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ABSTRACT

Currently the Office of Naval Research is supporting the development of structural
health monitoring (SHM) technology for U.S. Navy ship structures. This application
is particularly challenging because of the physical size of these structures, the widely
varying and often extreme operational and environmental conditions associated with
these ships’ missions, lack of data from known damage conditions, limited sensing
that was not designed specifically for SHM, and the management of the vast amounts
of data that can be collected during a mission. This paper will first define a statistical
pattern recognition paradigm for SHM by describing the four steps of 1.) Operational
Evaluation, 2.) Data Acquisition, 3. Feature Extraction, and 4.) Statistical
Classification of Features as they apply to ship structures. Note that inherent in the
last three steps of this process are additional tasks of data cleansing, compression,
normalization and fusion. The presentation will discuss ship structure SHM
challenges in the context of applying various SHM approaches to sea trials data
measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude,
the paper will discuss several outstanding issues that need to be addressed before
SHM can make the transition from a research topic to actual field applications on ship
structures and suggest approaches for addressing these issues.

INTRODUCTION

The extensive literature on structural health monitoring (SHM) has documented
the critical importance of detecting damage in structural systems at the earliest
possible time. As a result the Office of Naval Research is now sponsoring applied
research activities that are investigating the application of SHM to ship structures.
This paper will summarize the challenges associated with this application. It is
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emphasized that this paper focuses on SHM applied to ship structures as opposed
mechanical systems onboard the ship. The reader is referred to the literature on the
U.S. Navy’s Integrated Condition Assessment System (ICAS) for a more detailed
summary damage detection in ship mechanical systems [1].

One monitoring technique available for ship structures is vibration-based damage
detection, which is based on the principal that damage in a structure, such as material
yielding, a loosened connection or a crack, will alter the dynamic response of that
structure, There has been much recent work in this area that is summarized in detailed
reviews of vibration-based SHM [2,3]. Because of random and systematic variability
in experimentally measured dynamic response data, statistical approaches are
necessary to ensure that changes in a structure’s measured dynamic response are a
result of damage and not caused by operational and environmental variability.
Although much of the vibration-based SHM literature focuses on deterministic
methods for identitying damage from changes in dynamic system response, we will
tocus on approaches that follow a statistical pattern recognition paradigm for SHM
[4]. This paradigm consists of the four steps of 1. Operational evaluation, 2. Data
acquisition, 3. Feature extraction, and 4. Statistical classification of features. Each
portion of the paradigm will now be discussed in the context of applying it to damage
detecticn in ship structures.

THE STATISTICAL PATTERN RECOGNITION PARADIGM FOR SHM
APPLIED TO SHIP STRUCTURES

The statistical pattern recognition paradigm for SHM will now be defined in more
detail. Each subsection of this discussion attempts to highlight how the portions of
this paradigm apply to SHM for ship structures in general and the HSV-2 Swift sea
trials specifically (shown in Fig. 1). The HSV-2 Swift is a 98 meter wave-piercing
catamaran that has been built to U.S. Navy specifications by Revolution Design in
Tasmania, Australia. This high-speed vessel has gone through sea trials to establish
safe operating limits based on performance measured obtained in calm water powering
trails and rough water seakeeping and structures trials. During the sea trials strain
gages and accelerometers were used to monitor the ship’s structural response. Ship
control functions and wind-wave environments were also monitored. Structural
instrumentation included primary load strain ages, stress concentration strain gages,
secondary load strain gages and strain ages used to monitor specific equipment
locations such as the ramp and crane. A detailed summary of the instrumentation and
testing protocol can be found in [5].

OPERATIONAL EVALUATION APPLIED TO SHIP STRUCTURES

Operational evaluation attempts to answer four questions regarding the
implementation of a damage identification capability: 1. What are the life-safety
and/or economic justification for performing the SHM? 2. How is damage defined for
the system being investigated and, for multiple damage possibilities, which cases are
ot the most concern? 3. What are the conditions, both operational and environmental,
under which the system to be monitored functions? 4. What are the limitations on
acquiring data in the operational environment?



Operational evaluation begins to set the limitations on what will be monitored and
how the monitoring will be accomplished. This evaluation starts to tailor the damage
identification process to features that are unique to the system being monitored and
tries to take advantage of unique features of the damage that is to be detected.

