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ABSTRACT 

A Bayesian network tool (called IKE for Integrated Knowledge Engine) has been 
developed to assess the probability of undesirable events. The tool allows indications and 
observables from sensors and/or intelligence to feed directly into hypotheses of interest, 
thus allowing one to quantify the probability and uncertainty of these events resulting 
from very disparate evidence. For example, the probability that a facility is processing 
nuclear fuel or assembling a weapon can be assessed by examining the processes 
required, establishing the observables that should be present, then assembling information 
from intelligence, sensors and other information sources related to the observables. IKE 
also has the capability to determine tasking plans, that is, prioritize which observable 
should be collected next to most quickly ascertain the "true" state and drive the 
probability toward "zero" or "one." This optimization capability is called "evidence 
marshaling. " 

One example to be discussed is a denied facility monitoring situation; there is concern 
that certain process(es) are being executed at the site (due to some intelligence or other 
data). We will show how additional pieces of evidence will then ascertain with some 
degree of certainty the likelihood of this process(es) as each piece of evidence is 
obtained. This example shows how both intelligence and sensor data can be incorporated 
into the analysis. 

A second example involves real-time perimeter security. For this demonstration we used 
seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors 
identified and assessed the likelihood of "intruder" versus friendly vehicles. 



1.0 Introduction 

For some time now, we have been applying Bayesian Belief Networks (BBNs) to problems involving 
multisource data fusion. In simple tenns, Bayesian Belief Networks process "evidence~~ to compute 
probabilities of "hypotheses." For example, some of our problems have involved monitoring of an 
adversary's actions to detennine intent (hostile or benign), or monitoring of a remote facility to detennine 
what types of covert processing might be done there. In these cases the evidence might be extracted from 
textual intelligence messages acquired from overhead reconnaissance assets or other types of intelligence. 
In these applications, evidence is costly and risky to obtain and one would want to optimally task the 
intelligence gathering assets to collect the best evidence to reach conclusions quickly and with reasonable 
costs. In these problems, the hypothesis nodes in the BBN will likely represent competing alternatives as 
to what the adversary is really doing. Another type of problem involves near-real-time surveillance for the 
purpose of threat detection and identification. In such cases, the evidence is extracted from real-time 
sensor data feeds as well as other types of sources. 

The consequences of an incorrect decision can be very high, depending upon the situation at hand. The 
analyst and decision maker not only want the answer, but want to know with as much certainty as 
possible. To help with this, we have developed enhancements to traditional Bayesian Analysis which 
quantify the uncertainty of subject matter expert statements that are themselves probabilistic in nature. 
We then combine those with evidence from ground, air, or satellite sensors that have established 
uncertainty bounds. The enhancements we will describe have to do with treating model parameter 
uncertainty, incorporating evidence uncertainty, detennining the optimal evidence to collect next 
(evidence marshalling), and detennining the best asset with which to collect the evidence (asset 
allocation). 

TM 
Procedurally , our approach was to select a well-known traditional Bayesian Analysis tool called Netica 
(typically used by researchers), as our Bayesian inference engine. Our enhanced Analysis tool, called the 
Integrated Knowledge Engine (IKE) wraps around Netica to "extend" traditional Bayesian analysis to 
better handle monitoring and surveillance problems and to make it more suited for use by intelligence 
analysts and decision makers. 

Figure 1. Our "extension" of traditional Bayesian analysis. 
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2.0 Bayesian Belief Networks 

Bayesian Belief Networks (Pearl, 2000; Jensen and Nielsen, 2007) provide a way to conceptualize and 
model problems which involve trying to reach conclusions based on evidence. Often they are used to try 
to understand the causal relationships between a set of variables. BBNs have been successfully applied to 
various problem domains such as medical (diagnosis), judicial (guilt/innocence), and forensics (what 
happened), to name a few. A BBN consists of nodes and directed links (arrows) connecting the nodes. 
One can think of the arrow as representing a parent-child relationship. Often in Bayesian modeling, the 
arrow represents a causal relationship. Hence the rule of thumb - "Parents cause the children." 

A node in a BBN represents a variable that can be in only one of finitely many states. For example if 
temperature is a variable, one could say that the temperature could be hot or cold. Thus the temperature 
node would be modeled as having two states: hot and cold. A more complicated problem might require 
that temperature have four states; freezing, cold, warm, hot. We may not know what state the temperature 
node is in, in which case we say that the temperature node is unknown. If we get some data that tells us 
the state is hot, we can enter that finding into the BBN and "set" the temperature node's state to hot. This 
is called entering evidence (or entering a finding). 

