min{n, d/2} entries of s if the privacy mechanism
allows d inner-product queries and adds min{o(y/n), o(v/d)} noise to every response. The analysis uses some
ideas from a recent attack proposed by Dwork and Yekhanin [15].
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Let a = min{d/2,n}. Let ® € {0,1}* be a vector with independent entries taking values 0 and 1 with
probability 1/2. Let ®4,...,®, € {0,1}* be d independent copies of ®. Let s| = (s1,...,8,) be the first a
entries of s. Define a matrix M of dimension d x a as follows: ith row of M is ®;. The attack works as follows:
for every row r in M, the adversary asks inner product of r with s|,, and receives noisy responses. Consider
any privacy mechanism 4. Let p = A(M s|,) be the vector of noisy responses generated by .A. Now if e is the
noise vector, then p = Ms|, + e. Let M = PT'Q be the singular value decomposition of M. Define a matrix
M' = QTT~1PT. Given p, the adversary uses M’ to constructs § = (51,...,5,) as follows: 3; = 1 if the ith
element in M’p > 1/2, and 0 otherwise.

Proposition 3.5 (1-way reconstruction attack). Let M be the d x a matrix as defined above. If any algorithm
adds min{o(v/d), o(r/n)} noise to each entry in M s, then there exists an adversary that can reconstruct 1—o(1)
fraction of the first min{n, d/2} entries of s, with probability at least 1 — exp(—cd).

Proof. We break the proof into two cases based on the relationship between d and 7.

Case 1: d > 2n. Let d be greater than 2n°. In this case 5|, = s. Now if e is the noise vector, then p = Ms +e.
Let M = PI'Q be the singular value decomposition of M. Here, I is a diagonal matrix of singular values of M
and P and @ are orthogonal matrices. P is d X d matrix, and @) is an n x n matrix. Now I' is a d x n diagonal
matrix, let I' = (%) Here G is an n x n diagonal matrix of singular values, and 0 is d — n X n zero matrix. We
use the following theorem of Rudelson and Vershynin to lower bound the least singular value of M.

Theorem 3.6 (Rudelson and Vershynin [34]). Let R be a d x n random matrix with d > n, whose elements are
independent copies of mean zero subgaussian random variable’ with unit variance. Let a1(R), ... ,on(R) be
the singular values of R in the non-increasing order. Then, for every v > 0, we have

Pr[on(R) € v(Vd — vn = 1)] < (ky)* " + exp(—7d),

where Kk, T > 0 depend (polynomially) only on the subgaussian moment of the random variable.

Corollary 3.7. The least singular value of matrix M is Q(\/d) with probability at least 1 — exp(—cd), where ¢
is an absolute constant.

Proof. Theorem 3.6 doesn’t directly apply to matrix M as the entries of M are not centered. However, M is just
a rank one perturbation of a random matrix whose entries are centered (M = R+ (1/2).J, where .J is the all 1’s
matrix and R is a random centered matrix satisfying the conditions of Theorem 3.6). The proof of Rudelson and
Vershynin (Theorem 3.6) can be extended to handle matrices that are small perturbations of random centered
matrices (proof of Theorem 3.10 shows how this can be done). O

Define G~1 = diag(1/a1(M),...,1/0,(M)). Define n x d matrix "' as (G~1|0T). Now, I"'T = I,
(identity matrix of dimension n x n). Define a matrix M’ = Q'T-1PT. Given p, the adversary uses M’
to reconstruct s. Since, M'p = s + M’e. Define § = (§,...,8,) as follows: §; = 1 if the ith element in
M'p > 1/2, and 0 otherwise. We now ague that if an algorithm adds o(y/n) noise to each entry in M s, then
with high probability dg (s, §) = o(n).

Now, M'e = QTT'"1PTeand ||M'e|| = ||QTT1PTe|| = ||l 1PTe|| (Q is an orthogonal matrix, there-
fore multiplication by it preserves the norm). Now since, || P e|| = ||e|| (PT is an orthogonal matrix) implies

[1M'e]| < [IT7H|oo| [P Tell = [T loollell = |G loollel].

Corollary 3.7 implies that with probability at least 1 — exp(—ed), ||G™ |0 = O(1/Vd).

EFor the proof it is only necessary that d be greater than (1 4 y)n for any constant v > 0.
7 A random variable Z is subgaussian if there exists b > 0 such that Pr[|Z| > a] < 2exp(~—a?®/b%) forall a > 0.
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Let us condition on the event that the smallest singular value of M is Q(+/d). Now,
1€} < [T lool el = O(llell/V/d).

Now if an algorithm adds o(+/n) noise to each monotone conjunction query then ||e|| = o(v/nd), which implies
that || M’e|| = o(y/n). In particular it implies that M’e cannot have {2(n) coordinates with absolute value above
1/2, therefore dy(s,8) = o(n). Since, by Corollary 3.7 with probability at least 1 — exp(—cd) the smallest
singular value of M is Q(+/d), therefore, if an algorithm adds o(+/n) noise to each entry in Ms, then with
probability at least 1 — exp(—cd), dy (s, §) = o(n).

Case 2: d < 2n. Let d < 2n. We can carry out the same analysis as in the previous case (n gets substituted
by d/2 in the analysis). So if an algorithm adds o(v/d) noise to each entry in Ms, then by using the previous
mentioned attack the adversary can construct £ such that dy (t, %) = o(|t|) = o(d). O

Strong Non-Privacy. We construct a database D € ({0, l}d)" from s and 91, ..., P, and show that there
exists an adversary that can reconstruct 1 — o(1) fraction of the first a rows of D; if given too accurate vector
M;1(D,). We assume that the adversary knows ®1,...,®,. The database Dy € ({0,1}%)" is constructed as
follows: (z,j)th entry of Ds is s; if the ¢th entry in ®; = 1, and 0 otherwise. Using the following we define a
distribution over databases to prove our strong non-privacy result (Theorem 3.9).

Lemma 3.8. Lez D, be the database as constructed above. If any algorithm adds min{o(~/d), o(/n)} noise to
each entry in M;(D;) (or C1(Ds)), then there exists an adversary that can reconstruct 1 — o(1) fraction of the
first min{n, d/2} rows of D, with probability at least 1 — exp(—cd).

Proof. From Case 1 of Proposition 3.5, if any algorithm adds o(y/n) noise to each entry in M;(D;) = Ms,
then the adversary can reconstruct 1 — o(1) fraction of s (and hence, 1 — o(1) fraction of the rows of D) with
probability at least 1 — exp(—cd). Similarly from Case 2 of Proposition 3.5, if any algorithm adds o(+/d) noise
to each entry in M (D;) = Mt, then the adversary can reconstruct 1 — o(1) fraction of the first d/2 entries of s
(and hence, 1 — o(1) fraction of the first d/2 rows of D) with probability at least 1 — exp(—cd). Putting these
two statements together concludes the proof of Lemma 3.8. O

Theorem 3.9. Any algorithm for releasing all 1-way conjunctions (Cy) that for every database D € ({0,1}4)"
adds min{o(v/n), o(v/d)} noise to each entry in C1(D) is strongly non-private.

Proof. Let a = min{n,d/2}. Let.S = {1,2,...,a}, be a set of row positions. Let $ be a random vector from
{0,1}¢. Let @1,...,®4 be d independent copies of ®. We fix these vectors ®;’s for rest of the construction.
We also assume that these ®;’s are known to the adversary. For a vector s € {0,1}", let D, be a database
constructed as follows: (%, j)th entry in D is s; if the ith entry in ®; = 1, and 0 otherwise. Define a random
variable (probability distribution) ID over the set of databases as follows: draw a vector s, uniformly at random
from {0, 1}™ and output D, .