For most large defense systems, the lifetime maintenance costs typically exceed
the purchase price of those systems. Therefore, there is significant economic
advantage to be gained by reducing these maintenance costs, which motivates the
development of SHM systems for ship structures. Clearly, because people will be
operating these ships in adverse environments, both man-made and natural, a robust
SHM system can potentially prevent harm to the crew by alerting the operators to
damage before it reaches a critical state. Therefore, there is also a life-safety motive
for developing SHM systems for these ships.

For the HSV-2 Swift ship it is anticipated that three types of damage are of
interest: 1. Yielding of structural elements, 2. Crack initiation and propagation
(particularly at joints), and 3. Corrosion. However, there is no a priori knowledge of
where this damage might occur and no definition of critical levels of damage that must
be detected. Corrosion is not considered in any of the subsequent analyses of the sea
trials primarily because it was felt that the instrumentation system used was not
adequate to detect this type of damage and because the age of the ship and the short
duration of the sea trials make corrosion an unlikely damage condition.

During the sea trials data were acquired in a variety of operational and
environmental conditions including different ship speeds, different heading relative to
the wave direction and different sea states [5]. Similar variations will be encountered
when ships are deployed on their various missions. Other than variations in fuel loads,
the mass of the ship does not appear to have changed in these sea trials and this
variable has not been considered in the analyses of these sea trials data. However,
careful consideration of variable mass loading will be necessary for an operational
vessel carrying different military stores, and particularly if ice buildup is a possibility.
Note that many of the ship’s operational parameters (e.g. engine rpms, and ship
speed) are currently monitored and can be recorded along with the primary SHM
sensor readings. Such operational data will be key to the data normalizations process.

Because the current study did not design the data acquisition system, but rather is
analyzing previously acquired data, answers to most of the Operational Evaluation
questions regarding deployment of the data acquisition system were not addressed. For
an aluminum structure limitations associated with data acquisition result from the
physical size of the structure, wire maintenance, difficulties with wireless data
transmission in metallic structures and issues such as insulation covering the structural
clements. It is anticipated that a significant outcome of this study will be insight
gained from analysis of these sea trials data that can be used to answer the Operational
Evaluation questions when a system designed specifically for ship SHM is develop in
the future.

DATA ACQUISITION, NORMALIZATION AND CLEANSING
The data acquisition portion of the SHM process involves selecting the excitation

methods, the sensor types, number and locations, and the data
acquisition/storage/transmittal hardware. This process will be application specific.



Figure 1. All aluminum high-speed vessel HSV -2 Swift

Economic considerations will play a major role in making these decisions. The
intervals at which data should be collected is another consideration that must be
addressed. Again, the data acquisition system for the HSV-2 Swift was previously
defined, so this portion of the SHM process has not been specifically addressed in this
study. Data utilized in this study represent dynamic ship structure response
measurement including strain and acceleration intended to capture both local and
global ship structure response. However, as previously mentioned, this sensing
system was not designed with SHM in mind. There is a clear need for developing an
optimal SHM sensing strategy based on the defined threshold levels of damage
(identified during Operational Evaluation) and in consideration of a fixed sensing
budget. However, currently a significant gap in SHM technology is the lack of any
validated sensor network design procedure.
Because data can be measured under varying conditions, the ability to normalize the
data becomes very important to the damage identification process. Figure 2 shows an
example of two different strain measurements made while operating the ship at
different speeds. A robust damage detection system will have to be able to normalize
the data to account for such sources of variability. As it applies to SHM, data
normalization is the process of separating changes in sensor reading caused by damage
from those caused by varying operational and environmental conditions. When
environmental or operational variability is an issue, the need can arise to normalize the
data in some temporal fashion to facilitate the comparison of data measured at similar
times of an environmental or operational cycle. Sources of variability in the data
acquisition process and with the system being monitored need to be identified and
minimized to the extent possible. In general, not all sources of varability can be
eliminated. Therefore, it is necessary to make the appropriate measurements such that
these sources can be statistically quantified. Variability can arise from changing
environmental and operational conditions, changes in the data reduction process, and
unit-to-unit inconsistencies. For the HSV-2 Swift data such as ships speed, fuel levels
and headings relative to the wave direction are measured and can be use to develop a
data normalization scheme.

