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Abstract

A Random Geometric Graph (RGG) is constructed by distributing n nodes uniformly at random in
the unit square and connecting two nodes if their Euclidean distance is at most r, for some prescribed
7. We analyze the following randomized broadcast algorithm on RGGs. At the beginning, there is only
one informed node. Then in each round, each informed node chooses a neighbor uniformly at random
and informs it.

‘We prove that this algorithm informs every node in the largest component of a RGG in O(y/n'/v)
rounds with high probability. This holds for any value of » larger than the critical value for the emergence
of a giant component. In particular, our result implies that the diameter of the giaut component is

o(vn'/r).

1 Introduction

The study of information spreading in large networks has various fields of applications in distributed
computing. One important example is the maintenance of replicated databases on name servers in a large
network [4, 9]. There are updates injected at various nodes, and these updates must be propagated to all
the nodes in the network. In each step, two neighboring nodes check whether their copies of the database
agree and perform the updates, if necessary. In order to be able to let all copies of the database converge
to the same content, efficient broadcasting algorithms have to be developed. Typically, these broadcast
algorithms should be simple, resilient against failures and should work locally, i.e., the nodes do not have
any knowledge of the global topology. One simple algorithm of this kind is randomized broadcast (a.k.a.
push algorithm) we study here. In this algorithm, in each round each informed node chooses a neighbor
uniformly at random.

One of the first random graph models, Erdés-Rényi random-graph model [7, 8], exhibits the indepen-
dence property among edges of the graph. In modeling large networks, as well as in statistical testing, the
graphs possess the triangular property, that is, different edges in the graph are not necessarily independent.
One of the models that preserves this triangular property and is suitable for many real applications is the
model of random geometric graphs [15]. Furthermore, since there are sharp transitions in the structure
of a random geometric graph, it is of theoretical interest to study the behavior of algorithms on random
geometric graphs, at, below, and above these thresholds. More precisely, in this paper we study the be-
havior of the broadcast algorithm on random geometric graphs, above the threshold for which the giant
component appears (see Section 10 in [15]), as well as above the connectivity threshold (see Section 13
in [15]).

1.1 Related Work

The classic random broadcast has been first analyzed on complete graphs by Frieze and Grimmett [10] who
proved that with probability 1 — o(1), the runtime is logy 7 4 Inn + o(logn). This result was tightened by
Pittel [16] showing that with the same probability, logs n + Inn + (O(1) steps are necessary and sufficient.
Feige et al. [9] proved that on any graph, the runtime is at most O(nlogn) whp', and that for any bounded

Ywhp means with probability tending to 1, as the number of nodes n tends to infinity.



degree graph, O(diam(G)) steps are sufficient. Furthermore, they established a runtime of O(logn) on
hypercubes and sufficiently dense random graphs whp. In [6], two of the authors extended this result to
other graphs by proving an upper bound of O(logn + diam(G)) for different Cayley graphs.

Random walks on (RGG) have been studied in [1, 3]. In [1], Avin and Ercal considered random
geometric graphs for dimension 2. They proved for a radius that is a constant factor larger than the
connectivity threshold, a random geometric graph has a cover time of ©(nlogn) with high probability,
which is asymptotically optimal. Cooper and Frieze in 3] gave a more precise estimate of the cover time
that works for all dimensions larger than 2.

In this work we are specifically interested in the problem of broadcasting in random geometric graph
model in two dimensions. We precisely state the definition of RGG in Section 2, and for further study
on RGGs we refer the reader to the monograph by Penrose [15]. First, one of the transitions from the
random graph models given by Erdés and Rényi [7, 8] to the models that may describe real processes in
a more realistic manner is the model of RGGs. As the name of the model suggests, there is a notation of
geometry introduced in that model. Inherently, the random geometric graph model can be used in many
disciplines, such as, in modeling of sensor networks, cluster analysis, statistical physics, hypothesis testing,
as well as in other related disciplines. As one example of random geometric graphs, we see the deployment
of sensor networks when the devices are thrown over the field from the air. The devices may be treated
as nodes of a random geometric graph, given with their positions. Then, two devices can communicate if
and only if they are within some given distance. A further possibility of the usage of RGGs is that data
in a higher dimensional space can be seen as vertices of an RGG, the coordinates of which represent the
nodes’ attributes. The metric imposed on RGG depicts the similarity between data elements in the higher
dimensional space.