Consider D ~ . Let consider some ith row where ¢ € S. Let E be the event that there exists a ®; such
that ith entry in ®; is 1. Conditioned on event E, an adversary can only predict the ith row of D by guessing
the ith entry in s,. Since s, is picked uniformly at random, this implies that conditioned on E no adversary can
guess the ith row of D with probability more than 1/2. Finally, since Pr[E] = 1/2¢, therefore, no adversary
can guess the ith row of D with probability more than 1/2 + 1/2d < 2/3. Thus, D satisfies the first condition
of Definition 3.1.

The attack described in Section 3.2 (Lemma 3.8) shows that there exists a polynomial time adversary that
can reconstruct 1 — o(1) fraction of the rows of S when given C; (D) with min{o(,/n), o(v/d)} noise in each
entry. Therefore, for ID, both the conditions of Definition 3.1 are satisfied. O
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3.3 Constant k-way Conjunctions - Lower Bounds for Strong and Attribute Non-Privacy

The idea is similar to the 1-way case. We will assume that k is a constant throughout this section. Let u; =
(u1(1),...,u1(n)),ug = (u2(l),...,u2(n)),..., ur = (uk(l),...,ux(n)) € R™be k vectors. The entry-wise
product of w1, ..., uEis, ug Qua ®@ - Quk = (ug(1) - ug(l)----- up (1), u1(2)  ua(2)-- - ug(2),...,ui1(n) -
uz(n) - ug(n)).

Reconstruction Attack. Let m, = (%f'). Let a = min{n,/d*/logd} (where ¢’ is the constant from
Theorem 3.10). Let ®4,...,%; € {0,1}* be d independent random vectors. Let ®;,3 = 1 (which is just
added for ease of analysis). Define a matrix M (%) of dimension my, % a as follows: rows of M (%) are the entry-
wise product of every set of k vectors from ®1, s, ..., P, 1. The attack works in the same manner as before:
for every row 7 in M) the adversary asks the inner product of + with s|,. The crucial difference comes in the
analysis of the least singular value of M (k), which we bound using the following theorem.

Theorem 3.10 (Least Singular Value). Let k be a constant. Let d*=* < n < ¢/d*/log d, where ¢ is a constant.
Let M®) be the m!, x n matrix as defined above (a = min{n, cd*/logd} = n). Let a1 (M®), ..., o, (M®)
be the least singular values of M®) in non-decreasing order. Then, there exists a constant ¢y, < 1 such that
Pr [0, (M®)) < ¢,d*/?] < e

Proof Outline for k = 2. The complete proof for k = 2 is presented in Section 4. The proof is a development
of techniques introduced in [25, 26, 33, 34]. The extension to larger constant k¥ follows easily. For k = 2 the
idea is as follows. Instead of analyzing o,,(M*)), we analyze the o, (B), where the rows of the matrix B are
all the entry-wise products ®; and ®;, where ®; € {®y,..., ¢I>d/2} and ®; € {q)d/2+1, ....®4}. Note that,
on(M (k)) > gp(B). In Lemma 4.4, we show that the vectors <I>d/2+1, ...®4 are in a certain regular position
with probability close to 1. Then we condition on these rows and obtain a matrix consisting of d/2 independent
groups of rows. Analysis of the behavior of the least singular value of such matrix is the core of the argument.
One important tool is bounding the small ball probability, which is the probability that the matrix B maps
a fixed vector in the unit sphere into a small ball in the space. Instead of obtaining a uniform lower bound for
| Bz||, we decompose the sphere in numerous regions, and estimate the probability that || Bz|| is small for each
part separately. The regions are defined by compressibility of the vectors. A vector is compressible, if its norm
is concentrated on a small number of coordinates. For each part we apply the epsilon-net argument especially
tailored for a certain degree of compressibility. Namely, the region is discretized, by using an epsilon-net for
a certain epsilon. Then we obtain a uniform lower estimate on the net, using the small ball probability and
the union bound. This estimate is extended to the whole region by approximation. This method requires a
careful balance between the small ball probability, and the size of the net. The better the small ball probability
is, the bigger epsilon-net we can consider, and so the bigger region we can cover. This balance dictates the
aforementioned decomposition of the sphere. The highly compressible vectors admit a small epsilon-net, and
can be treated as in [25, 26]. This is done in Lemma 4.12. The rest of the sphere is decomposed into regions
defined in Lemma 4.13, where we use a careful epsilon-net argument to obtain a uniform lower bound for each
region. Lemmata 4.14 and 4.15 show that the rest of the sphere can be assembled from these regions. This
allows to finish the proof by using the union bound. O

Corollary 3.11, When n = ¢/d*/logd, the least singular value of M%) is Q(d*/?) with probability at least
1 - exp(—cd).

Proposition 3.12 (k-way reconstruction attack). If any algorithm adds min{o(/n/logd),o(+/d*/logd)}
noise to each entry in M®)s, then there exists an adversary that can reconstruct 1 — o(1) fraction of the
first min{n, dk/ log d} entries of s, with probability at least 1 — exp(—cd).
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Proof. We divide the proof into three cases. Let k& > 2.

Case 1: n < d¥1. For n < d*~1, the proof follows by analyzing the Cases 2 and 3 of this proof with k
replaced by £ — 1. Consider all the entry-wise product of every set of k& — 1 vectors from ®q,..., ®4. Since
Bgy1 = 1¢ = 17, M®)s also contains inner-product of s with all these (k — 1)-way entry-wise products. We
get that if a private algorithm adds o(1/n/log d) noise to each entry in M(¥)s, then with probability at least
1 —exp(—cd), dp (s, §) = o(n).

Case 2: d¥~! < n < ¢’d¥/logd. The analysis is similar to Case 1 of Proposition 3.5. We use Theorem 3.10
to bound the least singular value of M&),

Analogous to Proposition 3.5, we take the inverse M’ of M () (defined using the singular value decomposi-
tion of M(*)), and show that || M’e|| < [|IT'"1||ool|€]|. Let us condition on the event that the least singular value
of M®) is Q(d*/?). Then,

1M’e|| = O(|lell/d"/?).

Now if an algorithm adds o(y/n) noise to each monotone conjunction query then ||e|| = o(d*/%,/n), therefore
||M’e]| = o(x/n). So again, M’e cannot have Q(n) coordinates with absolute value above 1/2, therefore
du(s,8) = o(n) (§ is constructed in the same manner as in Proposition 3.5). Since the least singular value of
M) is Q(d) with probability at least 1 — exp(—cd), therefore if a private algorithm adds o(+/72) noise to each
entry in M(*)s, then with probability at least 1 — exp(—cd), dy (s, 8) = o(n).

Case 3: ¢'d*/logd < n. Let b = ¢/d*/logd. We can carry out the same analysis as in the previous case for
this M) (n gets substituted by b in the analysis). Corollary 3.11 shows that the least singular value of M (k)
is £2(d*/?) with probability at least 1 — exp(—cd). If an algorithm adds o(+/d*/ log d) noise to each entry in
M) g, then with probability at least 1 — exp(—cd), the adversary can construct £ such that dg (¢, 1) = o(|t|) =
oflt): O

Remark: Substituting d = 2n in Proposition 3.5 or d = (nlogd)/* in Proposition 3.12 gives new attacks
for achieving blatant non-privacy. Our attack requires only O(n) queries. The main difference is that the
Fourier attack of Dwork and Yekhanin is deterministic (there is no failure probability), whereas our attack has
an exponentially small failure probability.

