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Abstract 

Calculations of fluid flows are often based on Eulerian description, while calculations of solid 
deformations are often based on Lagrangian description of the material. When the Eulerian 
descriptions are used to problems of solid deformations, the state variables, such as stress and 
damage, need to be advected, causing significant numerical diffusion error. When Lagrangian 
methods are used to problems involving large solid deformations or flu id flows, mesh distortion 
and entanglement are signifi cant sources of error, and often lead to failure of the calculation. 
There are ignificant difficulties for either method when applied to problems involving large 
deformation of solids. To address these difficultie s, particle-in-cell (PIC) method is introduced in 
the 1960s. In the method Eulerian meshes stay fi xed and the Lagrangian particles move through 
the Eulerian meshes during the material deformation. Since its introduction, many improvement 
to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, 
pp. 236) provides a mathematical foundation for an improved version, material point method 
(MPM). of the PIC method . 

The unique advantages of the MPM method have led to many attempts of apply ing the method to 
problems involving interaction of different materials, such as fluid- structure interactions . These 
problems are multiphase flow or multimaterial deformation problems. In these problems 
pressures, material densi ties and vol ume fractions are determined by satisfy ing the continuity 
constraint. However, due to the difference in the approximations between the material point 
method and the Eulerian method, erroneous results for pressure will be obtained if the same 
scneme used in Eulerian methods for multiphase flows is used to calculate the pressure . To 
resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to 
higher order of accuracy in the sense of weak solutions for the continuity equations . Numerical 
examples are gi ven to demonstrate the new scheme. 
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Summary. This paper describes the application of the material point method to compute 
interactions of materials undergoi ng large deformation on the basi s of an averaged equation 
model. The main focus is on the numerical schemes of the material point method needed to 
compute material interactions . 

1 INTRODUCTION 

Calculations of fluid flows are often based on an Eulerian description, while calculations of 
solid defonnations are often based on a Lagrangian description of the material. When 
Eulerian descriptions are used on problems of solid deformations, the state variables , such as 
stress and damage, need to be advected, causing significant numerical diffusion error. When 
Lagrangian methods are used on problems involving large solid deformations or fluid flows, 
mesh distortion and entanglement are significant sources of error, and often lead to failure of 
the calculation. There are significant difficulties for either method when applied to problems 
involving large deformation of solids. To address these difficulties, the particle-in-cell (PIC) 
method was introduced in the 1960s. In the PIC method the Eulerian mesh stay fixed and the 
Lagrangian particles move through the Eulerian mesh during the material deformation. Since 
its introduction, many improvements to the method have been made. The work [1] of Sulsky 
et al. provides a mathematical foundati on for an improved version, the material point method 
(MPM), of the PIC method. 

The unique advantages of MPM have led to many attempts to apply the method to 
problems involving interactions of different materials, such as fluid- structure interactions, 
projectile-target interactions, and impact of an object on a structure. Such applications of 
MPM encountered unique issues absent from a calculation for a single material. These issues 
include satisfying continuity conditions in mixed cells which contain two or more materials, 
and calculation of material acceleration in these cells . Due to the difference in the numerical 
approximations b tween the material point method and the Eulerian method, erroneous results 
and instabilities will be obtained if the commonly used schemes in Eulerian methods for 
multiphase flows are used. The purpose of the present paper is to describe schemes proven 
effective in resolving these issues in the application of MPM to problems involving 
interactions of materials. 
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2 AVERAGED EQUATIONS FOR MATERIAL INTERACTIONS 

The starting point of our work is the system of averaged equations [or multi-material 
interactions. The M PM is used to solve the continuum equations for the materials involved. 
The material points are used as Lagrangian points to trace motions in the continuums . Unlike 
particles in a discrete element method (DEM) or in a molecular dynamic (MD) simulation, 
where particles interact directly with each other through prescribed force laws, in MPM, 
mat rial points, sometime also called particles , do not interact directly with each other. The 
effects of their interactions are considered on the mesh nodes according to the constitutive 
relation of the materials. The motion of a material is described by a system of partial 
differential equations with the volume fraction, velocity and stress of the material defined 
everywhere in the computational domain . 