Although, we do not intend to comprehensively study RGGs in this section, for completeness, we
state some of the properties satisfied on RGGs, which will be used in the further sections. In RGG
model every single vertex has the same “coverage radius” r,, and regarding percolation properties, there
is the unique giant component, and the appearance of the giant component occurs sharply at a threshold
radius 7, = \/A/n [15]. Theoretically, the exact value of the constant A, is not known, but it is known
experimentally from the simulations by Rintoul and Torquato [17] that for the dimension d = 2 the
constant A, & 1.44. For d = 2, the rigorous bounds on A, are given in [13], that is A. € [0.696, 3.32C}],
while improvement With respect to connectivity property, the RGG model possesses the sharp threshold,
at r, = /Ilnn/(an) [12, 14]. Furthermore, Goel, Rai, and Krishnamachari [11] have shown that every
monotone property in RGG (including existence of the giant component and connectivity) possesses a
sharp threshold.

1.2 Our Results and Techniques

We analyze the randomized broadcast algorithm on RGG for all values r being larger than the critical value
for the existence of a giant component. We prove that this algorithm distributes a piece of information,
initially known to one vertex in the graph, within O(y/n’/7) to all other vertices in the largest component
(with high probability). In particular, if the graph is connected, then all vertices get informed after
O(\/n’/r) rounds.

To prove this result, we first show that the diameter of the giant component is ©(y/n’/r), whenever r
is chosen such that a giant component exists. To the best of our knowledge, only for the connected case
the diameter was known before [5]. Our techniques are inspired by percolation theory and we believe them
to be useful for other problems, e.g., for considering the cover time of the giant component of RGG.

1.3 Organization

The structure of this paper is as follows. In Section 2 we define the basic notation and state some basic
results that are used later on. In Section 3 we derive some graph-theoretic results (e.g., on the diameter) of
random geometric graphs. In Section 4 we perform the runtime analysis of the push algorithm. We close
with the conclusions in the last section.



2 Notation and Preliminaries

2.1 Random Broadcast

We consider the following randomized broadcast algorithm also known as push algorithm (cf. [9]). We are
given an undirected, connected graph G = (V, E). At the beginning round 0, a vertex s € V owns a piece
of information (is informed). In each subsequent round 1,2, ..., every informed vertex chooses a neighbor
uniformly at random and informs it. We denote the runtime of this algorithm by R(G), which is a random
variable. Following the results from previous works, our aim is to prove bounds on R(G) that hold with
high probability (w.h.p.), i.e., with probability at least 1 —n~1.

2.2 Random Geometric Graph Model
We first recall the most natural definition of random geometric graphs.

Definition 1 (cf. [15]). For the d-dimensional space R® provided with the distance norm || - ||, let X, =
{X1, Xo,..., Xa} C [0, /n]? be chosen independently and uniformly at random. The random geometric
graph G(X,;7) has the vertex set V = X, and the edge set E = {(z,y): z,y € X, ||z —y|| < r}.

For our analysis however, the following definition is advantagous.

Definition 2 (cf. [15]). Let N, be a Poisson random wvariable with parameter n, independent of
{X1,Xs,...} C [0, ¥n]% and let P, = {X1,X>2,...,Xn,} be a Poisson process. The random geomet-
ric graph G(Pyn;r) has the vertex set V = P, and the edge set E = {(z,y): =,y € X, ||z —y|| < r}.

The following basic lemma says that any result that holds in the setting of Definition 2 with high
probability, also holds in the setting of Definition 1 with high probability. Since the process P, does not
posses the spatial independence, it is usually easier to prove claims on G(P,;7), and then to state the same
results on G(X,;r). This equivalence is allowed, since in the limit when n — oo, the processes, P, and X,
are equivalent by poissonization method, pp.18,19 [15].

Lemma 2.1. Let A be any event that holds with probability at least 1 — «v in the G(Pyp;7) model. Then, A
also holds in the G(X,;r) with probability at least 1 — O(n'/? a).

In what follows, we will always consider the G(Pp;r) model.
For a given number of nodes n and radius r,,, we will denote a realization of a RGG as G, .
A list of Chernoff bounds we use can be found in Section B in the appendix.