Strong Non-Privacy. We construct a database D, € ({0,1}%)™ as in Section 3.2: (i,7)th entry of D, is
s; if the ith entry in ®; = 1, and 0 otherwise. The proof of the following lemma follows along the lines of
Lemma 3.8.

Lemma 3.13. If any algorithm adds min{o(r/n/log d), o(1/d*/logd)} noise to each entry in My(Ds) (or
Ci(Ds)), then there exists an adversary that can reconstruct 1 — o(1) fraction of the first min{n, d*/log d}
rows of D with probability at least 1 — exp(—cd).

Proof. We split the analysis into three cases.

Case 1: n < d*~1. M(D,) = M®)s, From Case 1 of Proposition 3.12, if any algorithm adds o(+/7/ log d)
noise to each entry in My (D;), then the adversary can reconstruct 1 — o(1) fraction of the rows of s (and hence,
1 — o(1) fraction of the rows of D) with probability at least 1 — exp(—cd).

Case 2: d*"1 < n < ¢/d¥/logd. My(D,) = M) s. From Case 2 of Proposition 3.12, if any algorithm adds
o(y/n) noise to each entry in My (Ds), then the adversary can reconstruct 1 — o(1) fraction of the rows of s
(and hence, 1 — o(1) fraction of the rows of D) with probability at least 1 — exp(—cd).

Case 3: ¢/d*/logd < n. Let b = ¢/d*/log d. Since ®;’s are now random vectors from {0,1}?, the last n — b
rows of D, are 0¢. Let ¢ C s, be the vector containing the first b positions in s. Then, M(Dg) = MK,
From Case 3 of Proposition 3.12, if any algorithm adds o(+/d* / log d) noise to each entry in M (D), then the
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adversary can reconstruct 1 — o(1) fraction of the first b entries of s (and hence, 1 — o(1) fraction of the first b
rows of D;) with probability at least 1 — exp(—cd).
Putting these three cases together concludes the proof of Lemma 3.13. O

The proof of the following theorem is identical to Theorem 3.9 with Lemma 3.13 playing the role of
Lemma 3.8.

Theorem 3.14. Let k be a constant. Any algorithm for releasing all k-way conjunctions (Cy) that for every

database D € ({0,1}%)™ adds min{o(~+/n/logd),o(+/d*/logd)} noise to each entry in Cy(D) is strongly
non-private.

Attribute Non-Privacy. We construct a database D, € ({0,1}¢*1)" from s and @1, ..., ®,4 and show that
there exists an adversary that when given the first d columns of D, can reconstruct a major fraction of the
last column of D,. We assume that the adversary knows ®1,...,®,. The database D, € ({0, l}d“)" is
constructed as follows: the first d columns are @1, . .., ®4, and the last column is s. The proof of the following
theorem relies on the Proposition 3.12.

Theorem 3.15. Let k be a constant. Any algorithm for releasing all constant k-way conjunctions (Cy,) that for
every database D € ({0,1}%"1)™ adds min{o(+/n/logd), o(\/d*~1/logd)} noise to each entry in Cx(D) is
attribute non-private.

Proof. Let D, be a database with ®1,...,®, in its first d columns and s in the last column. Now, Cx(D,)
contains all the entries of M *~1) s, Now consider an algorithm A that releases Cr(D,) with

min{o(y/n/ logd), o(1/d*~1/logd)}

noise to each enﬁy. Set t = min{n,d*~1/logd}. By Proposition 3.12, there exists an adversary that, can
reconstruct 1 — o(1) fraction of first ¢ entries of s (first ¢ entries of the last column of D,,). O

4 Bounding the Least Singular Value

In this section, we provide the proof of Theorem 3.10. Throughout this section C, ¢, ¢/, etc. denote absolute
constants, whose value may change from line to line. The constants in the proof are not optimized. For v € N
define the function log( by induction. For N > 0 set log)) N = max(log N, 1). If log"" is defined, then

log""*) N = max(loglog™ N, 1).

We start off by restating Theorem 3.10 in a more general form. Fixing v = 1, gives the previous statement of
this theorem. We ignore ®4, 1 (as having that only leads to increase in the least singular value).

Theorem 4.1 (Theorem 3.10 Restated). Let k be a constant. Let d,n,y be natural numbers such that dk-1 <

n < 1(,';(%’; R Let my, = (z) Let ® € {0,1}" be a vector with independent entries taking values 0 and 1 with

probability 1/2. Let @1, ..., P4 be d independent copies of ®. Let M %) be a matrix of dimension my x n whose
rows are then entry-wise product of every set of k vectors from @1, ..., ®4. Then there exists a constant ¢y, < 1
(where cy, depends only on k) such that,

Pr [an(./\/f(k)) & chk/Q} < g~
provided d is big enough (d > d(k,~)).

27



We now present the full proof for the £ = 2 case. The extension to higher &£’s is similar. We start off by
restating Theorem 4.1 for the £ = 2 case.

Theorem 4.2 (Theorem 4.1 for k = 2). Let d, n,~y be natural numbers such thatd < n < Iocg'f(‘ii = Let mo = (‘Zi)
Let @ € {0, 1}" be a vector with independent entries taking values 0 and 1 with probability 1/2. Let ®1, ..., 94
be d independent copies of ®. Let M®) be a matrix of dimension ma x n whose rows are then entry-wise product
of every pair of vectors from ®1,...,9,4 (e, P10 Py, 21 O P3,...,P4_1-C Py). Then there exists a constant
¢ < 1 such that,

Pr [JH(M(2)> < c“’d] < e,
provided d is big enough (d > d(7)).

Over the next few subsections we prove statements needed for the proof of Theorem 4.2. In Section 4.4, we
put together all these statements to prove the theorem. The idea is to show that

Pr [3:0 € 8" Vst ||MPg|| < c“’d} < exp(—cd).

Notations. The Euclidean sphere centered at origin is denoted by S™~1. For a vector x € R™, z(i) represents
the ith entry of the vector. The Euclidean distance from a point p to a subset T" is denoted by dist(a,T’). For
vectors z,y € R™, y > z if each entry in y is greater than the corresponding entry in z. We will let [z, y] denote
the set of all vectors z such that z < z < y.

Consider a subset 7 of R”, and let & > 0. A a-net of T is a subset N~ C T such that for every x € T one
has dist(z,N') < a. Throughout this section, we would use the following well-known result about c-nets.

Proposition 4.3 (Bounding the size of a o-Net [30]). Ler T" be a subset of S "1 and let a > 0. Then there
exists a a-net of T' of cardinality at most (1 + 2/a)™.

4.1 Norm estimates

Let IV be a natural number. Denote by W the set of all N x n matrices V' satisfying

VIl SC(\/N+ V11 1og%i|> 3)

for all subsets J C {1,...,n}. Here V|; denotes the submatrix of V' with columns belonging to .J.

