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Abstract 

A Random Geometric Graph (RGG ) is constructed by dist ribut ing n nodes uniformly at rnndom in 
the unit square and onn ecting t wo nodes if their Elldidean distance is at most T, for some pres riuecl 
T. vVe analyze the foll owing randomized broadcast algorit hm n RGGs. At the beginning, t here is only 
one infofllled node . T hen in each roun d, each informed node chooses a neighbor uniform ly at rand0111 
and informs it. 

We prove t hat t his algor ithm informs every node in the largest ornponent of a RGG in O( y'7i: It') 
round::; with h igh probability. This holds for any va lue of T larger than t he crit ical value for the emergence 
of a giant component. In particular, our ret:iult implies that the diamet er of the giant component is 
0 ( fo'Jr ). 

1 Introduction 

The study of information spreading in large networks has various fields of applications in distributed 
computing . One important example is the maintenance of replicated databases on name servers in a large 
neb-vork [4, 9]. Th re are updates inject ed at various nodes, and these updates must be propagated to all 
t he nodes in the network. In eacll step, two neighboring nodes check whether their copies of t he database 
agree and perform the updates , if necessa.ry. In order to be able to let a ll copies of t he database converge 
to t he same content, efficient hroadca'Sting algorithm s have to be developed. Typically, these broadcast 
algorithm1:l should be 'imple, resilient against failures and should work locally, i. e., the nodes do not have 
any knowledge of the global t opology. One simple algorit hm of t his kind is rand mized broadcast (a.k.a. 
push algori t hm) we study here. In this algorithm, in each round each informed node chooses a neighbor 
uniformly at random. 

Qlle of the fir t random graph models, Erdos-Renyi random-graph model [7, 81, exhibits the indepen­
dence property among edges of t he graph . In modeling large networks : as well as in stati tical testing the 
graphs possess t he t riangular p roperty, t hat is, different edges in the graph ru."e not necessarily independent. . 
One of the models that preserves this triangular property and is suita Ie for m e: ny real applicat ions is the 
mod I of random gf'()m t r ic graphs t15J. Furthermore, since there are sharp transitions in the struc ure 
of a random geomet r ic graph , it is of t heoretical interest to study the behavior of algorithms on random 
geomet ric graphs, at , below, and above t hese thresholds. More precisely, in this paper we study the he­
havior of the broadca. t algorit hm on random geometric graphs , above the threshold for which the giant 
component appears (see Section 10 in [15)), as well as abov t he connectivity threshold (8 e Section 13 
in [15)). 

1. 1 Related ·Work 

The classic random broadcast has been first analyzed on compl tc graph.:; by Friez and Grimmett [10] who 
proved that wit h probability 1- 0(1), t he runtime is log2 n + lnn + o(logn). T his result was t ighten d by 
Pit t el [16] showing tha.t with the same probabili ty, log2 n + In n + 0(1) steps are necessary and sufficient . 
Feige et al. 19] proved t ha.t on any graph , the runtime is at most O(n log n) whpl, and that for any bOlmde 

lWhp memlS wit h p TObahility tending to 1, as the number of nodes n ten ds to infinity. 
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degree graph, O ( tiiam( G)) steps are sufficient. Furthermore, t he, established a runtime of O (log n) n 
hypercubes alJ(l suffici ntly dense random graphs whp. In [6], two of the authors extellde this result to 
oth r graphs by proving an upper bound of O (1og TI + diam ( G)) for different Cayley graphs. 

Random walks Oll (RGG) have been studied in [1, 3]. In [1], Avin and Ercal considered random 
geometric gra 11::; for climen 'ion 2. They proved for a radi us th(lL is a 'on tant factor larger than the 
connect.ivity thr shold , a random geome ric graph has a cover time of 8 ( n log n) wi h high probability, 
which is asymptotically optimal. Cooper and Frieze in [3] gave a more precis estimate of the cover time 
that. works for all dimensions larger than 2. 