3 The Diameter of the Giant Component

In this section we assume that r > r. and consider the random graph G = G(P,,r). For all v1,vy € P, we
define dg(vi,v2) as the distance between v; and vo on G, that is, dg(vi,vs) is the length of the shortest
path from v; to vg in G. Also, we define d{v1, v2) as the euclidean distance between the positions of v; and
V2.

In the remainder of this section we prove the following theorem, which gives an upper bound for
de(v1,v9). Note first that dg(vi, va) 2 d(vi,va)/r for all v, vy € Py.

Theorem 3.1. For any two nodes vy, ve € Pp, da(vi,va) = O(d(vy,va)/7) with probability XXX.
The theorem above yields the following corollary about the diameter of .
Corollary 3.2. Ifr > r., the diameter of G 158 O(y/n’/r).

In order to prove the theorem, we first take two nodes v; and vy and show that dg(vi,v) =
O(d(v1,v2)/r) with high probability. We assume that v; and vy belong to the largest component of . We
use Figure 1 as a reference to show how to find a path from v; to vg. Take the line L that contains v;
and va. We draw a sequence of adjacent rectangles with side length /2 and r starting from v; until we



draw a rectangle that contains vs. The largest sides of the rectangles are parallel to L and are such that
L splits each rectangles in two squares of side length r/2. We refer to the rectangles as Ry, R, ..., R, and
let Soi_1,Sor denote the squares contained in Ry. Our goal is to compute dg (v, v2) by moving between
adjacent squares. Note that a node in S is a neighbor of all nodes in Sk_s and Sk 2. Moreover, if there is
a path crossing the region |J;_; R;, then because of the size of the rectangles, there must be a node from
this path inside | J;_; R;. ”

Rk
Szk-1
R ) I S oy o B
B 4 . =3
SZk
r/2

Figure 1: Illustration for the calculation of the diameter.

First we show that dg(vy,ve) < 2d(vyi,ve)/r if 7 > /14logn’ with probability 1 — O(1/n). The
probability that there is a node inside S; for all 1 < k < 2k is 1 — e~ /4, By the union bound, the
probability that there is a node inside each Sy, is at least 1 — 2ke /4, Clearly, x < 1+ 2v/2n'/r for any
choice of v; and wy. If there is a node inside each S, then dg(vi,v2) < 2d(vi,v2)/r. Using the union
bound over all choices of v, vy, we obtain that if » > v/14logn, we have one node in each rectangle for
every pair of nodes vy, vy with probability no smaller than 1 — O(n23)e™™/4 =1 — O(1/n).

Henceforth we assume that r < /14logn’ and we want to find a path that goes around the empty
square. In this section, we refer to a square as empty if it does not contain a node from the largest
connected component of G. We disregard the nodes from the other connected components of G. For any
empty Sk, we follow the shortest path from a node in Sy_; to some Sy for &’ > k + 1. Note that there is
always such a k' since R, = So._1 U Sa, contains vs.

Our aim is to give a bound to the length of the detour around empty squares. The path starts at
vy € Ry. For 3 < k € 2k, if Sy is empty and Si_o is not empty, let D; be the length of the shortest
path from S;_o to some Sy for &' > k + 1. If Si is not empty or both S; and S;_, are empty, then we
set Dy = 0 since the detour around S;_p will also go around S;. With these definitions we can write
d(;(u, ’U) <K+ Zfis Dy..

In order to calculate Dy, we exploit the idea of crossings for continuum percolation. First we need some
definition. Given a point z = (z1,22) € [0,/n]? and two numbers s > 0 and vy > 1, let A(z,s,7) be the
annulus with center at z and sides of length s and vs. More formally, if we denote Q(z, L, s) as a square
with center at z, sides parallel and perpendicular to L and side length s, then A(z, L, s,v) = Q(z, L, vs) \
Q(x,L,s) (see Figure 2(a)). An annulus A(z,L,s,v) can be decomposed into two horizontal rectangles
(Z\Z4Z5Z12 and Z11Z5Z7Z10 in Figure 2(b)) and two vertical rectangles (Z1Z5Z9Zyp and Z3Z,Z77Z% in
Figure 2(b)). For a horizontal rectangle, we define a horizontal crossing as a path in G completely contained
in the rectangle and that connects the left to the right side of the rectangle. Similarly for a vertical rectangle,
we define a vertical crossing as a path in G that is completely contained in the rectangle and that connects
the top to the bottom side of the rectangle. For an annulus A(z, L, s,vy) we define F(A(x,L,s,v)) as
the event that both horizontal rectangles of A(x, L, s, ) have a horizontal crossing and that both vertical
rectangles of A(xz, L, s,~y) have a vertical crossing. This event is illustrated in Figure 2(c).