Lemma 4.4. Let V be an N x n random £1 matrix (each entry in V is 1 or —1 independently with probability
1/2). Then,
Pr[V ¢ W) < eV,

Proof. Letz € SN~1, and lety € S* ! NR’. Then, (z, V| y) is a subgaussian random variable® of variance
1. Hence, ,
Pr|{(z, VIjy)| > t] < e™

forany t > 1. Let J C {1,...,n}, |J| = m. Let N be a (1/2)-net in S¥~1, and let P be a (1/2)-net in
Sn=1 N RY. Then

V151l < 4 sup sup{z, V],y).
€N yeP

8 A random variable Z is subgaussian if there exists b > 0 such that Pr[|Z| > a] < 2exp(—a?/b*) forall a > 0.
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The nets A/ and P can be chosen so that |[A/| < 6% and |P| < 6™ (by substituting & = 1/2 in Proposition 4.3).
Let ¢’ be another constant. Combining this with the union bound, we get

Pr[||[V]s| = 4] < |N]-|P]- g~ 1% o exp (—16¢t* + (m + N)log6) < et

provided that t > C(v/N + /m). Applying the previous inequality with ¢ = t,, = VN + \/m+/log(en/m),
and taking the union bound, we get

PV W <Y 3 PilIVivll > 4wl £ Y (5) e

m=1J:|J|=m m=1
e en\ 2 en
< E exp (—C (\/N + vy /log —) + mlog —) £ g~
e m m

For the second inequality we used the fact () < (en/m)™. O

Lemma 4.5. Let A = (\;;) and A’ = (X} ;) be two N x n matrices, whose entries are independent random
variables, taking values 0 and 1 with probability 1/2. Let B = (by ;) be the N? x n matrix with entries
b= Miyg+ Ay o where k= (i — 1)N +1 ! for i,i' € [N]. Let R be the N? x n matrix, all whose entries equal
1/4. Then, for some constants C,c,

Pr[||B — R|| > CN] < exp(—¢N).

Proof. Set6;; =2X;;— 1and6" —-2)\’ 1. Then()JandQ o= 1, N,j=1,...,nareindependent
+1 random variables, Let ¢/ = 1 ,IN. Smce Mijj = (65; + 1)/2 and /\ = (6; ; +1)/2, the matrix B can
be decomposed as

1 1 1
B= Zl-B’ + ZB” - —B’” + R,

where the matrices B’, B”, B" have entries bj, ; = 0; ; - 9{,], by =g, Uy =0 ;fork = (i = )N + 7,

respectively. The matrix B” consists of N copies of the N x n matrix U with entries ; ;. Hence, ||B”|| =
V/N - ||U]. Since U is a &1 random matrix, a (1/2)-net argument similar to the one used in Lemma 4.4 yields,
Pr[||B"|| > CN] = Pr[|U| > CVN] < &=V

A similar inequality holds for the norm of B".
The matrix B’ can be written in a similar fashion: B’ = (U7,..., UN) where U, is the N x n matrix with

entries uy ; = 0; ; 91-, i Hence,

Pr[||B'|| > CN] < Pr[3ist. |Ui] > CVN] < ZPI [|Us]| > CV/N].
U; conditionedon 6 = (6;; | 4= 1,...,N, j =1,...,n)is a =1 random matrix. We obtain
Pr([|U;]| > CV/N] = E[P[| Uil > CVN [ 4] < e,

Together with the previous inequality this implies (for some constants ¢, /)
Pr[||B']| > CN] < Nem®¥ < 9N,

The result follows by combining the bounds for the norms of B’, B”, and B". O
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4.2 Small Ball Probability - Bounds for the Lévy concentration function

Starting from the works of Lévy [23], Kolmogorov [22], and Esséen [16] a number of results in probability
theory have been concerned with the question of how spread the sums of independent random variables are.
Lévy concentration is a convenient way to quantify the spread of a random variable.

Definition 4.6. Let p > 0. Define the Lévy concentration function if a random vector X € RY by

L(X,p) = sup Pr[|X —z| < g].
zeRN

The Lévy concentration function measures small ball probabilities which is the likelihood that the random
vector X enters a small ball in the space. We will use the following standard lemma.

Lemma 4.7. Let X € RN be a random vector, and let X' be an independent copy of X. Then, for any p > 0

L{X,p) < VP X - X'|| < 2p].
Proof. Letx € R™. Then
(PrlllX — 2]l < A)? = Pef|lX — ]| < pand | X' — | < g] < Pul|| X — X'|| < 24].
Taking the supremum over z € R™ completes the proof. O
Fort € (0,1) and z = (z(1),...,z(n)) € S~ define the vector z|, € R™ by
zl¢(j) = z(Jj) 'X[—t,t](x(j))»
where X[_) (z(4)) is the indicator function that is 1 if —t < z(j) < t, and 0 otherwise. Denote
Ii(z) = supp(zl; — zly2) = {7 € {1,...,n} | /2 <|z(5)| < t}.

Lemma 4.8. Let CN < n < N2 Lett > 0, and let z € S™! be a vector satisfying m := |I;(z)| > C'. Let
U = (ui ;) be any N x n matrix with +1 entries. For j = 1,...,n let v; € RN be the vector with coordinates
v;(4) = z(J) - uij. Let m1, ..., My be independent +1 random variables. Assume that U € W. Then,

= N
L Zejvj,C\/N- llz|e]l | < exp (——C—> .

N e T
j=1 ;? + 1Ug P

Proof. Denote J = supp(z|z) and I = I(z). Let n;,...,n, be independent copies of 71,...,7,. Let
n=(,--.,Mn), and 7’ = (71, ..., 7). Conditioning on {n;},¢, and applying Lemma 4.7, we obtain for all
p>0

L (Z;;l njvjyp) <L (Eje] mvj,p) X \/PT {HZjeJ(Wj = T)})UjH < P}-

Consider a function F : R/ — R, defined by

F(y) = |1> yvs|| = IVyll,

jed
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where V' is the matrix with columns v;,j € J. Then F is a convex function with the Lipschitz constant’
L = ||V||. Note that V' = U|; - H, where H is the diagonal matrix: H = diag(z;);cs. For ! € N denote
L={jeJ|27% <|z()| <2'"}. Let Q = {l € N | I, # 0}. Then

1/2
L< §(||Ulz,-r%>;lx<j>\)2
Since U € W,
1/2
L<C Z(N+|m 10g|1|) P
leQ
1/2

<C{NE+> L) 1ogm Po2
le@

To bound the last expression denote Q1 = {j € Q | [;| £ |I1]}. Since the function f(z) = zlog(en/z)
increases on the interval (0, ean),

Z 11 - log 27242 < |11 - log — ZQ 22 < ||g]y||? - log —

Also, foranyl¢Q1,100m<log l""
I - log == . 2722 < L) 27282 | log 2 < |lzy]® - log ..
> |nf-log > g7 < lelell - log 77

leQ\Q1 leQ\Q1

Combining the previous inequalities, and using 2 - [I;] < Hm[tHQ, we obtain

1/2 N en \ /2
L<C(Nt2+1 2logm) <C .L|< + 1o ) .

By Talagrand’s measure concentration theorem for convex functions [36],

cs®
Pr[|F(nly — 1|s) - M(F)| > s] < 2exp (_ﬁ) ,

where M(F') is a median of F. This tail estimate implies
5.\ 1/2
IM(F) — (E[Fz]) | < ecL.