Data cleansing is the process of selectively choosing data to pass on to or reject
trom the feature selection process. The data cleansing process is usually based on
knowledge gained by individuals directly involved with the data acquisition. Signal
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Figure 2. Variability in dynamics response resulting when measurements were made with the
ships operating at different speeds.

processing techniques such as filtering and re-sampling can also be thought of as data
cleansing procedures. In this study we have relied upon one of the co-author’s
familiarity with these sea trials to select specific data sets for subsequent analyses. It
was assumed that all the sensors are functioning properly for these data sets.

FEATURE EXTRACTION AND INFORMATION CONDENSATION

A damage-sensitive feature 1s some quantity extracted from the measured system
dynamic response data that is used to indicate the presence of damage in a structure.
Identifying features that can accurately distinguish a damaged structure from an
undamaged one is the focus of most SHM technical literature. Fundamentally, the
feature extraction process is based on fitting some model, either physics-based or data-
based, to the measured system response data. The parameters of these models or the
predictive errors associated with these models then become the damage-sensitive
features. As an example, Figure 3 shows the prediction of order 15 autoregressive
time series model to the measured strain gage from the HSV-2 Swift. As can be seen
in this figure, the time series model accurately models the response data and
subsequent changes in this modeling capability can be used as an indicator of damage.
An alternate approach is to identify features that directly compare the data waveforms
or spectra of these waveforms.

[deally one should select a feature that is sensitive to the presence of damage in the
structure and insensitive to all forms of operational and environmental variability.
However, in most real-world applications, features that are sensitive to damage are
also sensitive changes in the dynamic system response not related to damage [6]. If
multiple types of damage are possible, as is the case with HSV-2 Swiff, it may require
different features to be extracted from the data in an effort to identify these different
types of damage.
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Figure 3: Comparison of the measured and estimated time histories using the AR(15) model
fit to Run 61 from strain gage T2-14.

One of the most common methods of feature extraction is based on correlating
observations of measured system response quantities with the first-hand observations
of the degrading system made by the system operators or maintenance personnel.
Another method of developing features for damage detection is to apply engineered
flaws, similar to ones expected in actual operating conditions, to systems and develop
an initial understanding of the parameters that are sensitive to the expected damage.
The flawed system can also be used to validate that the diagnostic measurements are
sensitive enough to distinguish between features identified from the undamaged and
damaged system. The use of analytical tools such as experimentally-validated finite
element models can be a great asset in this process. In many cases the analytical tools
are used to perform numerical experiments where the flaws are introduced through
computer simulation. Damage accumulation testing, during which signiticant
structural components of the system under study are subjected to a realistic
degradation, can also be used to identify appropriate features. This process may
involve induced-damage testing, fatigue testing, corrosion growth, or temperature
cycling to accumulate certain types of damage in an accelerated fashion. Note that any
such destructive testing approaches to feature identification can be costly and are
typically prohibitively expensive for large capital expenditure systems such as ship
structures. Insight into the appropriate features can be gained from several sources
and is usually the result of information from some combination of these sources.

With the HSV-2 Swiff in mind, crack formation will be accompanied by local
strain relief that manifests itself as a DC offset in the local strain gage readings.
However, based on St. Venant’s Principle, this strain relief will not be observed at any
significant distance from the crack location. Yielding is also associated with DC
offsets in local strain readings resulting from the permanent deformation that
characterizes this phenomena. Yielding is particularly difficult to detect in metallic
structures based on dynamic response measurements because once the load that
produced yielding has been removed, the structure typically exhibits similar stiffness
properties as it did prior to yielding. If crack opens and closes under subsequent
loading then there will be specific features such a harmonic generation that are
indicative of this process. Also, crack initiation and growth is usually accompanied by
the propagation of an elastic wave and the transient response associated with such an



event can be detected with a strain gage, acoustic emissions sensor or accelerometer
given appropriate location of these sensors, appropriate sensitivity of the sensors and
appropriate sampling parameters.