We explain now how to use the annuli to find detours around an empty square Si. Suppose that Sg_g is
not empty but S is, and take the point x to be the middle point of the edge between S;_» and Si. Clearly
Q(x, L,r) contains Sp_o and Sy and does not intersect Siis. Also, for all v > 0, A(z, L,r,v) contains
neither Sg_s nor S but does intersect with at least two other squares Sy and Sy~ such that ¥’ < k —4
and £” > k + 2. Then, if for some v > 0, F(A(z, L,r,~v)) happens, then we can exploit the crossings of
A(z, L, r,7) to conclude that there exists a path from the node inside Sy_s to some Sy, k' > k+ 1, entirely
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Figure 2: Annulus.

contained inside Q(z, L,vyr). (Recall that a path cannot cross |J;_; R; without having a node inside that
region.}) We rely on the fact that the node inside Sx_; belongs to the largest connected component, which
guarantees that there is a path from Sp_» to the crossings of A(z, L,7,v). Furthermore, if Sy, _» is empty
and the smallest annulus around Sg._9 containing the crossings is such that the crossings do not cross
Sox—1 Or Yo, then since vg belongs to the largest component, there is a path from vs to the crossings of
this annulus. A similar observation can be drawn if Ss._3 is empty. Once we know that such an annulus
exists arounds an empty square S, we can easily bound Dy by the following trivial geometric lemma.

Lemma 3.3. Let x be a point in [0,+/n]?, s be a nonnegative number, L be a line, and u, and uy be two
nodes of G inside QQ(x, L, s). If there exists a path between wy and ua entirely contained in Q(x, L. s), then

d(ur, ug) = O(s%/7%).

Proof. The smallest path u; and uy that is contained inside Q(z, L, s) has the property that for any two
non-consecutive nodes w and w' in the path, their distance is larger than r. Otherwise, we can take the
edge (w,w’) and make the path smaller. This means that if we draw a ball of radius r/2 around each node
of the path, then two balls overlap only if their respective nodes are consecutive in the path. Let m be the
length of the path. There are m/2 non-overlapping balls of radius r/2. For each ball, at least 1/4 of its
area is contained inside Q(x, L, s). Therefore, it must hold that

—y Area(Q(x, L, s)) _ 32s .
7(r/2)2/4 72

O
The lemma below gives an upper bound for the probability that A{z, L,r,v) does not have a crossing.

Lemma 3.4. There exist constants ¢ and yg > 1 such that for all y > g, all points = € [0, /n)?, and any
line L,
1-Pr[F(A(z,L,7,7))] < exp(—cyr).

Proof. We use the ideas from the proof [15, Lemma 10.5]. Recall the decomposition of A(xz, L,r,~) into
rectangles (refer to Figure 2(b)) and take the top rectangle Z1Z4Z52Z15. lts sides have length vr and
r(y — 1)/2. Therefore, the aspect ratio of the rectangle is (y — 1)/(2v) < 1/2. We want to calculate the
probability that such a rectangle has a horizontal crossing as v increases. This is slightly different from the
calculation in [15, Lemma 10.5], since there the aspect ratio is fixed and the side of the rectangle is allowed
to vary. But clearly, since yo < v < 1/2, for any rectangle with side lengths yr and r(y—1)/2 we can stretch
the largest sides (while keeping the smallest sides fixed) to make the aspect ratio be (g —1)/2. Clearly, if
there is a horizontal crossing in the enlarged rectangle, there must be a horizontal crossing in the original



one. Following along the lines of the proof [15, Lemma 10.5] we can then conclude that there are constants
~o and ¢ such that for all ¥ > vy a rectangle of side lengths vr and r(v — 1)/2 has a horizontal crossing
with probability larger than 1 — e~ /4. Applying the union bound over the 4 rectangles composing the
A(x, L,r,~) concludes the proof. O

