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ABSTRACT

A Bayesian network tool (called IKE for Integrated Knowledge Engine) has been
developed to assess the probability of undesirable events. The tool allows indications and
observables from sensors and/or intelligence to feed directly into hypotheses of interest,
thus allowing one to quantify the probability and uncertainty of these events resulting
from very disparate evidence. For example, the probability that a facility is processing
nuclear fuel or assembling a weapon can be assessed by examining the processes
required, establishing the observables that should be present, then assembling information
from intelligence, sensors and other information sources related to the observables. IKE
also has the capability to determine tasking plans, that is, prioritize which observable
should be collected next to most quickly ascertain the “true” state and drive the
probability toward “zero” or “one.” This optimization capability is called “evidence
marshaling.”

One example to be discussed is a denied facility monitoring situation; there is concern
that certain process(es) are being executed at the site (due to some intelligence or other
data). We will show how additional pieces of evidence will then ascertain with some
degree of certainty the likelihood of this process(es) as each piece of evidence is
obtained. This example shows how both intelligence and sensor data can be incorporated
into the analysis.

A second example involves real-time perimeter security. For this demonstration we used
seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors
identified and assessed the likelihood of “intruder” versus friendly vehicles.



1.0 Introduction

For some time now, we have been applying Bayesian Belief Networks (BBNs) to problems involving
multisource data fusion. In simple terms, Bayesian Belief Networks process “evidence” to compute
probabilities of “hypotheses.” For example, some of our problems have involved monitoring of an
adversary’s actions to determine intent (hostile or benign), or monitoring of a remote facility to determine
what types of covert processing might be done there. In these cases the evidence might be extracted from
textual intelligence messages acquired from overhead reconnaissance assets or other types of intelligence.
In these applications, evidence is costly and risky to obtain and one would want to optimally task the
intelligence gathering assets to collect the best evidence to reach conclusions quickly and with reasonable
costs. In these problems, the hypothesis nodes in the BBN will likely represent competing alternatives as
to what the adversary is really doing. Another type of problem involves near-real-time surveillance for the
purpose of threat detection and identification. In such cases, the evidence is extracted from real-time
sensor data feeds as well as other types of sources.

The consequences of an incorrect decision can be very high, depending upon the situation at hand. The
analyst and decision maker not only want the answer, but want to know with as much certainty as
possible. To help with this, we have developed enhancements to traditional Bayesian Analysis which
quantify the uncertainty of subject matter expert statements that are themselves probabilistic in nature.
We then combine those with evidence from ground, air, or satellite sensors that have established
uncertainty bounds. The enhancements we will describe have to do with treating model parameter
uncertainty, incorporating evidence uncertainty, determining the optimal evidence to collect next
(evidence marshalling), and determining the best asset with which to collect the evidence (asset
allocation).

Procedurally, our approach was to select a well-known traditional Bayesian Analysis tool called NcaticaTM
(typically used by researchers), as our Bayesian inference engine. Our enhanced Analysis tool, called the
Integrated Knowledge Engine (IKE) wraps around Netica to “extend” traditional Bayesian analysis to
better handle monitoring and surveillance problems and to make it more suited for use by intelligence
analysts and decision makers.
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Figure 1. Our “extension” of traditional Bayesian analysis.



2.0 Bayesian Belief Networks

Bayesian Belief Networks (Pearl, 2000; Jensen and Nielsen, 2007) provide a way to conceptualize and
model problems which involve trying to reach conclusions based on evidence. Often they are used to try
to understand the causal relationships between a set of variables. BBNs have been successfully applied to
various problem domains such as medical (diagnosis), judicial (guilt/innocence), and forensics (what
happened), to name a few. A BBN consists of nodes and directed links (arrows) connecting the nodes.
One can think of the arrow as representing a parent-child relationship. Often in Bayesian modeling, the
arrow represents a causal relationship. Hence the rule of thumb — “Parents cause the children.”

A node in a BBN represents a variable that can be in only one of finitely many states. For example if
temperature is a variable, one could say that the temperature could be hot or cold. Thus the temperature
node would be modeled as having two states: hot and cold. A more complicated problem might require
that temperature have four states; freezing, cold, warm, hot. We may not know what state the temperature
node is in, in which case we say that the temperature node is unknown. If we get some data that tells us
the state is hot, we can enter that finding into the BBN and “set” the temperature node’s state to hot. This
is called entering evidence (or entering a finding).