In this work we are specifically interested in the problem of broadcasting in random geometric graph 
mouel in two dimensions. We precisely state t he definition of RGG in Section 2, and for fmthcr st udy 
on RGGs we refer the reader to the monograph by P mose [J 5]. First, one of the t ransitions [rom the 
rand ill grapu models given by Erdos and Uenyi [7, 8] to the models that may describe real processes in 
a more realist ic manner is the model f RGGs . A::; the name of t he model suggests, there is a notation of 
geometry introduced in that model. Inherent ly, t he random geometric graph model can be used in many 
disciplines, f'uch as , in mod ling of sensor lletworks cluster analysis, statistical phy::;ics, hypothesis testing, 
as well as in other related di -'cipline::;. As one example of random geometric gI'aph , we see the deployment 
of sensor network when the devices are t hrown over t he field fro m the air. The devices may be t reated 
as nodes uf a random geometric gTaph, givcn with their position::; . Then, two devices can communicate if 
and only jf they are within ::;ome given distance . A furt her possil ilit.y of the usage of RGGs is that data 
in a higher dimensional space can be seen as vertices of an RGG, the coordinates of which represent the 
uodes ' attributes . The metric imposed on RCG QPpicLs the similarity between data elements in the higher 
dimensional space. 

Although , we do not iutend to comprehensively stu ly RGGs in this sect.ion, for completeness, we 
stat some of the properties sati~:;fied on RGGs, which ill he used in t he further . ectiolls . In RGG 
model eery single vert x has the same "coverage radius" rn , and regarding percolation properties, t.here 
is t he unique giant comp01 lent, and the appearance of the giant component occurs sharply at a threshold 
radius rn = J Acln i [1,::;]. Tbpor tically, the exact value of the const.ant Ac is not known, but it is knowlL 
xperimentally from the simulations by Rintoul and Torquato [17] that for the imensioll d = 2 the 
on::;taut Ac ~ 1.44. For d = 2, t he rigorous bounds on Ac are giv n in [13], that. is Ac E [0.69G,3.32C21, 

whi le improvement \\7i l'h respect t o connectivi ty property, the RGG model posse.·ses the sharp threshold, 
at rn = J lnnl(7Tn)' [12, 14]. Fmthermore, Goel, Rai, and Krishnama hari [11] have shown t hat every 
monotone pr pf'rt.y in R.GC (including existence of 'he giant componf'nt and connectivity) possesses a 
sharp thr shold. 

1. 2 Our Results and Techniques 

We analyze t he randomized broadcast algorithm on RGG for all values r heing larger than the critical value 
for the exi t ence of a giant component . We prove t.hat this algoritlun dist.ributes a pi ee of information, 
ini tially known to one ertex in the graph, wi thin O ( vn Ir) to all other vertices in the larg st component 
(with high prohability). In particula , if the graph is connected, t hen all vert ices get informed afte r 
O ( mlr) rOl.lllds . 

To prov J this r suIt , we first show that the iameter of lhe giant component is 8 ( Vn Ir), whenever r 
is eh sen su h that a giant component exists . To the best of om know led u ' , only f, r the connected case 
the diameter was known before [5]. Our techniques are inspired by percolation theory ancl we believe them 
to be llscful for oth r problems, c.g. , for considering the cover time of lhe giant component of RGG. 

1.3 Organization 

The structure of this paper is as follows. In Section 2 we define the hasic notation and state some basic 
results t hat are used lat er on. In Section 3 we derive some graph-theoret ic results (e.g., on the diameter) of 
random geometric graphs . In Section 4 V,re perform t he rUlltim analysis of the push algorithm. We close 
wit h t.he conclusions in t he last se tion. 



2 Not ation and Preliminaries 

2.1 Random Broadcast 

We consider the following randomized broadc st algorithm also known as push algorit hm (cf. [9]). We are 
given an undirected , connected graph G = (V, E ). At the beginning round 0, a vertex s E V owns a pie e 

f information (i8 informed). In each suhsequent round 1, 2, . .. , f'very informed vertex ch oses a neighbor 
uniformly at random and informs it. We denote t he runtime of t his algorithm by R (G), which is a random 
variable. Following the results from previous works, our aim is to prove bounds on R (G ) that hold wi th 
high probability (w.h.p. ) , i.e., wit h probability at least 1- n-l. 

2.2 Random Geometric Graph M odel 

We fi rst recall the most natural definition of random geometric graphs. 

D efinition 1 (d. [1-]). For the d-dimensional space ~d provided with the distance norm II . II, let Xn = 

{X l ' X 2 , ... , .. ;X"n} C [0, rnl d be chosen independently and uniformly at random. The random geometric 
graph G(Xn;r ) has the vertex sct V = Xn and the edge set E = {(x,y): x,y E X , Il x - yll :s;: r } . 