Since |I1| = |I;(z)| = 7,
1/2

VEIF =v2 [ Y llyl* | = V2N - lzf] > 4L,

jeJ

®The Lipschitz constant is the smallest value K such that |F(a) — F(b)| < K||a — b]| for all a, b in the domain of F.
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if the constant C” is large enough. We conclude that (3/4) - \/E[F?] < M(F) < +/E[F?]. Hence,
\

| Pr || S0 = s | < V- lelell| < P [IF(als = /L) = MCP)] > 3 VETF
jeJ
<] DY (_ii—>
‘ C‘(p( L2 ) exp % +log|—%

This inequality and Equation 4 finish the proof. O
Lemma 4.8 implies the following

Corollary 4.9. Lett > 0. Let x € S™ ! be a vector satisfying ||z|;|| > n~2 and m = |I;(z)| > clog N. Let

= (\;;) bea {0 1} matrix of size N x n. Forj = 1,...,n let w; € RN be the vector with coordinates
w](z) = ;1:(]) Ay Setvij = 2X; ; — 1, and assume that V = (v, ;) € W. Letm, ..., Ny, be independent 1
random Varzables Then, with the notatzon of the previous lemma,

‘ L N
L wj,eV'N - ||z Lexp | =——— )+
(;n j | |t||) p( T g

‘Proof. Note that w; = %vj —+ %_o, where 0 = 1V, Hence,

n 1 1 n
Zijj = §Zniwj+§ Z?]j - 0.
=1 i=1 =1

Since ‘Z 1 773‘ < n, and ||| = V/N, the vector 1 (Z?:1 77j) -d belongs to an interval in RV of length nv/N.
Covering this interval by balls of radius c¢v/N - |z]¢||, we obtain

ks nvN & =
Zr)jwj,C\/fV—- lz|s]] | € —=———"L Z%‘W;C\/ﬁ' ¢l

=1 C\/ﬁ- ||x|tH j=1
The result follows from Lemma 4.8, since ||z|:|| > n~2, and m = |I;(z)| > clog N. O

For the next result we need the following simple lemma.

‘Lemma 4.10. Let ay,...,an be independent non-negative random variables such that Prla; < K| < p for all

i € [N). Then,
Pr {Za <

Proof. 1f "I, a2 < L K2N, then a; < K for at least N/2 numbers . ]

Proposition 4.11 (Small Ball Probability). Let A = (\;;) and A" = (X; ;) be two N x n matrices, whose
\entries are independent random variables, taking values 0 and 1 with probablltty 1/2. Let B = (by ;) be the
N? x n matrix with entries br; = Aij - Ay e where k = i(N — 1) + i’ (obtained from Lemma 4.5). Let V be
the N x n matrix with entries v;; = 2X; ; — 1

1\310—-
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Lett > 0, and let z € S™1 be a vector satisfying ||x)¢|| > n~2, and m = |Iy(z)| > clog N. Then

A . cN?
L(Bz,cN - ||z|¢|| and V € W) = sup Pr((||Bz — yl| < eN-||z|||) and (V e W)] < exp | ———— | .
YERN? m T log

Proof. Let X and Y be random variables. Then, for any measurable sets £, F

Pr[XesandYef]=15(Pr[Xeg|Yef]-Xf(y))

<supPr[X €€ |Y € 7,
YEeF

where x#(Y') is the indicator random variable which is 1 if ¥ € F, and 0 otherwise. Hence,
L (Bz,cN - ||z|¢]l and V € W) < sup L (Bz,eN - ||z|¢|| | V).
vew

Here L is the Lévy concentration function with respect to the random entries of A, while the matrix A’ (and

so V € W) is fixed. For j = 1,...,n denote by w; the vector in R with coordinates w;(i) = z(j) - Ab e

Decompose RV f = f\il E;, where E; = span(e;_1)N41,---,€in) (Where P represents direct sum and e,

is the vector with a 1 in position ¢ and 0’s everywhere else). Then, for any ¢ = 1,..., N, the projection of the
2 . g . .

vector Bz € RY" on the subspace E; is distributed like

n
Xzi = E )\i,jwj.
j=1

Fix 4, and denote 1; = 2A; ; — 1. Then,

B =

1 n n
Xi=5D mwj+5 > w
24 1 e

J: j:

where the last term doesn’t depend on the random variables 7y, . . ., 7,. Hence, by Corollary 4.9,
n ;N
£(X;,2eVN - |lzlel) = £03 e, VN - |lala]) < exp (—J—_Vﬂ—g_) .
j:l m m
By definition,
N
Lp(Bz,eN-|lzlsf| |V) < sup Pr [ZHXi —yil]> < AN - als|? - N | V]
Y1, yn ERY =1

Since the random variables || X; — ;|| are independent, the proposition follows from Lemma 4.10. o

4.3 Decomposition of the sphere

To prove the main result, we will decompose the sphere into several regions, and treat them by applying different
modifications of the epsilon-net argument. The regions will be defined by the degree of compressibility of the
vectors. We say that a vector is compressible, if it can be approximated by another vector having a relatively
small support. The idea of classifying vectors according to their compressibility comes from [33, 34]. But
unlike [33, 34], where the vectors were divided simply into compressible and incompressible, we use here a more
elaborate scheme. In the following subsection we investigate vectors with different levels of compressibility.
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4.3.1 Highly compressible vectors

Lemma 4.12. Let Sy be the set of all points x € S™ L which can be decomposed as x = y + z, where
supply 0 3 > Po
Yl log Tl/.N

for some appropriately chosen constants cg, po. Let A, A', B be as in Lemma 4.5. Then
Pr[3z € Sy s.t. ||Bz|| < eN] < exp(—¢'N).

Proof. Denote U = A — 2R. Then 2U is an N x n random %1 matrix with independent entries. Then, for any
x € 81, 2Uz € RY is a vector with independent coordinates of variance 1. Hence,

LUz, c1 \/N) < gV 4)

Also,
Pr[|U] > C1VN] < e™°",

Let P : RV — RY be the orthogonal projection, whose kernel is spanned by the vector o = 1. Then the
previous inequality implies

Pr[||PA|| > C1VN] = Pr[||PU| > C1V/N] < e~
Let @ : RN — R™? be the block-diagonal matrix Q = diag(P,..., P). Then ||QB|| < VN - | PA|, so
Pr[||QB| > C1N] < e™". (5)
Let H = \/n - [~0,0],and let s, ...,y € H be a (¢1/2)v/N-net in H. Here

1
= Vil VR

By (4), forany z € S*!

Pr(||PAz| < (c1/2)V'N] < Pr[dist(Uz, H) < (¢1/2)V'N]
< Pr[3i < ¢st dist(Uz,y;) < cl\/ﬁ]
<0 -LUz,e;VN) < e N,

For any i € {1,...,N} let z; be the vector with coordinates z;(j) = A}, - z(j). Denote by Pry and
Pry the probability with respect to the entries of A and A’, respectively. By the Paley-Zygmund inequality'?
Pra[||lzil| € K] < p for some absolute constants k, ¢ < 1. Let 1/2 < 7 < 1 and let §2 be the event that
||z;|| < & for at least 7N indices i. Then

N .
> (Z) N ©

1 )
7’-10g—)> Se*m,
7,

10Paley—Zygmund inequality states for a random variable Z that Pr[|Z| > a] > (E[Z?] — a)?/E[Z*].

Pr(]

IA

SNexp(N-((1—7’)-10g1e
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if the constant 7 is appropriately chosen.
Let Cy be a constant to be chosen later. Let S be the set of all matrices A’ that don’t satisfy (. We get

Pr{|QBz|| < CoN] < sup Pr(|@Bz|| < CoN | Al + Pr(Q]. (7)
AeSg !