This system of equations is obtained from the extension of averaged equations for disperse 
multiphase flows. In a disperse multiphase flow, there is only one continuous phase. All other 
phases are in the form of particles, droplets or bubbles with characteristic size much smaller 
than the problem domain. In problems involving multi-material interactions, such as fluid­
structure interactions , often the interacting materials have sizes comparable to the size of the 
problem domain. For these problems the equations of motion for the materials have been 
derived [2]. For many practical cases the momentum equation for material i can be written 
as [2], 

(1 ) 

where U j is velocity of material i , Pi is the macroscopic density, 8j is the volume fraction, P 

is the pressure in the system, (J i is the stress in the material, f i is the interaction force acting 

on the material, and g is the gravity acceleration. In thjs equation, the definition of force ( is 

related to the definition of the pressure P [2]. The model for force (needs to consider many 

physical interactions , such as drag, lift, added mass force, and Basset force, in disperse 

multi phase flows. For many practical problems force ( can be simply modeled as a drag 

related to the relative motion of materials, and the pressure P is selected to be the pressure of 
the "'softest" material or fluid in the problem. This momentum equation allows a material to 
have its own stress (J i or pressure. This model of material interaction is called multi-pressure 

model. This is important for a problem involving interactions of many materials. For 
instance, in the study of breakup of a porous solid in air, the air pressure is always positive, 
while the solid material does not break without a tensile stress . Therefore it is important to 
allow for different stresses in different materials as in ( 1). 

Momentum equation (l) is written in a form that is more convenient for solution using the 
MPM. To understand its physical meaning, we can write it as 

PO( Ou i + u " VU ]= V'(J + ((J .+ PI ) ' V (}; + ~. +pOg. 
I at I I I I O. () / I 

I I 

(2) 

11,1 this fOlTI1, the first tenn on the right hand side represents acceleration due to stress 
divergences as in the momentum equations for a solid motion. The second term represents 

2 
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surface traction on material interfaces . At the material interface V B, is a vector with direction 

along the inward normal n of the material. The magnitude of V Bt is of order 1/ Llx , where 

Llx is the mesh spacing. As the mesh is refined, the second term on right hand side of (2) 
becomes the traction force acting on the material interface. 

This momentum equation together with the mass conservation equation for each material 

a:; + V' . (PIUt) = 0, (3) 

and the continuity equation 

(4) 

form a closed equation system when the constitutive models for stresses and the material 
interaction force are provided. Equation (4) is an additional requirement for multi-material 
interactions. For single material motion, the volume fraction for the material is always one; 
and (4) is satisfied automatically. For multi -material interactions or multiphase flows, this 
equation is used to determine the pressures in the materials. 

3 MATERIAL POINT METHOD 

The material point method is an advanced version of the PIC method developed by Harlow 
in 1960s. During the last half century, the PIC method has been applied to various problems, 
and has being improved along with the advances of computers and mathematical theory of 
numerical computation. Currently the MPM is based on the mathematical theory of weak 
solution to the governing equations [I]. This theory for MPM is extended here to solve the 
averaged equations for material interactions listed above. In this section, we only list the 
steps of MPM needed in a successfu l calculation of multi-material interactions. Readers 
interested in their derivations are referred to references [ I] and [4]. These steps are either 
modified from or straightforward extension of the steps in the classical MPM method for 
computation of single material motions. The modifi ed steps considers effects of material 
interactions which are absent in single material problems. 

