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ABSTRACT 

Currently the Office of Naval Research is supporting the development of structural 
health monitoring (SHM) technology for U.S. Navy ship structures. This application 
is particularly challenging because of the physical ize of these structures, the widely 
varying and often extreme operational and environmental conditions associated with 
the e ships' missions, lack of data from known damage condi tions, limited sensing 
that was not designed specifically for SHM, and the management of the vast amounts 
of data that can be collected during a mission. This paper will fi rst defu1e a statistical 
pattern recognition paradigm for SHM by describing the four steps of 1.) Operational 
Evaluation, 2.) Data Acquisition, 3. Feature Extraction, and 4.) Statistical 
Classificati on of Features as they apply to ship structures . Note that inherent in the 
last three st p of this process are addi tional tasks of data cleansing, compression, 
normalization and fusion. The presentation wi ll di scuss ship structure SHM 
challenges in the context of applying various SHM approaches to sea trials data 
measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, 
the paper will discuss several outstanding issues that need to be addressed before 
SHM can make the transition from a research topic to actual fi eld applications on ship 
structures and suggest approaches for addressing these issues. 

INTRODUCTION 

The extensive literature on structural health monitoring (SHM) has documented 
the critical importance of detecting damage in structural systems at the earliest 
pos ible time. As a result the Office of Naval Research is now sponsoring applied 
research activities that are investigating the application of SHM to ship structur s. 
This paper will summarize the challenges associated with this application. It is 
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emphasized that this paper focuses on SHM applied to ship structures as opposed 
mechanical systems onboard the ship. The reader is referred to the literature on the 
U.S. Navy's Integrated Condition Assessment System (lCAS) fo r a more detai led 
summary d mage detection in ship mechanical systems [1]. 

One moni toring technique availabl fo r ship structures is vibration-based damage 
detection, which is based on the principal that damage in a structure, such as materi al 
yielding, a loosened connection or a crack, wi ll alter the dynamic response of that 
structure. There has been much recent work in this area that is summarized in detai led 
reviews of vibration-based SHM [2,3]. Because of random and systematic ariability 
in experimentally measured dynamic response data, statistical approaches are 
necessary to ensure that changes in a structure's measured dynamic response are a 
result of damage and not caused by operational and environmental variability. 
Although much of the vibration-based SHM literature focuses on deterministic 
methods for identifying damage from changes in dynamic system response, we will 
focus on approaches that follow a statistical pattern recognition paradigm for SHM 
[4]. TIus paradigm consists of the four steps of 1. Operational evaluation, 2. Oat 
acquisition, 3. Feature extraction, and 4. Statistical classification of features . Each 
portion of the paradigm will now be discussed in the context of applying it to damage 
detection in ship structures. 

THE STATISTICAL PATTERN RECOGNIT ION PARADIGM FOR SHM 
APPLIED TO SHIP STRUCTURES 

The statistical pattern recognition paradigm for SHM wi ll now be defined in more 
detail. Each subsection of this discussion attempts to highlight how the portions of 
this paradigm apply to SHM for ship structures in general and the HSV -2 Swift sea 
trials specifi cally (shown in Fig. 1). The HSV-2 Swift is a 98 meter wave-piercing 
catamaran that has been built to U.S. Navy specifications by Revolution Design in 
Tasmania, Au trali a. This high-speed vessel has gone through sea trials to establish 
safe operating linUts based on performance measured obtained in calm water powering 
trails and rough water seakeeping and structures trials. During the sea trials strain 
gages and accelerometers were used to monitor the ship 's structural response. Ship 
control funct ions and wind-wave environments were also monitored. Structural 
instrumentation included primary load strain ages, stress concentration strain gages, 
secondary load strain gages and strain ages used to monitor specific equipment 
locations such as the ramp and crane. A detailed summary of the instrumentation and 
testing protocol can be found in [5]. 

OPERATIONAL EVALUATION APPLIED TO SHIP STRUCTURES 

Operational evaluation attempts to answer four questions regarding the 
implementation of a damage identification capability: 1. What are the life-safety 
and/or economic justification for performing the SHM? 2. How is damage defined for 
the system being investigated and, for mUltiple damage possibili ties, which cases are 
of the most concern? 3. What are the conditions, both operational and environmental, 
under which the system to be monitored functions? 4. What are the limitations on 
acquiring data in the operational environment? 