Now we use this lemma to bound the length of a detour. Suppose that S is empty and partition Sj;_»
is not empty. Again, let = be the middle point of the edge between Si_; and Sx. We want to obtain a
upper bound to the value of v > ~g such that the event F(A(z, L,r,7)) happens. Note that if for a fixed
v, F(A(z, L,r,7)) happens, then from Lemma 3.3 we have Dy = O(+?). Since there are O(n?) choices for
vy and vg, and for each v; and vy we have at most 2k = O(y/n’) terms Dy, Lemma 3.4 gives that there is
a constant ¢; such that with probability 1 — O(1/n) we obtain Dy < ¢1logn for all k. Let £ be this event.
In order to apply Azuma’s inequality to 212;“1 Dy, we first derive E [Dy].

The probability that S is empty is e~"/4, Note that if F (A(z, L,7,7v)) holds then Dy < 372, for some
constant ¢p and for all ¥ > . Therefore, Pr[Dy > ¢ < 1—Pr [F(A(.T, L,», \/f/_(g')):| < exp(—cy/€fear).

We can then write E[Dy] = e=/4 Yo PrjDy 24 <€ e~/ Jo” Pr[Dy > €] df, where the last inequality
follows from Pr[Dy > ¢] being a nonincreasing function of £. We have an exponential upper bound to
Pr Dy > ¢ for any £ with £ > cp73, therefore

E[Dy] < 6_"2/4627§+e_’"2/4/ e~evter
£2c02
= eyt + e AOE T /1)
= 0(1),

for all 7 > r.. Therefore, by linearity of expectation we have E [dg(v1,v2)] = O(k) = O(d(vy,v2) /7).

We have E [Dy] = O(1) for each k, and if the event £ holds, we have Dy, < ¢; logn for all k. Also, if £
holds, then the size of the maximum annulus we need to consider is ¢; log n, which implies that the annulus
around Sy and Sy are disjoints if |k —&’| > 4¢; logn/r and, consequently, the random variables Dy, and Dy
are independent. Let A = 14 4c¢; logn/r and define the index set I; = {k: 1 < k < 2k,k = j (mod A)}.
We can write dg(u,v) = K+ E,—A:1 ¥ e 1; Dk But the second sum contains independent random variables
and we can apply a version of Azuma’s inequality to derive that for each j

2 2
csl4;)
P E:D —§ E[Dy = es|l]| <1-Pr[€]+ 2ex —3—J>.
r : k : [ k] 3|J| []"f‘ p( 20‘1210g2‘n
E[j k(:]j

o d?(v1,02)
log*n

Since |Ij| 2 £/A = Q(d(vy,v2)/ logn), the probability above is smaller than exp( )‘ for some

constant ¢g. We solve the first sum by the union bound, obtaining

5 < cad?(v1,v9) .
Pr ZD;C—ZE[D;C} > ek < Aexp (————41——) <n3,
k=1 k=1 log™n

for any v; and vy such that d(vi,ve) = +/3/cq log?n. Hence, for a fixed pair of nodes v1,vs such that
d(v1,v9) = \/3/cy log®n, dg(v1,v2) = O(d(vy,vq)/r) with probability 1 —n3. Applying Lemma 3.5 yields
the claim.

Lemma 3.5. Let E(u,v) be an event associated to a pair of vertices u,v € G(Pn, 7). Assume that for all
pairs of vertices, Pr[E(u,v)] 2 1 —p withp > 0. Then,

Pr [/\uzvev(g(*pﬂ }r))E(u,v)] >1-2nlogn-p+n2

Proof. Let F be the event that the number of vertices in G is at most 2nlogn. Using a Chernoff bound,
it follows easily that Pr[-~F] < n~2. Using the definition of conditional probabilities and the union bound



(over conditional probabilities), we have

Pr [Vy pev(G(Pa,r)) € (1, 0)]
< Pr [Vywevcm,.n)—€u,v) | ]:] - Pr [F] + Pr[-F]
< 2nlogn - Pr([=E(u,v) | Fl+n2

Pr[-&(u,v) A F)
. Pr[F]|
Pr [ﬂg(u,v)]

1—n—2
—2

+n 2

<2nlogn-p+n

4 Broadcast Time

In the I)l(‘Vi()llb section we showed how to find a path between two nodes v; and vy such that if d(vy, v2) >
V/3/cq log®n then de(vi,va) = O(d(vi,v2)/r). Assume that only node v; is initially informed and let

7(v1, v2) be the number of rounds it takes for the random broadcast procedure to inform ve. We show that
7(v1,v2) = O(d(v1,v2)/r) with high probability.