In a MPM, the domain is divided into cells similar to the finite volume method. As in the 
finite volume method, a node I is associated with a volume ~ . Differently from the finite 

volume method, we also put Lagrangian material points into the cells . Material po int p of 
phase i is assigned a mass m ip and a volume Vip' Unless there is a phase change, the mas 
associated with a material point does not change during the calculation. Velocity of a 
material is calculated at nodes and at material points . Velocities defined on nodes and 
material points are re lated by shape function Sf defined on the mesh nodes. The finite volume 
mesh is Eulerian; it is fixed in the calculation. Material points are Lagrangian points; they 
follow motion of the material. They are used to track deformation history of the material. For 
thi s reason, in a material point method, the stress crip of material i is calculated on the material 
points . The time advancement in a MPM is divided into a Lagrangian step and a material 
motion step, similar to the procedure in an arbitrary Lagrangian Eulerian (ALE) method. The 
Lagrangian step of the time advancement is based on momentum equation (1), and is 
discretized as [4] 

3 
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L n 

mil U
il - U

il = - L Vip ( <r ip + P I )· V' S I ( x iP ) + (-8i V P + f i + 8iPig)VI , (5) 
D.t p=1 

where superscript L denotes the Lagrangian step and superscript n denotes the current time 
step, the summation is over the material points representing phase i in the domain , and mil is 

the mass of material i in the control volume associated with on node I. The mass mil on node 

1 i calculated from the mass on the material point as 

mrf = LmipS/(xiP) ' (6) 
p=1 

where Xi!' is the position of material point p of phase i. 

In (5 ) the Lagrangian velocities are calculated on the nodes. Then velocity on material point is 
updated by interpolating the Lagrangian velocity change to the material points a~ 

N 

U ~+I = u~ + L(U /i --U i/ )SI(XiP ) , (7) 
1=1 

where N is the number of nodes in the problem domain. The positions of the material points 
are updated with the velocity interpolated from the mesh node to the positions of the material 
points as 

N 

X~+I = x~ + L O.5(ut +U ~ )SI (xiP )~t . (8) 
1=1 

Using this updated veloci ty and positions of the material points, the velocity at a mesh node is 
updated as 

U ~+I = ~miPu ~+I S/ (X ~+l) /~miPS/ ( X~+I). (9) 

The processes of updating the locations of the material points and then using the material 
point velocities to update the node velocities correspond to the advection process in an ALE 
calculation . 

3.1 Calculation of strain rates 

Steps described in (6) to (9) are the direct generalization from the MPM usd in a 
calculation of a single material. Step (5) is al so an extension of the method for a single 
material, but with additional terms. Although the pressure gradient term and the interaction 
force term appear only in multi-material interactions, they can be calculated straightforwardly 
as in an ALE method. The special issues related to material interactions in (5) concerns the 
mass m il associated with node I. In a multi-material problem, the node may be near a material 

interface and the cells w ith node I may contain only one material point far away from the 
node. In this case, according to (6) the mass m il assoc iated with the node may be very small 

because of the small value of the shape function StCxp). As a consequence, the acceleration 
and the Lagrangian velocity u / calculated from (5) could be very large and results in a 
numerical instability. If this velocity is used to calculate the strain rate in the cells around the 
node, an unphysical strain rate may be obtained and result in instability of the calculation. 
Therefore, for problems involving material interactions, the Lagrangian node velocity should 

4 
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not be used to calculate the strain rate in a time explicit scheme. From (7) we find that such 
large node acceleration resulting from small mass on the node does not cause large 
acceleration of material points, because the large node velocity difference is multiplied by the 
same small value of the shape funct ion, when the node velocity at time step n+ I is calculated 
from (9). The effects of the small mass on the node and the resulting instability have been 
greatly reduced. The strain rate should then be calculated using the node velocity obtained 
from (9) after the material points have been moved according to (8) . With such calculated 

strain rate, the stress cri~+1 can be updated using the constitutive relation of the material. 