For our analysis however, the following definit ion is advantagous . 

Definition 2 (cf. [15]). Let N n be a Poisson random vaTiable with parameter n , independpnt of 
{X l, X 2, ... } C [0, {Yn]d, and l t Pn = {X l , X 2, .. . , X Nn } be a Poisson proc ss. The random geomet­
!"ie graph G (Pn;r ) has the vertex set V = Pn and the edge set E = { (x y): X, y E X , Ilx - yll :s;: T}. 

T he following basic lemma says t hat any result t hat holds in t he set ting of Definition 2 with high 
probability, also holds in the set ting of Definition 1 with high probability. Since the process Pn does not 
posses the spa ial independence, it is usually easier to prove claims on G(Pn ; r), and then to state the same 
results on G ( Xn; r). This equivalence is allowed , since in t he limit when n ----1 00 , t he processes , Pn and Xn 
are equival nt by poissonization method, pp.18, 19 [15]. 

Lemma 2.1. Let A be any event that holds with probability at least 1 - 0: in the Q (Pn ; r ) m odel. Th en, A 
also holds in the Q (Xn; r) with probability at least 1 - 0 (n 1/2 0: ). 

In what follows, we will always consider the Q(P n ' r) model. 
For a given number of nodes n and radius '(' n , we will denote are lization of a RCG ~ QU.T' 

A list of Chernoff bounds we use can be found in Section B in t he appendix. 

3 The Diruneter of t he Giant C omponent 

In this section we assume that T > rc and consider the random graph G = Q(Pn , r). For all VI, V2 E Pn , we 
define de ( V I, V2) as t he distance between VI and V2 on G, t hat is; de (VI, V2) is t he length of the shortest 
path from VI to V2 in G . Also, we define d( VI, V2) as the euclidean distance between t he positions of VI and 

V2 · 
In the remainder of tllis section we prove t he following t heorem, which gives an upper bound for 

dC (VI,V2). ~ote first that dC (Vl, V2);;? d(VI,v2)/r for all VI,V2 E Pn · 

T heorem 3 .1. FOT any two nodes 'VI , 'V2 E Pn , dC (VI, V2) = O( d(VI1 v2)/r) with probability XXX. 

The the rem above yields the following corollary about the diameter of G. 

Corollary 3.2. f f r > re . the diameter of G is O(y'n/r). 

In order t prov the theor In, we first t ake two nodes V1 and V2 and show that de ('Vl , V2) = 

O (d(VIl v2)/r) with high probabili ty. We assume that VI and V2 belong t the largest component of C . We 
use Figure 1 a.., a reference to show how to fi nd a path from 'VI to V2. Take the line L that contains VI 

and V2. We raw a sequence of adjacent r ctangles with side length r / 2 and r start ing from VI until we 



draw a rectangle that contain~ '/)2. T he largest side~ of the rectangles are parallel to L and are such that 
L splits ach rectangles in two squares of side length T/ 2. We refer to the rectangles a.-; R1, R2 ,' .. , RK and 
let S2k-l , S2k denote he squares contained in R k. Our goal is to compute dC (Vl, V2 ) by moving between 
adjacent squares. Note that a node in S ", is a neighbor of all nodes in .. 'h -2 and S k+2 . 10reover, if t here is 
a path crossing the region U~I R i l t hen because of the size of the rectangles, ther must be a norle from 
this path inside U7=1 R i · 

0 " - - - r- - - - - - - - r- - - - r- - - - - - - - r ... - - r 
L V j 

r/2 

Figure 1: Illust rntion for the cal nlation of the cliam tel'. 

First we show that dC (Vl,V2) ~ 2d(Vl ,V2 )/T if T ;:: J1410g n with probability 1 - O (l/n). T he 
probability that there is a node inside Sk for all 1 ~ k ~ 2K is 1 - e-r2 /4. By the union bound , the 
probability that there is a node inside each S k is at least 1 - 2Ke- r 2 /4. Clearly, K ~ 1 + 2V2n' /r for any 
choice of v 1 and V 2. If there is a node inside each Sk. then de ( VI ~ V2 ) ~ 2d ( VI, V2) / r . Using the union 
bound over all choices of V I , V2, we obtain that if T ;:: J1410gn we have one node in each rectangle for 
very pair f n des VI, V2 with probability no smaller than 1 - O (n2.5)e-r2/4 = 1 - O (l /n). 