Operational evaluation begins to set the limitations on what wi ll be monitored and 
how the monitoring wi ll be accomplished. This evaluation starts to tailor the damage 
identification process to features that are unique to the system being monitored and 
tries to take advantage of unique features of the damage that is to be detected. 

For most large defense systems, the lifetime maintenance costs typically exceed 
the purchase price of those systems. Therefore, there is significant economic 
advantage to be gained by reducing these maintenance costs, which motivates the 
development of SHM systems for ship structures. Clearly, because people will be 
operating these ships in adverse environm nts, both man-made and natural, a robust 
SHM system can potentially prevent harm to the crew by alerting the operators to 
damage before it reaches a cri tical state. Therefore, there is also a life-safety motive 
fo r developing SHM systems for these ships. 

For the HSV-2 Swift ship it is anticipated that three types of damage are of 
interest: 1. Yielding of structural elements, 2. Crack ini tiation and propagation 
(particularly at joints), and 3. Corrosion. However, there is no a priori knowledge of 
where this damage might occur and no definition of critical levels of damage that mu t 

be detected . Corrosion is not considered in any of the subsequent analyses of the sea 
trial primarily because it was fel t that the instrumentation system used was not 
adequate to detect this type of damage and because the age of the ship and the short 
duration of the sea trials make corrosion an unlikely damage condition. 

Duri ng the sea trials data were acquired in a variety of operational and 
environmental conditions including different ship speeds, different heading relative to 
the wave direction and di fferent sea states [5). Similar variations wi ll be encountered 
when ships are deployed on their various missions. Other than variations in thel loads, 
the mass of the ship does not appear to have changed in these sea tri als and this 
variable has not been considered in the analyses of these sea trials data. However 
car ful consideration of variable mass loading will be necessary for an operational 
vessel canying different military stores, and particularly if ice buildup is a possibility. 
Note that many of the ship's operational parameters (e.g. engine rpms, and ship 
speed) are currently monitored and can be recorded along with the primary SHM 
sensor readings. Such operational data will be key to the data normalizations proce 'so 

Because the current study did not design the data acquisition system, but rather is 
analyzing previously acquired data, answers to most of the Operational Evaluation 
questions regarding deployment of the data acquisition system were not addressed . For 
an aluminum structure limitations associated with data acquisition re, ul t from the 
physical size of the structure, wire maintenance, difficulties with wireless data 
transmission in metallic structures and issues such as insulation covering the structural 
elements. It is anticipated that a significant outcome of this study will be insight 
gained from analysis of these sea trials data that can be used to answer the Operational 
Evaluation questions when a system designed specifically for ship SHM is develop in 
th future. 

DATA ACQUISITION, NORMALIZATION AND CLEANSING 

The data acquisition portion of the SHM process involves selecting the excitation 
methods, the sensor types, number and locations, and the data 
acquisition/storage/transmittal hardware. This process will be application speci fi c. 



Figure I. All aluminum lugh-speed vessel HSV - 2 Swift 

Economic considerations wi ll play a major role in making these decision . The 
intervals at which data should be collected is another consideration that must be 
addressed. Again, the data acquisition system for the HSV-2 Swift was previously 
defined, so this portion of the SHM process has not been specifically addres ed in this 
study. Data utilized in this study repr sent dynamic ship structure response 
measurement including strain and acceleration intended to capture both local and 
global ship structure response. However, as previously mentioned, this sensing 
syst m was not designed with SHM in mind. There is a clear need for developing an 
optimal SHM sensing strategy based on the defined threshold levels of damage 
(identifi ed during Operational Evaluation) and in consideration of a fixed sensing 
budget. However, currently a significant gap in SHM t chnology is the lack of any 
validated sensor network design procedure. 
Because data can be measured under varying conditions, the ability to normalize the 
data becomes very important to the damage identification process. Figure 2 shows an 
example of two di fferent strain measurements made while operating the ship at 
di fferent speeds. A robust damage detection system will have to be able to nonnalize 
the data to account for such sources of variabil ity. As it applies to SHM, data 
normalization is the process of separating changes in sensor reading caused by damage 
from those caused by varying operational and environmental conditions. When 
environmental or operational variabi lity is an issue, the need can arise to nonnalize the 
data in some temporal fashion to facilitate the comparison of data mea" ured at similar 
times of an environmental or operational cycle. Sources of variability in the data 
acquisition process and with the system being monitored need to be identified and 
minimized to the extent possible. In general, not all sources of variabi lity can be 
eliminated. Therefore it is necessary to make the appropriate measurements such that 
these sources can be statistically quantified. Variabi lity can arise from changing 
environmental and perational conditions, changes in the data reduction process, and 
unit-to-unit inconsistencies. For the HSV-2 Swift data such as ships speed, fuel levels 
and headings relative to the wave di rection are measured and can be use to develop a 
data normalization scheme. 