STATISTICAL MODEL DEVELOPMENT

Statistical model development is concerned with the implementation of the
algorithms that operate on the extracted features to quantify the damage state of the
structure. The algorithms used in statistical model development usually fall into three
categories. When data are available from both the undamaged and damaged structure,
the statistical pattern recognition algorithms fall into the general classification referred
to as supervised learning. Group classification and regression analysis are categories
of supervised learning algorithms. Unsupervised learning refers to algorithms that are
applied to data not containing examples from the damaged structure. Outlier or
novelty detection is the primary class of algorithms applied in unsupervised learning
applications. All of the algorithms analyze statistical distributions of the measured or
derived features to enhance the damage identification process.

The damage state of a system can be described as a four-step process to answers
the following questions: 1. Existence: Is there damage in the system?; 2. Location:
Where is the damage in the system?; 3. Type: What kind of damage is present?; 4.
Extent: How severe is the damage? Answers to these questions in the order presented
represent increasing knowledge of the damage state.

In this study we are primarily concerned with identifying the Existence of damage
in an unsupervised learning mode. The use of unsupervised approached is motivated
by our lack of knowledge regarding the damage condition corresponding to any of the
data sets made available for this study and by the fact that a SHM system deployed on
a ship will most likely have to function in an unsupervised leaming mode. Because
three of the damage types identified as concerns for aluminum ship structures
(corrosion, cracking and yielding) have distinct characteristics, we believe it is
possible to address the Type of damage question as well. Because the ship is sparsely
instrumented relative to its size, it is not clear if the Location question can be
adequately addressed if damage has the potential to occur at random locations over
wide areas of the ship’s structure. Most structural systems have areas that are more
susceptible to damage than other, and ideally instrumentation is concentrated in these
areas. In the case of the HSV-2 Swiff, we assume that the local T2 strain gages has
been placed with this consideration in mind, but it is not clear if there are additional
locations of concern without local strain measurements.

SUMMARY

The U.S. Navy has a tradition of proactive damage detection capability
development for ship machinery. More recently, in the interest ot reducing lifecycle
costs and increasing combat asset readiness, the Office of Naval Research has begun
to develop a comparable capability for damage detection in ship structures. This paper
has presented a four-step statistical pattern recognition paradigm that the authors
believe must be used to guide the development of SHM for ship structures. There are
many technical challenges associated with this SHM application. These challenges



include (but certainly are not limited to) the ability to define the damage to be detected
in a quantifiable manner a priori, the ship’s physical size, designing the SHM data
acquisition system, the widely varying operational and environmental conditions, and
the management of the large data volumes that will be obtained with an SHM system
(not discussed herein because of length restrictions). However, the authors believe
that following this paradigm through a sustained SHM system development and
validation process can lead to a robust deployed SHM system that will yield a positive
rate of return on investment for the U.S. Navy.

ACKNOWLEDGEMENT

This work was funded by the Office of Naval Research Structural Reliability
Program under the direction Dr. Paul Hess.

REFERENCES

1 DiUlio, M., C. Savage, C., B. Finley, B. and E. Schneider, (2003) “Taking the
[ntegrated Condition Assessment System to the Year 2010,” / 3" Int. Ship Control
Systems Symposium, Orlando, Fl.

2 Doebling, S., Farrar, C., Prime, M., Shevitz, D. (1998) “A Review of Damage
[dentification Methods that Examine Changes in Dynamic Properties,” Shock and
Vibration Digest. 30:91-105.

3 Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.S., Stinemates, D.W., Nadler,
B.R., and Czamecki, J.J. (2004). “4 Review of Structural Health Monitoring
Literature from 1996-2001.” Los Alamos Nat. Lab report LA-13976-MS.

4  Farrar, C.R. and Worden, K. (2007). “An Introduction to Structural Health
Monitoring.” Philosophical Transactions of the Royal Society A. 365:303-315.

5 Brady, T. F., R. J. Bachman, M. J. Donnelly and D. B. Griggs (2004) *“ HSV-2
Swift Instrumentation and Technical Trials Plan,” Technical report, Naval Surface
Warfare Center. Carderock report NSWCCD-65-TR-2004/18.

6 Worden, K., Farrar, C. R., Manson, G. and Park, G. (2007) “The Fundamental
Axioms of Structural Health Monitoring,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences Issue 463 (2082).