Henceforth we assume t hat r < J 14log n and we want to find a path that goes around the empty 
S4uarc. In this section we re£ r to a square as empty if it does not contain a node from the largest 
connected component of G. We disregard the nodes from the other connected components of G. For any 
empty Sk, we follow the shortest path from a node in Sk-l to ~ome Ski for k' ;:: k + 1. Note t hat there is 
always such a k' since R K = S2 1'1:-1 U S 2K contains V2· 

Our aim is to give a bound to the length of the detour around empty squar s. The path starts at 
111 E R 1 . For 3 ~ k :s; 2K , if Sk is empty and S"'- 2 is not empty, let Dk be the length of t he shortest 
path from Sk-2 to some Ski for k' ;:: k + 1. If Sk is not empty or both Sk and Sk-2 are empty, then we 
set D I,; = 0 since the detour around Sk-2 will also go around Sk. With these definitions we can write 
dc (u, v) ~ I'C + L~:3 D k · 

In order to calculate Die , we exploit the idea of crossings for cont inuum percolation. Fir't we need some 
definition. Given a point x = (X L X2 ) E [0 fol 2 and two number~ s > 0 and , > 1, let A (x s , , ) be t he 
annulus with center at x and sides of length sand !,S. :More formally, if we denote Q(x, L s) as a square 
with center at x , sides parallel and perpendicular 0 L and side length s, then A (x , L, s, 'Y) = Q(x, L, 'Ys ) \ 
Q (x, L , s) (see Figure 2(a)). An annulus A (x , L 5 , '''y) can be decomposed into two horizontal rect angles 
(Z IZ4ZSZ12 and Z ll Zt;Z7Z W in Figure 2(b)) and two vertical rectangles (ZlZ2Z9Z lO and Z3Z4Z7Z8 in 
Figure 2(b)). For a horizontal rectangle , we define a horizontal crossing as a path in G completely contained 
in the rectangle and that connects the left to the right side of t he rectangle. Similarly for a vertical rectangle , 
we define a vertical crossing as a path in G that is completely ontained in the rectangle and that connects 
the top to the bottom side of the rectangle. F l' an annulus A (x , L , s, ,) we define F (A( x, L, s , ,)) as 
t he event that both horizont al rectangles f A (x, L, s , , ) have a horizontal crossing and t hat both vertical 
rectangles of A (x, L , s, ,) have a vertical crossing. This event is illustrated in Figure 2( c). 

We explain now how to Ul::ie the annuli to find detours around an empty square Sk; . Suppose that S k- 2 is 
not empty but Sk is, and t ake t he point .7: to be the middle point of the edge between Sk-2 and S f.;; . Clearly 
Q(x, L, or ) contains Sk-2 and Sk and does not intersect Sk+ 2' Also, for all , > 0, A (x, L, or, ,) contains 
neither Sk-2 nor Sk but does intersect with at least two other square Ski and SkI! such hat k' ~ k - 4 
and kif ;:: k + 2. T hen, if for some 'Y > 0, F (A (x , L, T , )) happens, then we can exploit the crossings of 
A (x , L, r, !,) to conclude that t here exists a path from the node inside Sk- 2 to some Sk', k' ;:: k + 1 entirely 



"Is 

(a) (b) (c) 

Figure 2: Annulus. 

contained in 'ide Q ( ~r ) L r r ). (Recall t hat a path cannot cross U~l Ri without having a node inside that 
region. ) 'Are rely on the fact tll, t t he node in~ ide 5 k - 1 belong~ to t he largest onn c:ted coruponcnt ~ which 
guar'antee~ that there is a pat h from 5k - 2 to t he crossing~ of A(x, L, T, l')' Furt hermore, if 52 /"i -2 is mpty 
and the smallest annulu around 52",-2 containing t he crossings is such t hat the crossings do not cros~ 
5 2",-1 or S2 i"C ' then since 'U2 bel ngs to the largest component , there is a path from V2 to the rossing. of 
t his annulus. A similar observat ion can be drawn if S 2",-3 is empty. Once we know that such an alluulus 
exists arounds an empty square Sk, we can easily bound Dk by the follmving t rivi 1 geometric lemma. 