Data cleansing is the process of selectively choosing data to pass on to or reject 
from the feature selection process. The data cleansing proc ss is usually based on 
knowledge gained by individuals directly involved with the data acquisition. Signal 
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Figure 2. Variability in dynamics response r suiting when measurements were made witll the 
ships opera ting at different speeds. 

processing techniques such as fi ltering and re-sampling can also be thought of as data 
cleansing procedures. In this study we have relied upon one of the co-author's 
familiari ty with these sea trials to select specifi c data sets for subsequent analyses. It 
was assumed that all the sensors are functioning properly for these data sets . 

FEATURE EXTRACTION AND INFORMATION CONDENSATION 

A damage-sensitive feature is some quantity extracted from the measured system 
dynamic response data that is used to indicate the presence of damage in a structure. 
Identifying features that can accurately distinguish a damaged structure from an 
undamaged one is the focus of most SHM technical li terature. Fundamentally, the 
feature extraction process is based on fi tting some model, either physics-based or data­
based, to the measured system response data. The parameters of these models or the 
predictive errors associated with these models then become the damage-sensitive 
features. As an example, Figure 3 shows the prediction of order 15 autoregressive 
timc series model to the measured strain gage from the HSV -2 wift. As can be seen 
in this figure, the time series model accurately models the response data and 
subsequent changes in this modeling capability can be used as an indicator of damage. 
An alternate approach is to identify features that directly compare the data waveforms 
or spectra of these waveforms. 

Ideally one should select a feature that is sensitive to the presence of damage in the 
structure and insensitive to all forms of operational and environmental variability. 
However, in most real-world applications, features that are sensitive to damage are 
also sensitive changes in the dynamic system response not related to damage [6J. If 
multiple typcs of damage are possible, as is the case with HSV-2 Swift, it may require 
different features to be extracted from the data in an effort to identify these different 
types of damage. 



6 · ~--

"I 
.(\ Measured j 

Estimated / ' 4 / '\ 
1.2 

l 1 . 
\ ~ 

08
1 j.J 

c 

~ 0.6 ( ... / 

'1=: ·1 

0.2 I Measured \ 
o Estimated \ 

-'J:t -6 
0 2 4 6 8 10 12 .47 2.48 2.49 25 

Sample x 10" Sample x 10' 

Figure 3: Comparison of the measured and estimated time histories using the AR(l5) model 
fi t to Run 61 from str ain gage T2-14. 

One of the most common methods of feature extraction is based on cDrrelating 
observations of measured system response quantities with the fi rst-hand observations 

f the degrading system made by the system operators or maintenance personnel. 
Another method of developing features for damage detection is to apply engineered 
fl aws, similar to ones expected in actual operating conditions, to systems and develop 
an initial understanding of the parameters that are sensitive to the expected damage. 
The flawed system can also be used to validate that the diagnostic measurements are 
sensitive enough to distinguish between features identifi ed from the undamaged and 
damaged system. The use of analytical tools such as experimentally-val idated finite 
element models can be a great asset in this process. In many cases the analytical tools 
are used to perform numerical experiments where the fl aws are introduced through 
computer simulation. Damage accumulation testing, during which significant 
structuraJ components of the system under study are subjected to a realistic 
degradation, can al so be used to identify appropri ate features. This process may 
involve induced-damage testi ng, fatigue testing, corrosion growth, or temperature 
cycling to accumulate certain types of damage in an accelerated fashion. Note that any 
such de tructive testing approaches to feature identifi cation can be costly and are 
typically prohibi tively expensive for large capital expenditure systems such as ship 
structures. Insight into the appropriate features can be gained from several sources 
and is usually the result of information from some combination of these sources. 