3.2 Calculation of volume fractions 

Calculation of material interaction requires solving for volume fractions in the problem 
domain. The continuity condition requires that the volume fractions of a ll the materials sum to 
one. This condition is automatically satisfied in a single material case. For calculation of 
multi-material interactions, relation (4) is used to determine pressure in the system [3]. In 
MPM , the volume fractions are calculated as 

B i = ~ L v ip S / (X iP ) ' (10 ) 
/ p=i 

where Vip is the volume of the material point p, and ~ is the control volume associated with 

node 1 . There is an error of O[(fufJ in this calculation of volume fraction, where d = I if there 

is a sharp material interface and d = 2 for a spatially smooth volume fraction. Therefore after 
summing such calculated volume fractions over all materials , equation (4) cannot be satisfied 
exactly and we can only have 

(1 1 ) 

If we still force the right hand side of (11 ) to be one to find a pressure, the error will 
accumulate quickly. Only in a few time steps, the accumulated error will overwhelm the 
result and lead to failure of the calculation. To overcome this difficulty, one needs to find a 
way of satisfying the continuity condition (4) consistent with the worlGng principle of the 
MPM method, namely, a weak solution to the governing equations. A weak form of (4) needs 
to be derived for the MPM method and is found [4] to be 

! ( ~ II, }I (u J, V ( ~ IIi } = 0 , ( 12) 

where 11m is the mixture veloc ity. Equation ( 12) can be physically interpreted as, that 
following mixture motion the volume fraction sum is • incompressible". 

4 NUMERICAL EXAMPLES 

The numerkal schemes outlined above have been implemented in our code named 
CartaBlanca [5]. Figure 1 shows a two-dimensional calculated spall of a porous solid . The 
porous solid is surrounded by air. The spall is caused by a plate impact on the top surface 
(shown as a dashed line in Fig. 1) of the bottom plate which has twice of thickness of the top 
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plate. The plates are made of the same material and are modeled as linear el astic until fa ilure. 
The failure happens when the tensile stress exceeds a stress limit. Although in this calcu ation 
the effect of air is negligible, to demonstrate the capabili ty of this combinatjon of the 
averaged equation model and the advanced MPM, the a ir flow is explicitly calculated . In this 
calculation, the impact veloci ty is 100 mls . The density of the material is 2700 kg/m3, 
Young's modulus is 70 GPa, and Poisson' s ratio is set to zero. According the analytical 
calculation of the elastic waves generated from the impact, the damage (shown in red) should 
occur at 1.12 ~s after impact. Our numerical results show damage at about 1.18 ~s. 

Figure 1. Snapshot of a spa ll calculation. Figure 2. Calculated damage pattern (shown in red) 
and stress on the target. 

As an application of the capability of modeling crack formati on, we calculated the damage 
patterns in a half-cylinder dropped from 3.66 m . The result is shown in Fig. 2. Despite the 2-
dimensional calculation performed, the result is in qualitative agreement with experimental 
results. A full 3-dimensional calculation is currently undenvay to compare with experiments 
in detail. 

Figu re 3. Snapshots of projectile-target interaction. 
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Figure 3 shows an axisymmetric calculation of penetration of a projectile into a cylinder of 
armor steel, where ductile properties of the material and the effects of large deformation are 
important. In this calculation the Johnson-Cook constitu tive model [6] is used . This 
calculation indicates that as the projectile penetrates the target, the projectile material coats on 
the wall of the hole created by the pr~j ectile. Figure 4 shows the nose and tail positions of the 
projectile compared with experiments . 

11 ~--~--~--~~~====c===~==~ 
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• experiment nose 
o experiment tail 

. Mesh size: 115x31 
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Figure 4. Comparison of nose and tail po itions with experi ment. 

5 CONCLUSIONS 

The combination of recent advances in the material point method and the continuous 
multiphase flow model, especially the multi-pressure model, has been shown to significantly 
enhance capabili ty in numerically simulating multi-material interactions, especially for large 
deformations . Examples calculated using the multi-material interaction model and the 
enhanced MPM method show satisfactory comparison with theoretical and experimental 
results. 
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