Often the top- level nodes in a BBN represent the competing alternatives that we are trying to sort out: is 
the factory making fertilizer, anthrax, sarin, or something else? These nodes are called hypotheses nodes. 
Often the bottom level nodes in the network represent things we can observe as evidence: is the factory 
using low, medium, or high amounts of electricity? These nodes are called evidence nodes. Given the 
evidence that we have entered into the BBN, we want the BBN to calculate the probabilities of the states 
of the hypothesis nodes to reach a conclusion such as: The probability that the factory is making fertilizer 
might be 88%, anthrax 7%, sarin 3%, and other 2%. Several algorithms (Huang and Darwiche, 1996) 
have been developed that can perform this Bayesian Inferencing in a practical and useful manner -
provided the network is a BBN. 

In order for a network to be a BBN it must satisfy two conditions: (I) It must be an Acyclic Directed 
Graph - acyclic in the sense that there are no loops in the graph - i.e. a parent may not be the child of one 
of it's descendents, and (2) The network must satisfy the Markov condition - if the state of all the parents 
of a node are known, then the state of that node is influenced only by it's descendents. These conditions 
simplify the problem enough that it can be solved by Bayesian lnferencing algorithms. Condition (1) 
keeps the algorithms from encountering an infinite loop, and condition (2) allows the model builder and 
the algorithms to worry only about the immediate relationships between a node and it's parents. 

Figure 2 shows such a network: this network was constructed to detennine which process is occurring 
(e.g., fertilizer, anthrax, sarin, and "other") if a facility is operational. To construct a BBN one must 
provide a table of conditional probabilities (CPs) for each node. These CPs represent our answer to the 
question: Given the state of all my parents, the probabilities for my states are the following. For example, 
the CP Table (CPT) for the e43 node (Grd Sensor), is shown. The CP shown for the highlighted cell 
means: Given that e35 (sub7) is "true," the probability of e43 (Grd sensor) is "true" is 75%. Because we 
are reasoning from cause to effect (from parent to child), a subject matter expert who is familiar with the 
system being modeled can easily define these conditional probabilities and populate the table. 
Alternatively, the CPs can be derived from data, if available. It is much harder to reason from effect to 
cause, but this is precisely what the Bayesian inferencing algorithms do for us, as shown in Figure 3. We 
enter the observed effects into the BBN as evidence, and the BBN performs inferencing to infer the 
probable cause. 
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CPTable: 

Figure 2. An Example Bayesian Network for Facility Processing. 

Evidence Nodes 
(we can learn/observe their state) 

Hypothesis Nodes 
(we want to detennine 
the probabilities of their 
states) 

Figure 3. Example Evidence Observed in Processing Network. 
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3.0 The Integrated Knowledge Engine (IKE) 

The Integrated Knowledge Engine enhances the traditional Bayesian Analysis provided by the Netica 
engine, by providing the following additional major capabilities: 

• Analysis (lnferencing with Uncertainty), 

• Evidence Marshalling (with Uncertainty), 

• Asset Allocation, and 

• Remaining Influence. 

IKE's flexible graphical user interface can be easily changed, so each new application of IKE may have 
it's own look and feel, while the underlying classes that implement the core capabilities remain 
unchanged. Further details on these capabilities are described in Gibson and others (2009). 

Figure 4 shows the graphical interface for our simple facility processing example discussed above. The 
hypotheses and their current state based on the evidence are shown in the middle. The Evidence is shown 
on the right, and the inset shows the various forms in which evidence can be entered. In this case, we are 
80% "confident" that transport bottles have been observed. This results in uncertainties being propagated 
in terms of second order uncertainties on the hypotheses probabilities (shown as + and - values after the 
mean in the hypotheses window) as described by Izraelevitz and others (2007). These uncertainties are 
obtained by using a Monte Carlo simulation by independently setting the Netica "true/false" or 
"hi/medium/low" bins in the appropriate percentages over at least 1000 simulations. 
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Figure 4. IKE Interface. 
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In the simplest configuration, IKE is used like a hand calculator with the analyst manually entering 
evidence as it becomes available from intelligence reports or sensor data. In some applications, 
intelligence or sensor reports arrive at IKE only to be placed in the mailbox for an evidence node (some 
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process has routed the report to the appropriate node). The analyst reviews the report manually and 
decides whether to enter evidence. In other near-real-time applications, special IKE evidence messages 
are automatically generated from the multisource data streams and set their evidence into IKE 
automatically. We have found that viewing incoming data streams as sources of discrete evidence in a 
Bayesian Belief Network provides a framework (and a simple architecture) for integrating diverse types 
of input data for know ledge discovery. 

4.0 Processing Facility 

To expand upon the simple situation defined above, a more detailed model was created to monitor a 
facility whose location was known, but if it started processing, we didn ' t know what it might be 
processing. Various processes could be called hypotheses A, B, and C in Figure 5 below. 