The vector Bz € RY” consists of NV blocks of the form Az;. Hence,

lQBz|* Z 1P A

For A’ € Sg, there exists aset  C {1,..., N} such that || > (1~ 7)N and ||2;|| > & forall ¢ € I. Assuming
that | PAz;|| > (¢1/2)V/N - ||z]| forall i € I, we get

1QBz| 2 (e1/2)VN -k /(1= 7)N =: GoN.
Therefore, for A’ € Sg,
Pr(|@QBz| < CoN | A] < Pr[3i € |1 s.t. [[PAzi]| < (c1/2VN - flas| | A
< II] T o R,
Combining this with (6) and (7), we get that for any = € go=+

Pr[||QBz| < CoN] < eV,

The proof now finishes by another application of the epsilon-net argument. By the volumetric estimate (cf.
Proposition 4.3), there exists a po-net A in the set {y € S®~1 | |supp(y)| < m} of cardinality

e 3
s () () s (es (55) ).
m 0 Potm
The last inequality follows by using (:l) < (en/m)™. Then,

Pr[3z € Nst. |QBz| < CoN] < |N|- e ¢N <=V

if m < ¢gN/log(n/N) for some constant ¢y. Assume that for any z € N ||QBz|| > CyN. Let 2’ € Sp, and
choose z € N such that ||z’ — z|| < 2po. Then the inequality (5) implies

|Bz'|| 2 ||@QBx'|| = |QBz|| - QB - ||z’ — ||
> CoN = C1N -2p > Co/2- N

for an appropriately chosen pg. O

4.3.2 Remaining Part of the Unit Sphere

We start with deriving a uniform lower estimate of ||Bz|| over a certain part of the sphere. To this end we
combine the bound of Proposition 4.11 with the epsilon-net argument.
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Lemma 4.13. Ler I,m € N be such that |, m < n, and let b,r,t € (0,1). Consider the set S(1,b,m,t) of all
points x € 8™, which satisfy ||z|¢]| = b, |I(z)| = m, and can be decomposed as T = u + v, where

|supp(u)| < I, vl < e1b.
Assume that
m > Clog N; ' (8)
cn coN?
llog —
B~ X +log & o

Let B and R be the matrices defined in Lemma 4.5. Then,

r2
Pr[3z € S(l,b,m,t) s.t. ||BZ|| < cNb, |B— R| < CN, andV € W] < exp (—%) .
‘R Ogm

Proof. By the standard volumetric estimate (cf. Proposition 4.3), there exists a ¢, b-net for the set {u € S*~! |
|[supp(u)| < !} of cardinality less than

l
n 6 cn
==} & llog — ) .
(1) (c1b> < exp (1log )
Any such net is a (2¢;b)-net for S(I, b,m, t). Hence, there exists a (4¢1b)-net N C S(l, b,m, t) satisfying

|INV| < exp (l log cl—?;-) .

Denote A = [—h, h], where h = (/n,...,/n) € R™. Denote
T = (¢/2)Nb, (10)

and lety1,...,yr € Abe a T-netin A. Here,
2n
T< —.
T

| Letz € N. By Proposition 4.11,

N2
Pr(dist(Bz,A) <7and V € W] < Pr[3j £ Tsit. |Bx —y;|| <27] < T -exp (—,\—(—>

N iloge
( ¢N? >
S exp e
= - log ==
Thus (9) implies that
/N2 . ./N2
Pr[3z € N s.t. dist(Bz,A) < 7and V € W] < |[NV] - exp (——N—C—e;) < exp (l log ?— - V—C—;)
e ~+ 10g o r =y + lug =
/ ) N?
< exp ——N(——CL)—? ) (11
o T ieg =

if we choose ¢y = ¢/ /2. Assume now that the following events hold.
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A% € S(I,b,m,t) such that | BE| < 7/2;

Vew,;

|IB—R|| < CN.

Let z € N be such that ||z — #|| < 4¢1b. Then

dist(Bz, A) = dist((B — R)z, A)
< dist((B — R)&,A) + (B — R)(& — 2)||
< dist(B#, A) + ||B — R|| - ||Z — z||
< T/2+CN4Cle T,

where the last inequality follows from (10) and an appropriate choice of the constant ¢;. Therefore,

Pr[3z € S(I,b,m,t) s.t. ||Bz|| < cNb, |[B—R|| <CN, andV € W]
< Pr[dz € N s.t. dist(Bz,A) < Tand V € W)
" 9 2
< exp _N_(c% 3
=4 logto
- The last step follows from Equation 11. This completes the proof of the lemma. O

Lemma 4.13 allows to prove the uniform bound for bigger sets of vectors.

Lemma 4.14. Let b,t < 1 be real numbers satisfying

ClogN < % < nt/2,
Let V (1, b, t) be the set of all points z € S™ Y, such that ||z|¢|| > b, and which can be decomposed as = = y + z,
where

supp(v)| <1, |lz]| < (er/2)b

and | satisfies

cn C0N2 nt?
— < = here 9 = —. 12
b~ (9 +2)logd W b2 (12)

Let A, \’, B be as in Lemma 4.5. Then

llog

Pr[3z € V(I,b,t) s.t. ||Bz|| < eNb, ||B—R|| <CN, andV € W] < exp(—cN).

Proof. Let x = y + z be a decomposition as above. Set 7 = (cy/2)bn~1/2 (where ¢; is defined in 4.13).
Decompose a vector y according to the sizes of its coordinates: ¥ = u + v + w, where w = y|,, v = y|; — w,
and u. = y — ylz. Then ||lw|]|] < 7y/n < ¢1/2b. Thus, 2 = (u + v) + (w + z), where |supp(u + v)| < [, and
|w + z|| < e1b. Furthermore, decompose the coordinates of v in dyadic blocks:

T1

v = 5 vp,  Where v, = ylg-rp — Ylo—r-14.
r=0
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Here r, is the smallest number such that 2771t < 7, so
nt?
7 < clog (7) .

2/2 < llyle = yl-l> = lloell?,
r=0

Since

it can be easily shown that there exists 7 < r; such that ||y|s-r4]| > b/2, and Hvrl[2 > b2/4r1. Indeed, let
ro < 71 be the biggest number such that ||y|g-ro;|| > b/2. Assume that ||v.||*> < b%/47; for all 7 < rq. Then
370 llor]|? < b%/4, and so

r=
1

[ylaro-1ell* = Y llorl? 2 6/4,

r=ro+1
which contradicts the maximality of rg.
Therefore, this r satisfies
[[vr]? b? R
|supp(vr)| 2 o= > > =:m.
TR T AR T 2 (%—f;)

For this definition of m, i
log — < 2logd,
m

and so the inequality (12) implies condition (9). Since b/t > C'log N, the condition (8) is also satisfied. In the
notation of Lemma 4.13 this means that z € S(l,b/2, m,27"t). Thus, we have shown that

71
V({,bt) c | S, b/2,m,27"1).
r=0

Thus by Lemma 4.13,

N2
Pr[3z € V(I,b,t) s.t. ||Bz|| <cNR ||[B-R||<CN,andV € W] <r; -exp ( ———(———>

e
et log 2
< exp ( *—‘—'——CONQ )
= T (ND :
(22 4 2) log ¥
Since by the assumptions of the Lemma, ¥ < ¢n/ log® N the last quantity does not exceed e =V, cl