We need to work with a subgraph of G. Let G' = (P,,,r’) such that v, < 7' = (1 — ¢)r, where £ < 1 is
a constant. Note that since v’ > r. we know that dg (v, v2) = O(d(v1,v2)/7").

Before proceeding to the proof of the random broadcast time, we need first to introduce some definition.
Let u; and up be two nodes such that u; and ue have at least one neighbor in common in G’. For any
point x € [0, yn]?, let B(x,s) be the ball with center at = and radius s. For any node w, let B(w, s) be
defined as B(x,s) where z is the location of w. Let H(u1,us) = B(u1,7) N B(ua,r’) (refer to Figure 3(a)).
Assume that u; is the only informed node and let T(u1, u2) be the number of rounds taken by the random
broadcast procedure over G until the first node inside H(uj,u2) is informed (note that H(u,us) is not
empty by the definition of u; and ). In a similar way, consider a node » and a region X C [0, /n]? such
that X contains at least one node (besides u if w € X) and for each node in X, u and this node have at
least one neighbor in common in G’. Then, assume that a node w chosen uniformly at random from X is
informed and let T(X,u) be the number of rounds taken by the random broadcast procedure over G until
the first node in H(w,w) is informed.

Note that T'(u,u2) is distributed as between the area of H(uj,ug) and B(u,r). The following lemma
gives a upper bound for E [T'(uz, ug)].

Lemma 4.1. For any pair of nodes uy and ug, E [T (u1,us)] = O(1).

Proof. Disregarding the nodes u; and wug, let Y1 be the number of nodes in H(uj,u2) and Y2 be the
number of nodes inside B(up,r). Therefore, E [T'(u;, uz)] = E [Ya/Y1]. We know that there is a node inside
H (1, usz) therefore, Y7 — 1 and Y3 — 1 are Poisson random variables with mean Area(H (u,us)) and 72,
respectively. Conditional on Y5 — 1 = k, the value of Y7 — 1 is given by a Binomial distribution with mean
kp, where p is given by the ratio of the area of H(uj,us) to the area of 7r2. Let this ratio be denoted by



Figure 3: Broadcast

3, we obtain
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Therefore E [T'(u1, u2)] = O(1) if 3 = ©(1). In order to show that 3 = Q(1), note that d(u;,us2) < 2’ and
the case that minimizes the area of H(u1,ug) is when d(uj,uz) = 2’ (as illustrated in Figure 3(b)). We
show that the quadrilateral Z;Z>Z3Z, in the figure, which is contained inside H(uj,us), has area Q(7'2).
It is easy to check that the line Z»Z4 has length 7 — 7’ = er. Now we need to show that the distance
from Z; to the line Z;Z4 has length Q(r). Applying the law of cosines to the triangle Z;ujus, we obtain

Y2 IR ) R &
cos(f) = % and, consequently, for a constant £, there exists a constant ¢ such that sin(6) > 4. Then,

the area of the quadrilateral Z;Z3Z3Z is larger than £6r% and, consequently, 3 > £6/7 = Q(1). O

For any region X C [0, /] containing at least one node and a node u so that every node in X has a
neighbor in common with u, let W be a node chosen uniformly at random from X. Then, T(X,u) is also
distributed according to a geometric random variable and E [T'(X,u)] = E [E [T(w,u) | W = w]] = O(1).

Now we are in position to get a upper bound for 7(vy,vs). Take a path wy,us, ..., 4, in G’ such that
u; = vy and u,; = vy. Let X7 be the point where uy is located and define the region X; recursively for
2<i<m—1as X; = HW;_1,u;41), where W;_; is a node chosen uniformly at random from X;_; (hence
X; depends on X;_j).Note that u; € X; and for any node w € Xj, the region H(w,u;2) is not empty {(in
particular, u; 11 € H{w,u;42)). We derive the time it takes for the random broadcast procedure to inform
v9 by following the information along the path wy, H(X1,u3), H(X2,uq), ..., H{Xpm—2,Um)s Un.