Often the top-level nodes in a BBN represent the competing alternatives that we are trying to sort out: is
the factory making fertilizer, anthrax, sarin, or something else? These nodes are called hypotheses nodes.
Often the bottom level nodes in the network represent things we can observe as evidence: is the factory
using low, medium, or high amounts of electricity? These nodes are called evidence nodes. Given the
evidence that we have entered into the BBN, we want the BBN to calculate the probabilities of the states
of the hypothesis nodes to reach a conclusion such as: The probability that the factory is making fertilizer
might be 88%, anthrax 7%, sarin 3%, and other 2%. Several algorithms (Huang and Darwiche, 1996)
have been developed that can perform this Bayesian Inferencing in a practical and useful manner —
provided the network is a BBN.

In order for a network to be a BBN it must satisfy two conditions: (1) It must be an Acyclic Directed
Graph — acyclic in the sense that there are no loops in the graph — i.e. a parent may not be the child of one
of it’s descendents, and (2) The network must satisfy the Markov condition — if the state of all the parents
of a node are known, then the state of that node is influenced only by it’s descendents. These conditions
simplify the problem enough that it can be solved by Bayesian Inferencing algorithms. Condition (1)
keeps the algorithms from encountering an infinite loop, and condition (2) allows the model builder and
the algorithms to worry only about the immediate relationships between a node and it’s parents.

Figure 2 shows such a network: this network was constructed to determine which process is occurring
(e.g., fertilizer, anthrax, sarin, and “other”) if a facility is operational. To construct a BBN one must
provide a table of conditional probabilities (CPs) for each node. These CPs represent our answer to the
question: Given the state of all my parents, the probabilities for my states are the following. For example,
the CP Table (CPT) for the e43 node (Grd Sensor), is shown. The CP shown for the highlighted cell
means: Given that e35 (sub7) is “true,” the probability of €43 (Grd sensor) is “true” is 75%. Because we
are reasoning from cause to effect (from parent to child), a subject matter expert who is familiar with the
system being modeled can easily define these conditional probabilities and populate the table.
Alternatively, the CPs can be derived from data, if available. It is much harder to reason from effect to
cause, but this is precisely what the Bayesian inferencing algorithms do for us, as shown in Figure 3. We
enter the observed effects into the BBN as evidence, and the BBN performs inferencing to infer the
probable cause.
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3.0 The Integrated Knowledge Engine (IKE)

The Integrated Knowledge Engine enhances the traditional Bayesian Analysis provided by the Netica
engine, by providing the following additional major capabilities:

* Analysis (Inferencing with Uncertainty),
* Evidence Marshalling (with Uncertainty),
 Asset Allocation, and

* Remaining Influence.

IKE’s flexible graphical user interface can be easily changed, so each new application of IKE may have
it’s own look and feel, while the underlying classes that implement the core capabilities remain
unchanged. Further details on these capabilities are described in Gibson and others (2009).

Figure 4 shows the graphical interface for our simple facility processing example discussed above. The
hypotheses and their current state based on the evidence are shown in the middle. The Evidence is shown
on the right, and the inset shows the various forms in which evidence can be entered. In this case, we are
80% ““confident” that transport bottles have been observed. This results in uncertainties being propagated
in terms of second order uncertainties on the hypotheses probabilities (shown as + and — values after the
mean in the hypotheses window) as described by Izraelevitz and others (2007). These uncertainties are
obtained by using a Monte Carlo simulation by independently setting the Netica “true/false” or
“hi/medium/low” bins in the appropriate percentages over at least 1000 simulations.
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Figure 4. IKE Interface.

_In the simplest configuration, IKE is used like a hand calculator with the analyst manually entering
evidence as it becomes available from intelligence reports or sensor data. In some applications,
intelligence or sensor reports arrive at IKE only to be placed in the mailbox for an evidence node (some



process has routed the report to the appropriate node). The analyst reviews the report manually and
decides whether to enter evidence. In other near-real-time applications, special IKE evidence messages
are automatically generated from the multisource data streams and set their evidence into IKE
automatically. We have found that viewing incoming data streams as sources of discrete evidence in a
Bayesian Belief Network provides a framework (and a simple architecture) for integrating diverse types
of input data for knowledge discovery.