Lemma 3.3. L et x be a point in [0, fol2, S be a nonnegative number, L be a line; and t £l and 'U2 be two 
nodes of G inside Q(:t, L, s ). If there exists a path between 'U1 and 'U2 entirely contained in Q(x , L s ), then 
d ,(Ul , U2) = 0 (s2/ r2 ). 

Proof. The smallest path tLl and U2 that is cont ained inside Q(x, L , s ) ha:3 the property that for any two 
non-consecutive nodes wand Wi in t he path, t heir di~t allce is larg r t han r. Other i I we can take the 
edge (w, w' ) and make the pa.th smaller. T his means that if we draw a ball of radiu r / 2 around each node 
of the path, then two bans overlap only if t heil' respective nodes are consecutive in the path . Let Tn be the 
length of t he path. There are m / 2 non-overlapping balls of radius r/2. For each ball at least 1/4 of its 
ar a hi contained inside Q(x, L, s). Therefore, it must hold t hat 

m :( 2
Area(Q(x , L ,s)) 3252 

7r(r/2)2/4 7rr2 . 

o 

T he 1 mma below gives an upper bound for the probability that A(x ,L,r, r) does not have ' rossing. 

Lemma 3.4. Ther ; exist constants c and ,0 > 1 such that for all r > 1'0, all points x E [0: fol 2 ) and any 
lin e L , 

1 - P r [F (A(x, L, r, ,))] :( exp (-c,r). 

P roof. W use the ideas from t he proof [15, Lemma 10.5]. Re all t he decomposition of A (.r , L , T, , ) into 
rectangles (refer to Figure 2(b )) and take the top r ctangle ZlZ4Z5Z12 . Its sides have length "yr and 
T(, - 1)/2. Therefore, the aspect ratio of t he rectangle is b - 1)/(2,) :( 1/2. VVe want to calculate the 
probability that such a rect.ang] has a horizont al crossing a.':i ,increases. This is slightly different from the 
c !enlation in [15, Lemma 10.5], sin e t here t he aspect ratio is fixe and t he side of the rectangle is allow d 
to vary. But clear ly; since 1'0 :( , :( 1/ 2, for any rectangle with side lengths I'r and r(, - 1) / 2 we can st!' tch 
the largest sid s (whih" keeping the smallest sides fixed) to make the aspect ratio be ho - 1)/2. Clearly, if 
t It re is a horizontal crossing in the enla.rged rectangle, there must be a horizontal rossing in the original 



one. Following along the lines of the proof [15, Lemma 10.5] we can then conclude that there are constants 
(0 and c such that for all ( ;::; (0 a 1'e tangle f side lengths )'T and r ( "Y - 1) 12 has a horizontal crossing 
with probability larger than 1 - e-qr 14. Applying the union bound over the 4 rect angles composing the 
A(.T, L, 1', I) concludes he proof. 0 

Now we use this lemma to bound the length of a detour . Suppose that Sk is empty and partition S k - 2 

is not empty. Again, let ]; be th luiddle point of he edge between Sk-l and Sk . We want to obt ain a 
upper bound to the value of I;::; 10 such that t he event F (A (x , L T' I )) happens. Note that if for a fixed 
/, F (A( x , L,r' I)) happen~, t hen from Lemma 3.3 we have D k = 0 (12). Since there are O(n2 ) choices for 
VI and 'V2, and for each Vl and 1)2 we have at most 2;;, = O (;n) terms D ie , Lemma 3.4 gives that t here is 
a constant Cl such that with probability 1 - D (1 l n) we obtain Dk ~ c1log n for all k . Let £ be this event . 
In order to apply Azuma's inequality to L;~l D b we fi rst derive E [Dk ]' 

The probability that Sk is empty is p _)" 2/ 4 . Note that if F (A (.T, L ,r,I)) holds then D ie ~ C2"P , for some 

constant C2 and f r all "/ ;::; ) 10· T herefore, Pr [D ie ;::; f] ~ 1 - Pr [F (A( x, L, r, V fl C2 '))] ~ exp( -cV fl r 2 '1'). 