We now provide a uniform estimate for the || Bz|| over z € S7~ 1\ Sp.
Lemma 4.15. Assume that _
cN?
n< ———.
(10g(7) N)?
Let A, N, B be as in Lemma 4.5. If N > N(v), then

Pr[3z € 8" 1\ Spst. ||Bz|| <N, |B-R|| <CN, andV € W| < exp(—cN).
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Proof. We define the numbers [y < {; < ... < [, by induction. Set

N
7 logn/N’

Forl < j < ysetb; = pp- (c1/2)j‘1, and t; = y/l;_1. Remember, that pg is a constant from Lemma 4.12,
and c; is a constant from Lemma 4.13.
Also, define sets S; by

j-1
S5 = (S" T\ )\ (U V(lir i, ).
=0
We claim that any z € S; satisfies ||z|s,|| > b;. Indeed, assume that ||z|s,|| < b;. Since z ¢ So,
|zl¢, || > b1 = po. Hence, there exists ¢ < j such that ||z|¢,_, || > b;—1, while ||z|,,|| < b; = (¢1/2)b;—1. Any
z € §*1 satisfies lsupp(:c — l‘lti)l < tz’_2 =1[;i_1,80x € V(li—labi—l,ti—l)-
The numbers I; will be chosen so that

Pr(3z € S; NV (l;,b;,¢;) s.t. ||Bz| <eNb; ||[B—R|| <CN,andV € W] < exp (—cN)
forany j € {1,...,7}. Set
cN?
I = log—gN-
then [ = [y satisfies condition (12) with ¢ = ¢; and b = b;. By Lemma 4.14, the inequality (13) is satisfied.
Let j > 1, and assume that /;_; is already constructed. Set J; = %j; Then forany 1 < 7 <«

NYo; _ Nt} __ Clog®N

=% L
n ~ b5 T Npo(er/2)i=t =77
provided that N > N (). If
eN?
77 3log? ¥,
then 5
cn clog”¥;
log — < log ——="1_ < log4¥,,
BT = B poler/2pT = B

whenever N > N («) for some appropriately chosen N (). Thus, condition (12) is satisfied. Again, in this case
Lemma 4.14 implies (13). i
Note that by construction /; > @%QIIT for any 7 > 1. Thus the claim of the lemma follows by summing

up inequalities (13) over j =1,...,7. O

4.4 Proof of the Theorem 4.1

Assume that
¢N?

n<—————.
(log(™ N2

Then
cN2

& el e =
~ log*tU N’
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Set N = |d/2], and let A and A’ be matrices whose rows are the vectors ®1,...,®xy and Py yq,..., Dy,
respectively. Form the matrix B, as in Lemma 4.5. Then o, (M®) > o,(B) (as B is constructed out of a
subset of rows of M (). We have,

Pr {UH(M(Q)) < c”’“N] <Pr[3ze Ss"=1st||Bz|| < c7+1N]
<Pr[3ze S |Bz| <N, ||[B-—R| <CN, andV € W] +Pr[|B - R| > CN|+Pr[V ¢ W].

The last inequality uses the fact that for any events E1, Eq, E3, Pr[E;] < Pr[E; and E and Es3] + Pr[Es] +
Pr[Es]. The proof finishes by combining Lemmas 4.4, 4.5, 4.12, and 4.15. These lemmas bound each of the
probability term on the right hand side to exp(—cd) (for some absolute constant c). O
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A Lower Bounds for Instance-Independent Additive Case

1-way inner products. Let A be an algorithm that adds instance-independent additive noise. Let Z € R be the
additive noise distribution. The covariance matrix'!, £(A(D)) = E[(A(D) — E[A(D)])(A(D) — E[A(D)]) ],
is independent of D (i.e., VD, £(A(D)) = © = E[(Z — E[Z])(Z - E[Z])T]). The proof of the following
lemma is identical Lemma 2.1.

Lemma A.l. Let A be any e-differentially private algorithm for I, that adds instance-independent additive
noise. Let A(D) = I 4(D) + Z. Let A(D) ~ A(D'") = A(D) + A for some vector A € {—2,2}%. Then,

E[(A(D) - E[A(D)], A)?] = E[(A(D') — E[A(D")], )] = E[(Z — E[Z])(Z - E[Z])"] = Q(d*/¢*).
The rest of the proof follows as in Section 2.1.1. We get the following result.

Proposition A.2 (Instance-independent additive case: 1-way inner products). Let A : ({=1,1}%)® — R® be any
e-differentially private algorithm for I, that adds instance-independent additive noise. Let D be any database
which has at least a row of both —1¢ and 1%. Then, tr(Z(A(D))) = Q(d?/€%).

k-way inner products. The analysis is same as for unbiased case which is explained in Section 2.1.2. We get
the following results.

Lemma A.3. Let 4 be any e-differentially private algorithm for I, that adds instance-independent additive
noise. Let D,, D%, D be the databases in Section 2.1.2. Let z = Ty(D%) — Ix(D) and 7 = I,n, — 00" /{0, 0).
Then, E[{A(D.) — E[A(D,)],n2)?] = Q({rz,m2)?/e?).

Proposition A.4 (Instance-independent additive case: k-way inner products over {—1,1}9), Let A : {—1,1}¢ —

R™* be any e-differentially private algorithm for Ty, that adds instance-independent additive noise. Let D, = 1%,
Then, tr(S(A(D.))) = Q(mi/e?).

Theorem A.5 (Instance-independent additive case). Let my = (g) Any algorithm A for releasing all k-way
inner products that adds instance-independent additive noise and that for every database D € ({—1,1}%)" has
an average variance of o(my/€*) for A(D) is not e-differentially private. Also, any algorithm A for releasing all
k-way conjunctions that adds instance-independent additive noise and that for every database D € ({0,1}%)»
has an average variance of o{my/(2%€%)) for A(D) is not e-differentially private.

'"'All our results for instance-independent case also hold if we replace the covariance matrix, by mean squared error matrix
Z(A(D)) = E[(A(D) = Zy(D))(A(D) = T (D)) ] = E[ZZ7).
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B Going From Inner Products to Conjunctions

Let Dy be a database from ({—1,1}%)". Let the Boolean variables 1, . . ., y4 represent the d columns of D4
(i.e., column ¢ in D4+ contains assignments to variable y;). Define variables z1,...,24 as z; = (y; + 1)/2.
Construct Dy € ({0,1}4)™ from D4 by replacing all the —1’s by 0’s. The variables 1, . .., x4 represent the d
columns of Dg.

Let us set £ = 2, and look at all the 4 possible conjunctions on two variables x; and zz. The conjunction
predicates on z1, x» and the inner product predicates on y;, y; can be related using a Hadamard matrix as,

n 1 1 1 1 Czizg (Do)
iyj (D:b) 1 -1 1 -1 Cz,3; (Do) (13)
z%y; (D:h) 1 1 —1 —1 c"iil'Z (DO)
(W5 T 1 -1 -1 1 Czy3;(Do)

U H v

Ul = 2(|v]].

Now consider the vectors, Z3(D+ ) (= 2-way inner product predicates evaluated on D), Z; (D4 ) (= 1-way
inner product predicates evaluated on D), and Zp(D+) = (n), and let Z<2(D4 ) be a concatenation of these
three vectors. By an extension of Equation 13, it can be shown that

I<2(Dy) =11 diag(H, ..., H) - Ca(Dy),
where diag(H, ..., H) is a block diagonal matrix and IL is a suitable projection matrix. Therefore,
1 Z2(D1)| < [|Z<2(D+)l| = I+ diag(H, ..., H) - Ca(Do)| < 2||C2(Do).