Note that when uq informs a node inside the region H{X1,u3), the node that gets informed is chosen
uniformly at random from H (X7, u3). The same happens for all H(X;, u;4+2). Let 8(X,,—1,un) be the time
it takes for a node chosen uniformly at random from X, to inform w,,. Hence, 7{vy,v2) < (X, —1,v2) +
S T( X, uiva)-

For a fix pair of nodes v; and vy we take uy,us,...,u, to be the shortest path obtained from the
procedure used to derive a upper bound for d¢(vy,v2) in Section 3. That path has a nice property. If £
holds, then the maximum annulus considered in a detour around an empty square has length ¢; logn. Let
S; and S; be two empty squares, let z; be the middle point of the edge between S;_; and S;, and z; be the
middle point of the edge between S;_1 and S;. Let L be the line containing v; and vs. Then, for any two
nodeés w; € A(x;, L, 7, ¢ logn/r) and w; € A(zj, L, 7, ¢1logn/r), the region B(w;,r) N B{wj,r) is empty if
d(z;,2;) = ¢1logn+ 2r. Since each annulus have O(log? n/7) nodes in the path. we obtain that two nodes
u; and u; in the path are such that B(u;, ) N B(u;,7) is empty if |i — j| > cslog®n/r, for some constant
cs. Let A’ = 3+ c3log n/r, for any i, the random variables T'(X;, u;12) and T(Xj,uj+2) are independent
if |i — j| > &'

Let the index set J; = {1 < ¢ < m: 4= j (mod A")}. We can then write 7(v1,v2) = (X 1,02) +

f‘:/] Zie,lj T(X;,use2), where for all j, the term Zier T(X;,u;+2) is given by the sum of independent
geometric random variables. We apply the following Chernoff bound for this term.

Lemma 4.2. Let 0 < § < 1 be arbitrary. Suppose that X, ..., X, are independent random variables on
N with Pr[X; = k| = (1 = 8)*718 for every k € N. Let X = 31, X;. Then it holds for every £ > 0 that

Pr[X > (1 +¢&)n/8] < e~ /20+e),

Proof. Consider transforming every X; = k into a binary string By = (000...01) with (k — 1) zeroes. Then
the series of X1 = k1, X2 = kg, X3 = k3, ... can be represented by a string B of the form of { B, By, B.,...} =
{00...100...100...1...00...1}. Note that B contains n many 1’s and the total number of positions (0 or 1) in
Bis K=Y M}

Now, consider instead an infinite set of binary random variables Y1, Y. Ys,... with Pr[Y; =1] = §.
Viewing Y; as representing the i-th position in B, it is not difficult to check that

En:XiZk

=1

Py

k
= Pr Zngn
§=1

Let k= (1+¢e)p with p=E[X],Y = Z}ljf)“ Yj, and ¢/ = E[Y]. It follows from the Chernoff bounds for
binomial random variables (cf. Lemma B.1) that for any ' € [0, 1),

Pr [Y < (1 - E,),LL/} < 67(51)2#//2

Since E[X;] = 1/§ and therefore u = n/é, it follows that y/ = (1 +é&)u-6 = (1 + €)n. Hence, if we set
n=(1-¢)y, we get that (1—¢')(1+¢) = 1 and therefore ¢/ = ¢/(1 +¢). Plugging this into the equations

above, we obtain
n

Z)(’l > (1 —I—s)n/é] < e—.52n/2(1+:')

i=1

Pr

which proves the lemma. O

The lemma above gives that for each j,

52771 ('[(’Ul. 'L‘f))
P T(X;, u; > (1 E[T(X;, u; L e —— | < —cg——— | .
LE Sy K2 J3



| We know that there exists a constant c¢g such that E[T(X;, uj2)] < cg for all i. We can then take the
union bound over all j and conclude that

A/
‘ Pr Z Z T(Xi,uir2) = (1+¢e)eg(m —2) | < Alexp (—c—zw) ,

;-
‘ j=1ieJ; log”n

for some constant c7.