We can then write E [DkJ = e-r2 j4 L~l Pr [Dk ;::; fJ ~ e-
r2

/ 4 J~oo Pr [Dk ;::; fl dR, where the last inequality 
follows from Pr [D k ;::; £] being a nonincreasillg funct ion of e. We have an exponential upper bound to 
Pr [D k ;::; R] for any f wit h R ;::; C2 "f5 , therefore 

E [Dk l ~ e- r2 j4c216 + e- r2
/ 4 l e-c~rdk 

J £) C2l'5 

e- r2
/ 4C2"f5 + e- r2

/ 40 (e- c ,/or 11')) 

0 (1), 

for all r > T e. Ther fore, by linearity of expectati n we have E [dC (Vl ,V2)] = O(~) = O(d('G'l,'l)2)/r). 
We have E [Dkl = O( 1) for each k , and if the event £ hold~ , we have D ie ~ Cl log n for all k . Also, if £ 

holds , then the size of the maximum annulus we need t o consider is cl log n , which implies that the annulus 
around Sk and Sk' are disjoints if Ik - k' i ;::; 4c1 log nil' and, onsequently, the rauc..lom variables Die and Die' 
are independent. Let ~ = 1 + 4Cl log niT and define the index s t Ij = {k : 1 ~ k ~ 2K , k == j (mod ~)} . 

We can write dc (u,v ) = K+ L~I ~kElj Dk· But the se ond sum contains ind pendent random variables 
and we can apply a version of Azuma's inequality to derive that for each j 

Since IIj l ;::; ~/~ = O(d(vl, 1)2)/ logn), the probability above is smaller than exp ( 

constant C4. We solve the fi rst sum by the union bound, obt aining 

for any VI and '/)2 such that d(Vl ,V2 ) ;::; v 3/ c4 ' log2n . Hence, for a fixed pair of nodes VI , V2 such that 
d(Vl,1)2 ) ;::; ~log2 n , dc ( VI , '/)2 ) = O(d( V I : v2 )lr) with probability 1 - n-3. Applying Leffillla 3.5 yields 
the claim. 

L emma 3.5 . Let £ ( u, v ) be an event associated to a pair of vert'ices u v E G (Pn , T). A ssume that f OT all 
pairs oj ?JPrtices, Pr [£ (u,'u)J ;::; 1 - P w1:th p > o. Then) 

Pr [AUVEV(G(Pn,r)) £ (u :'u)] ;::; 1 - 2nlog n · p + n-2. 

Pm of . Let F be the event that the number of vertices in G is at most 2n log n. U:;ing a Chernoff bound) 
i t follow~ easily that Pr [...,F l ~ n. - 2 . Using the defi nition of conditional probabilities and the union bound 



(over conditional prohabilities) , we have 

Pr [VU,VEV(C(Pn,r)) -'£(U' v) ] 

~ Pr [VU,VEV(C(Pn ,r)) -,£ (u v) I F ] . P r [F ] + Pr [-,F] 

~ 2n log n· Pr [' £ (u,v) IF] +n-2 

_ 1 '. P r ['£(11 , v) !\ F] -2 
- 2n og n Pr [F ] + n 

P r [,£ (u, v)] 2 
~ 2n log n . 1 _ n _ 2 + n-

~ 2n log n . p + n - 2
. 

4 Broadcast Time 

o 

In the previous section we showed how to find a path betwt'en two nodes v} and V2 such t hat if d(Vl , V2 ) ?: 
V 3/ C4 I log2 n then de (VI , V2) = 0 (d( VI, 'V2) / r) . Assume that only node Vl i ini tially inform d and 1 t 
T(V}, V2) be the number of rounds it t akes for t he random broa ast procedure to inform ·V2. We show that 
T(V1, V2) = O(d(V] ,v2)/r) with high probability. 

We need to work with a subgraph of G. Let G' = (Pn , r') such that rc < r' = (1 - E)r, here E < 1 it:; 

a constant . Note that since r' > rc we know that dC/(Vl, V2) = O(d(v}, v2)/r'). 
Before proceeding to the proof of t he random broadcast t ime , we need first to introduce some definition . 

Let Ul and U2 be two nodes such that U1 and U2 have at least one neighbor in common in G' . For any 
point x E [0, In"F, let B (x, s) be t he ball with center at x and radius s. For any node w , let B (?o, s ) be 
defined as B (x, s) where 1.: is the locat ion of w. Let H (u}, U2) = B (u}) r) n B (U2 , r' ) (refer to Figur 3(a )). 
AssUlne that Ul is the only informed node and let T ( u}, U2) be t he number of roun s taken by the r - lldom 
broadcast procedure v r G wlt il the first node inside H (u}, U2) is informed (note that H (Ul, ll2) is not 
empty by the definition of Ul and U2). In a similar way, consider a node u and a region X ~ [0, yInl 2 such 
that X contains at least one node (besides u if u E X ) and for each node in X , u and this node have at 
least one neighbor in common in G' . T hen, assume that a node w chosen uniformly at random from ..'Y is 
informed and let T( X , u) be t he number of rounds taken by the random broadcast procedure over G until 
the fi rst node inH(w, u) is informed. 