In general, for higher k’s, ||Zx(D+)|| < 2%/2||C(Dp)||. The following proposition and corollary follow imme-
diately.

Proposition B.1. If there exists an algorithm A for Cy, that has tr(3(A(Dy))) < T, then there exists an
algorithm B for Ty, that has tr(S(B(Dyx))) < 2F/°T.

Corollary B.2. Ifthere exists a database D € ({—1,1}%)" such that no algorithm B for Iy has tr(Z(B(D))) <
T, then there exists a database D* € ({0,1}%)" such that no algorithm A for Cy, has tr(S(A(D*))) < T/2F/2,

C Extension to (¢, 6)-differential Privacy

Our results extend to (¢, §)-differential privacy. Let$ start by formally defining (e, §)-differential privacy.

Definition C.1 ((e, )-differential privacy [13]). Let § = &(n) be a negligible function of n. A randomized
algorithm A is (¢, 6)-differentially private if for all neighboring databases D, ', and for all sets S of possible
outputs Pr[A(D) € 8] < exp(e) - Pr[A(D’) € S| + 4. The probability is taken over the random coins of the
algorithm A.

Let X and Y be random variables taking values in a set O. We use X =) Y to indicate that random
variables X and Y are (e, §)-indistinguishable, i.e.,

VS C O,exp(—e¢) - Pr[Y € §] — § < Pr[X € 8] < exp(e) - Pr[Y € S] +4.
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C.1 Lower Bounds for Instance-Independent Additive (¢, §)-differential Privacy

If A is an (e, 0)-differentially private algorithm that adds instance-independent additive noise then there is an
easy extension of Theorem A.S.

Theorem C.2 (Instance-Independent Additive Noise: Extension of Theorem A.5). Let my = (f) Any algo-
rithm A for releasing all k-way inner products that adds instance-independent additive noise and that for every
database D € ({—1,1}%)" has an average variance of o(m(1 — 8)?/€%) for A(D) is not (e, §)-differentially
private. Also, any algorithm A for releasing all k-way conjunctions that adds instance-independent additive
noise and that for every database D € ({0,1}%)" has an average variance of o(my(1 — 8)2/(2%€?)) for A(D)
is not (€, 0)-differentially private.

C.2 Lower Bounds for Unbiased (¢, §)-differential Privacy

Unlike the instance-independent additive noise case, there is no extension of the lower bound in Theorem 2.9 to
(€, §)-differential privacy. In fact, we now show that any (¢, d)-differential privacy mechanism can be converted
into an unbiased (¢, §)-differential privacy mechanisms with a little more noise. We analyze lower bounds for
general (e, §)-differential privacy mechanisms in the next subsection.

Lemma C.3. Let F be any function class. Let A be any (¢, 6)-differential privacy mechanism for F, there exists
an unbiased (¢, 28)-differential privacy mechanism B for F such that for all databases D, tr(Z(B(D))) <
tr(Z(A(D))) + (|Fn)/4.

Proof. Define B as follows:

A(D) with probability 1 — 4,
B(D) = { F(D)=(1-8) ELA(D)]
3

with probability 6.

B is unbiased because for all D, E[B(D)] = F(D). Since, A is (¢,0)-differentially private, B is (¢, 26)-
differentially private.

Let m = |F. Let F(D) = (f1(D), ..., fm(D)). Similarly, let A(D) = (A(D), ..., An(D)) and

B{D) =(By[ DYy s .5 B (D)) ;h en, for every j € [m], E[(B;(D) — f;(D))? can be bounded as,
- & : 2
B5(0) - 5O = (- OB(AD) - )]+ 8 (HEZCEDHADL )
— N2(f. = 2
= (1= §E[(A(D) - fy(Dyy + E LRI BA D))

A

E[(A;(D) = £3(D))?] +n?/6.

The last inequality follows because 0 < f;(D) < n and 0 < E[A;(D)] < n. Therefore,

tr((B Z <> (B — £i(D))?] +n?/8) = tr(Z(A(D))) + mn? /.

=1

0
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C.3 Lower Bounds for General (¢, §)-differential Privacy

We state the extensions of the statements in Section 2.2 to (¢, §)-differential privacy. Let us first consider 1-way
inner products (Z).

Lemma C.4 (Extension of Lemma 2.10). Let A be any (1/2,6)-differentially private algorithm for I,. Let
A(D) =125y A(D'). Let Ty(D') = T1(D) + A for some A € {—2,2}. Then at least one of E[{A(D)
I, (D), A)?] or E[{A(D") — Ty (D"), A)?] is Qd*(L - 6)).

Proof. AsinLemma 2.10 we set X = (A(D) —Z;(D),A),Y = (A(D') - T1(D'),A),anda = ATA = din
Lemma 2.11. 0

Using Lemma C.4 instead of Lemma 2.10 in the proof of Proposition 2.17 we get the following result.

Proposition C.5 (Extension of Proposition 2.17). Let A : ({—1,1}%)" — R% be any (1/2,6)-differentially
private algorithm for T,. Then with probability at least 1/n over D chosen uniformly at random from D,
tr(Z(A(D))) = Q(min{d?(1 — 6§)?,nd(1 — §)?/ logd}).

Even for higher way inner products, the extension is easy. Let £(A(D)) = E[(A(D) — Zx(D))(A(D) —
T (D)) T]. Using the same framework as in Section 2.2.2 we get.

Lemma C.6 (Extension of Lemma 2.18). Let A be any (1/2,6)-differentially private algorithm for Tj. Let
A(D) =95 A(D"). Let Ty(D') = Ii(D) + Z for some Z € supp(Z,) and 2 = o — Z. Then, at least one of
E[{A(D) = T(D), n2)?] or E[(rz, A(D') = Zp(D"))?] is Q(mz, m2)2(1 — 6)?).

Using this lemma, Proposition 2.21 can be extended as follows.

Proposition C.7 (Extension of Proposition 2.21). Let A : ({—1,1}¢)" — R™* be any (1 /2, 8)-differentially
private algorithm for Iy. Let D, be a database chosen uniformly at random from D and D, be a database
chosen uniformly at random from D. Then with probability at least 1/, at least one of tr(E(A(Dy))) or
tr(X(A(Dy))) is Qmin{m}(1 — 6), nmy(1 — §)?/ log my}).

By using the trick described in Section 2.3 we can introduce ¢ into the lower bound. The algorithm A’ will
be (1/2, (e“d)/(2¢))-differentially private (using Claim 2.23). For small €, ¢4 /(2¢) ~ 4.

Theorem C.8 (Extension of Theorem 2.26). Let my = (f) Any algorithm A for releasing all k-way inner
products that for every database D € ({—1,1}%)™ has an average mean squared error of

min {0 (mx(1 — 8)2/€%) ,0 (n(1 - 5)%/elogmy) }

for A(D) is not (¢, 6)-differentially private, Also, any algorithm A for releasing all k-way conjunctions that for
every database D € ({0,1}%)™ has an average mean squared error of

min {o (mk(l - (5)2/(2k62)> ,0 (n(l - 5)2/(2kelogmk))}

Jor A(D) is not (e, §)-differentially private.
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