With the HSV-2 Swift in mind, crack formation will be accompanied by local 
strain relief that manifests itself as a DC offset in the local strain gage r adings. 
However, based on St. Venant' s Principle, this strain relief will not be observed at any 
significant distance from the crack location. Yielding is also associated with DC 
offsets in local strain readings resulting from the permanent deformation that 
characterizes this phenomena. Yielding is particularly difficult to d teet in metall ic 
structures based on dynamic response measurements because once the load that 
produced yieldi ng has been removed, the structure typically exhibi ts similar stiffness 
properties as it did prior to yielding. If crack opens and closes under subsequent 
loading then there will be specific features such a harmonic generation that are 
indicative of this process. Also, crack initiation and growth is usually accompanied by 
the propagation of an elastic wave and the transient response associated with such an 



ev nt can be detected with a strain gage, acoustic emission sensor or accelerometer 
given appropri ate location of these sensors, appropriate sensitivity of the sensors and 
appropriate sampling parameters. 

STA TISTrCAL MODEL DEVELOPMENT 

Statistical model development is concerned with the implementation of the 
algori thms that ope rat on the extracted features to quantify the damage state of the 
structure. The algorithms used in statistical model development usually fall into three 
categories. When data are available from both the undamaged and damaged structure, 
the statistical pattern recognition algorithms fall into the general classification referred 
to as supervised learning. Group classification and regression analysis are categories 
of supervised learning algorithms. Unsupervised learning refers to algorithms that are 
appli ed to data not containing examples from the damaged structure. Outlier r 
novelty detection is the primary class of algori thms applied in unsupervised learning 
applications. All of the algorithms analyze statistical distributions of the measured or 
deri ved features to enhance the damage identifi cation process. 

The damage state of a system can be described as a four-step process to answers 
the fo llowing questions: 1. Existence: Is there damage in the system?; 2. Location: 
Where is the damage in the system?; 3. Type: What kind of damage is present?; 4. 
Extent: How severe is the damage? Answers to these questions in the order presented 
represent increasing knowledge of the damage state. 

In this study we are primarily concerned with identifying the Existence of damage 
in an unsupervised learning mode. The use of unsupervised approached is motivated 
by our lack of knowledge regarding the damage condition corresponding to any of the 
data sets made available for this study and by the fact that a SHM system deployed on 
a ship will most likely have to function in an unsupervised learning mode. Because 
three of the damage types identified as concerns for aluminum ship structures 
(corrosion, cracking and yielding) have distinct characteristics, we believe it is 
possibl to address the Type of damage question as well. Because the ship is sparsely 
instrumented relative to its size, it is not clear if the Location question can be 
adequat ly addressed if damage has the potential to occur at random locations over 
wide areas of the ship 's structure. Most structural syst ms have areas that are more 
susceptible to damage than other, and ideally instrumentation is concentrated in these 
areas . In the case of the HSV -2 Swift, we assume that the local T2 strain gages has 
been placed with this consideration in mind, but it is not clear if there are additional 
locations of concern without local strain measurements. 

SUMMARY 

The u.s. Navy has a tradi tion of proactive damage detection capability 
development for ship machinery. More recentl y, in the interest of reducing lifecycle 
costs and increasing comb t asset readiness, the Office of Naval Research has begun 
to develop a comparable capability for damage detection in ship structures. This paper 
has presented a fo ur-step statistical pattem recognition paradigm that the authors 
believe must be used to guide the development of SHM for ship structures. There are 
many technical challenges associated with this SHM application. These challenges 



include (but certainly are not limited to) the ability to define the damage to be detected 
in a quantifiable m anner a priori, the ship's physical size, designing the SHM data 
acquisition system, the widely varying operational and environmental conditions, and 
the management of the large data olumes that wi ll be obtained with an SHM system 
(not discussed herein because of length restrictions). However, the authors believe 
that fo llowing this paradigm through a sustained SHM system development and 
validation process can lead to a robust deployed SHM system that will yi eld a positi ve 
rate ofretum on investm ent for the U.S. Navy. 
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