It only remains to prove a upper bound for 8(X,,_1,v2). We show that for any pair of nodes w; and
ws, we obtain A(wy, wy) <

Lemma 4.3. For all pair of nodes wy and wy such that d(wy, we) < r, the following holds with probability
| 1-0(1/n),
log®n
CTIL g e
0wy, wz) < o loglogn

‘ for some constant cy.

Proof. Note that if the degree of w; in G is A, then the number of rounds until w; sends the information
’ to wsy is given by a geometric random variable with mean A. We first show that the maximum degree of
G is smaller than cglogn/loglogn with high probability. We first tesselate the region [0, y/n] in squares
of size r. For each square, from Lemma 4.4, the probability that there are more than (cg/9) logn/loglogn
‘ nodes is smaller than 1/n?, for some constant cs. Since we have n/r? squares, the probability that each
| square has less than (cg/9)logn/loglogn nodes is 1 — O(1/n). Since for each node, its neighbors belong
‘ to at most 9 squares we have that \ < ¢z logn/ loglogn. Therefore,

log log
Pr[0(wy,ws) = t] < exp (—cStw> ;
\ logn
I we set ot = 3log? n/(cg log log n) = co log? n/ loglogn, we obtain  that
| Pr [0(wy, w2) > co logz_n/ loglogn] < 1/n3 and, by the union bound over w;,ws, the probability
that 8(wq,ws) < cglog®n/loglogn for all wy,ws is larger than 1 — O(1/x). O

| Lemma 4.4. If X is a Poisson random variable with mean u, then Pr[X > t] < e tlog(t/w+t—p

‘ Proof. We have E [¢#X] = e and by Markov’s inequality Pr[X > ¢] < exp(u(e® — 1) — 6t), setting
6 = log(u/t) concludes the proof. O

‘ Therefore, we get that for any two nodes vy and v, in the largest component of G’ such that d(vy, ve) >
(3/cz)log® n, T(v1,v2) = O(dey(vy,v2)) = O(d(vy,vs)/r) with probability 1 — O(1/n). We now need to
show that after all the largest component of G’ is informed, the nodes that belong to the largest component

‘of G are informed after a small amount of rounds.

\5 Conclusion

We analyzed random broadcast in random geometric graphs. We proved that the algorithm completes in
‘O(\/'r? r) steps, where r can be an arbitrary value above the critical value for the emergence of the giant
‘component. In particular, we also showed that the diameter of the largest component is O(\/n’/r).

An open problem is to extend our results to higher dimensions, which seems to be challenging, as
\certaiu ideas from percolation theory we use are restricted to two dimensions. A second possibility would
be to try to apply our techniques to the analysis of the cover time of the giant component of RGGs. This
'would nicely complement recent results by Cooper and Frieze [2, 3] for the giant component of Erdos-
‘Renyi—Random—Graphs and for connected RGGs.
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A  Omitted Proofs

Lemma 2.1 (from page 3). Let A be any event that holds with probability at least 1 — « in the G(Pn;71)
model. Then, A also holds in the G(X,;r) with probability at least 1 — O(n'/? &),

Proof. In this proof, we shall use subscripts to indicate the space over which the probabilites are taken.
Let vol(Gp ) denote the number of vertices in a realization of G(P,;r). Then it follows that by Stirling’s
formula that

n"

n n 1
P (X, 7 l(rynv,. = =g = ‘”.—:e - .
ot boHGar) =l = By =t =9 ()

Note however, that conditioned on vol(Gy,) = n for a relization in G(Pp;7), Gny is also a realization of
G(X,; 7). Therefore

Pl‘g(x,,;r) [-A] = Pfg( i) [-A | vol(Gpr) = n]

Prgp, ) [2A]
S Prgp,;r [vol(C' #) =]
=} (nl/ ) [

B Chernoff Bounds

Lemma B.1 (Chernoff Bound for Sums of Binary Variables). Let X1, Xo,..., X, be independent binary
random variables. Let X =3 " ; X; and p:=E[X]. Then it holds or all 6 > 0 that

Pr(X > (1+6)u] <exp(— min{6%, d}/3) .
Moreover it holds for all 0 < § < 1 that

Pr(X < (1-6)u] <exp(—6u/2).
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