Note t hat T (Ul, 11,2) is distributed as between the area of H ('u}, U2) and B (u] , r ). T he following lellliua 
gives a upper bound for E [T (U}1 U2)]. 

Lemma 4.1. For any pair of nodes U l and U2, E [T(U},U2)] = 0 (1). 

Proof. Disregarding t he nodes u} and U2 , let Y} be t he numb r of nodes in H ( 1L1, U2) and Y2 be the 
number of nodes inside B (11.r) r ). Therefore, E [T(u}) U2)] = E [Y2/ Y}]. We know that there is a node inside 
H (Ul, U2) t he!" fore, Yl - 1 and Y2 -1 are Poisson random variables with mean Area(H (u}l U2)) and 7rr2, 
respectively. Conditional on Y2 - 1 = k, the value of Y} - 1 is given by a Binomial distribut ion with mean 
kp , where p is given by t he rat io of the area of H ( Ul, U2) to the area of 7rr2. Let t his ratio be denoted by 
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Therefore E [T(Ul) 1L2)] = 0 (1) if ;3 = f2 (1). In rder to show that f3 = 0 (1), note that d(1l.1,U2 ) ~ 21" and 
the ca.se that minimizes the area of H (Ul ' U2 ) is when d(u }, U2) = 21" (as illustrated in Figw'e 3(b)). We 
show that the quadrilateral Zl Z2Z3Z4 in the figure, which is c ntained inside H (tLl , U2 ), has area 0 (1'2 ). 
It is easy to check that the line Z2Z4 has 1 ngth r - 1" = Er. Now we ne d t show that the distance 
from Z l to the line Z2Z4 has length !1 (r). Applying the law of cosines to the triangle Z l UIU2, we obtain 

cos( 0) = 1~~i~))2 and, consequently, for a constant E, there exists a constant <5 such that sin( 8) ?;: O. Then, 

the area of the quadrilateral Z1Z2Z3Z4 is larger than EOr2 and , conseq ently, ,6 ?;: Eo/rr = 0 (1). 0 

For any region X ~ [0, VnJ containing at least one node and a node l L so that every node in X has a 
neighbor in common with u, let VV be a Hode chosen uniformly at random from X . Then, T( X u) i ' also 
distributed according to a geometric random variable and E [T (X, u)] = E [E [T (w, 'u) I W = 1))]] = 0 (1). 

N ow we are in posi tiOll to get a upper bound for T ( VI, V2 ). Take a path u 1) U2, ... ,'11m in G' such that 
'Ul = VI and U rn = V 2 · Let X l be the point where U l is located and define the region X i recursively for 
2 ~ i ~ m - 1 as X i = H (Wi - 1, UL+l ), where Wi - 1 is a node chosen uniformly at random from X i - 1 (hence 
X i d pends on Xi-d. Note that U ·i, E X i and for any node W X i, the region H ('UJ, Ui+ 2 ) is not empty (in 
particular, u i+l E H (w, Ui+2 )). We derive the t ime it takes for the random broadcast procedure to inform 
U2 by following the information along t he path UI , H (X I' U3 ) , H (X2, U4 ) , " " H (X m-2, um ), U-m· 



Note that when U l informs a node inside the region H (X l' U3), t he node t hat gets illform~d is chosen 
uniformly at ra,ndom from H (X l' U3). The sam happens for all H (X il Ui+2). Let B(X m - 1, 'um) be the t ime 
it t akes for a node chosen uniformly at random from X m - 1 to inform U m . Hence, T( vI , V2) ~ B(X m - 1 , V2) + 
2:~12 T (X i' Ui+2). 