,., ........ 

Figure 5. Part of our Network for a Processing Facility. 

Each process is linked to subprocesses with certain potential signatures (in tenns of heat, effluents, power, 
etc). So at the very bottom are evidence/signatures that indicate subprocesses are interest. I f these 
signatures are present, then we have a certain confidence that one of the subprocesses (and thus 
eventually hypotheses) is true or false. Note this particular network is binary: all nodes are true or false, 
so only the probability of "true" is displayed. 

To illustrate the process, Figure 6 shows a possible timeline for receiving evidence. This can then be 
displayed on the IKE screen as evidence is added with time (Figure 7). The hypotheses are shown in the 
center of the screen; the evidence is shown coming in directly from sensors on the right or messages on 
the left; and the current probability and uncertainty is shown with the hypotheses. The calculations of 
these values are a result of the Bayes net conditional probabilities for each node, the prior probabilities, 
and the evidence. In this particular example, the entire network has been ''triggered'' by a power anomaly. 
Time after the power anomaly is shown in the lower left. 
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PEM 

o 

Scenario Timeline 

010 triggers timer and periodic evidence marshalling (PEM) 

PEM PEM PEM PEM 

<. 040-HSensor1 [Leak 1] 

o22-HSensor1 [eff12] 

o15-IRSensor2[HbtXY] 

o14-IRSensor1 [HeatGtExp] 

" o20-HSensor1 [effl1] 

o10-PowerSensor [PwrAbvThr] 

Figure 6. Scenario Timeline. 

Inferencing after 010 
~:!J~~~~,~ 

Figure 7. IKE Screen after first observation. 

PEM 
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010 Starts Timer and Periodic Evidence Marshalling 

L~~==~~·~~,~ ....... ", 

Figure 8. Evidence Marshalling. 

Every time a new piece of evidence is collected, we then can calculate the "next best piece of evidence to 
collect," as shown in Figure 8. The uppennost pieces would be best to collect, as shown by our "utility" 
calculation on the far right. This is when one might be able to task, if different options are available. 

The final results might be shown as indicated in Figure 9, depending upon the evidence received. 
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Inferencing after 040 

Figure 9. State of bypotheses after evidence collection. 

5.0 Real-Time Monitoring 

The second example (Figure 10 below) shows IKE embedded in a near-real-time architecture called the 
Remote Perimeter Surveillance (RPS) system used to monitor vehicular and pedestrian traffic on a remote 
canyon road. The RPS system integrates data from a distributed sensor network (DSN) consisting of 
seismic and acoustic nodes, with information from still cameras, radiation sensors, and from a video 
system that does motion detection and object tracking. The evidence generators consume these data 
streams to produce IKE evidence messages to set evidence into a BBN whose purpose is to autonomously 
determine the probability that the moving object is a vehicle (car, humvee, truck), a pedestrian, or some 
other entity such as an animal, and whether it is suspicious. 

The upper left shows the video view from the canyon rim with a bounding box around the detected 
moving object (a car), middle left is a plot of the raw DSN data, and lower left shows a close-up view 
from a DSN still camera down in the canyon bottom. The upper right shows the DSN sensor nodes on a 
geographic situation display, with the nodes reporting shown in red, middle right shows raw/averaged 
DSN and video data, and bottom right shows the two main IKE hypothesis nodes and some evidence 
nodes for manual entry. 
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Figure 10. Remote Perimeter Surveillance System. 

Even when a near-real-time system such as the RPS is running autonomously, the system can 
automatically perform evidence marshalling to guide additional evidence collection by (for example) 
triggering a special sensor to collect when the standard sensor suite is producing ambiguous results. 
Typically, the autonomous monitoring will alert an operator when something suspicious is detected, who 
may then choose to marshal and trigger additional evidence collection for the Bayesian analysis, or 
manually resolve any remaining ambiguity by doing an instant replay of imagery or data (Leishman and 
others, 2007). 

6.0 Summary 

The Integrated Knowledge Engine extends traditional Bayesian analysis by giving the modeler a way to 
express model parameter uncertainty at modeling time and by giving the analyst a way to express 
evidence uncertainty at run time. A Monte Carlo simulation wrapped around a traditional Bayesian 
analysis tool then allows these effects to be included in the results of the Bayesian inferencing. IKE also 
provides enhancements to optimize the collection of evidence and to understand when enough evidence 
has been obtained for a solid decision, and if not, a better understanding of the alternatives. Each of these 
enhancements provides a needed mechanism for many situations, specifically to arrive at a solution as 
quickly as possible with the least uncertainty. 

We have demonstrated two examples of the utilization of IKE. We have worked on a variety of other 
problems, such as nuclear forensics, nuclear proliferation, IEDs, and other important scenarios. 
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