4.0 Processing Facility

To expand upon the simple situation defined above, a more detailed model was created to monitor a
facility whose location was known, but if it started processing, we didn’t know what it might be
processing. Various processes could be called hypotheses A, B, and C in Figure 5 below.

Figure 5. Part of our Network for a Processing Facility.

Each process is linked to subprocesses with certain potential signatures (in terms of heat, effluents, power,
etc). So at the very bottom are evidence/signatures that indicate subprocesses are interest. If these
signatures are present, then we have a certain confidence that one of the subprocesses (and thus
eventually hypotheses) is true or false. Note this particular network is binary: all nodes are true or false,
so only the probability of “true” is displayed.

To illustrate the process, Figure 6 shows a possible timeline for receiving evidence. This can then be
displayed on the IKE screen as evidence is added with time (Figure 7). The hypotheses are shown in the
center of the screen; the evidence is shown coming in directly from sensors on the right or messages on
the left; and the current probability and uncertainty is shown with the hypotheses. The calculations of
these values are a result of the Bayes net conditional probabilities for each node, the prior probabilities,
and the evidence. In this particular example, the entire network has been “triggered” by a power anomaly.
Time after the power anomaly is shown in the lower left.



Scenario Timeline
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Figure 8. Evidence Marshalling.

Every time a new piece of evidence is collected, we then can calculate the “next best piece of evidence to
collect,” as shown in Figure 8. The uppermost pieces would be best to collect, as shown by our “utility”
calculation on the far right. This is when one might be able to task, if different options are available.

The final results might be shown as indicated in Figure 9, depending upon the evidence received.
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Figure 9. State of hypotheses after evidence collection.

5.0 Real-Time Monitoring

The second example (Figure 10 below) shows IKE embedded in a near-real-time architecture called the
Remote Perimeter Surveillance (RPS) system used to monitor vehicular and pedestrian traffic on a remote
canyon road. The RPS system integrates data from a distributed sensor network (DSN) consisting of
seismic and acoustic nodes, with information from still cameras, radiation sensors, and from a video
system that does motion detection and object tracking. The evidence generators consume these data
streams to produce IKE evidence messages to set evidence into a BBN whose purpose is to autonomously
determine the probability that the moving object is a vehicle (car, humvee, truck), a pedestrian, or some
other entity such as an animal, and whether it is suspicious.

The upper left shows the video view from the canyon rim with a bounding box around the detected
moving object (a car), middle left is a plot of the raw DSN data, and lower left shows a close-up view
from a DSN still camera down in the canyon bottom. The upper right shows the DSN sensor nodes on a
geographic situation display, with the nodes reporting shown in red, middle right shows raw/averaged
DSN and video data, and bottom right shows the two main IKE hypothesis nodes and some evidence
nodes for manual entry.
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Figure III. liemote Perimetér Surveillance System.

Even when a near-real-time system such as the RPS is running autonomously, the system can
automatically perform evidence marshalling to guide additional evidence collection by (for example)
triggering a special sensor to collect when the standard sensor suite is producing ambiguous results.
Typically, the autonomous monitoring will alert an operator when something suspicious is detected, who
may then choose to marshal and trigger additional evidence collection for the Bayesian analysis, or
manually resolve any remaining ambiguity by doing an instant replay of imagery or data (Leishman and
others, 2007).

6.0 Summary

The Integrated Knowledge Engine extends traditional Bayesian analysis by giving the modeler a way to
express model parameter uncertainty at modeling time and by giving the analyst a way to express
evidence uncertainty at run time. A Monte Carlo simulation wrapped around a traditional Bayesian
analysis tool then allows these effects to be included in the results of the Bayesian inferencing. IKE also
provides enhancements to optimize the collection of evidence and to understand when enough evidence
has been obtained for a solid decision, and if not, a better understanding of the alternatives. Each of these
enhancements provides a needed mechanism for many situations, specifically to arrive at a solution as
quickly as possible with the least uncertainty.

We have demonstrated two examples of the utilization of IKE. We have worked on a variety of other
problems, such as nuclear forensics, nuclear proliferation, IEDs, and other important scenarios.
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