For a fix pair of nodes VI and V2 we take Ul, 1L2, ... ,Urn to be the shortest path obt ained from the 
procedure us d to derive a upper bound for dC(Vl, V2) in S ction 3. T hat path has a nice property. If £. 
holds, then the ma.ximum annulus considered in a detour around an empty square has length c1 log n . Let 
S i a lld Sj be two empty sqll ares, let Xi be the middle point of t he edge between S i-l and S i, and xJ be the 
middl point of the dg between SJ -1 and 5j . Let L be the line containing VI and V2. T hen, for any two 
nodes 'Wi E A(X2J L , r, LJ log n/r) and Wj E A(x j , L, T , c1 logn/r), t he region B (Wi, r) n B (wJJ r) is empty if 
d(;J;iJ J:j ) ~ c1log n + 2r . Since each annulus have O (log2 n/r) nodes in t he pat h. we obtain t hat two nodes 
Ui an uJ in t he pat h are such that B (Ui,T) n B (uj,r) is empty if Ii - jl ~ c51og3 n /r, for some constant 
Cs. Le ~'= 3 + cs log3 n/r , for any i, t he random variables T (X iJ Ui+2) and T( X j ) Uj+2) are independent 
if Ii - j I ~ fi l . 

Let the index set JJ = {I ~ i :( m: i == j (mod ~I)}. We can then writ e T(VI,V2) = 8( X m 1, V2) + 
2:t~ l L iE.!) T (X i' Ui+2), here for all j, the term LiE]j T( X iJ Ui+2) is given by the sum of ind pendent 
g ometric random variables. We apply the following Cher noff bound for t his term. 

Lemma 4.2 . L t 0 < 5 < 1 be arbitrary. Suppose that X l ) ... ; X n are independent random variables on 
]'\-I with Pr [X i = k] = (1 - 5)k- 15 faT every kEN. Let X = L:~l X i. Then it holds for ev ry s > 0 that 

Pr [X ~ (1 + s)n /5] ::; e-c:
2
nj2(1+c:). 

Proof. Consider t ransforming every X i = k into a binary string B k = (000 ... 01 ) with (k - 1) zeroe~ . Then 
the series of X I = kl ~ X 2 = k2 1 X 3 = k3 ) ... can be represented by a st ring B of t he form f {B k 1 B 1.:2 B k3 ... } = 
{OO ... l OO ... lOO ... l. .. OO ... l }. Note tha B contains n many l's and t he total number of positions (0 or 1) in 
B is A,- = 2:i ki · 

Now, consider in stead an infinite set of binary random variables Y1 , Y2. Y3 , . .. with P r [Yi = 1] = 5. 
Viewing Yi as representing the i-th position in B~ it is not difficult to check that 

L t k = (1 + s) p wi th /" = E [X ], Y = L::;~iC:)f< Yj, and p.,' = E [Y]. It foll ws from the Chernoff bounds for 
binomial random variables (cf. Lemma B.1) that for any Sf E [0, I), 

Pr [Y ::; (1 - s')p.,'] ::; e -([1)2p/ /2 

SiIlce E [Xi ] = 1/5 and therefore /-L = n/5, it follow~ that p.,' = (1 + s)p.,· 5 = (1 + c)n. Hene , if we set 
n = (1 - c' )jJ/, we g t t hat (1 - s') (1 + c) = 1 and therefore c' = c / (1 + c). P lugging this int o the equations 
above, we obtain 

which proves he lemma. o 

The lemma abov give::! that for each j , 



We know that there exi::;ts a constant Co such that E [T (X i l Ui+2)] :( Co for all i. W can then take the 
union bound over all j and conclude that 

for some constant C7. 
It only remains to prove a upper bound for g(Xrn-l ~ V2). We show that for any pair of nodes 'WI an 

U2, we obtain g(Wl l W2 ) :( 

Lemma 4 .3. For all par;r of node s WI and 'W2 such that d(Wl 1 W2 ) :( r, the f ollowing holds with probability 
1- 0 (1/ n), 

f or some constant Cg. 

Proof. Note that if the degr e of 'Wl in G is A, then the number of rounds until w 1 sends the information 
to W2 is given by a geometric randOln variable with mean A. We first show tha th maximum degree of 
G is smaller than cs log n/ log log n with high probability. We first tesselate the region [0, vfnJ in squares 
of size r. For each square: hom Lemma 4.4, the probability that there are m re t han (c / 9) log n/ log logn 
nodes is smaller than 1/n 2 , for some constant ca - Since we have n/r2 squares , the probability t hat each 
square has less than (cs / 9) logn/ log logn nodes is 1 - O(l / n ). Since for each node , its neighbors belong 
to at most 9 squares we have that /\ :( cslogn/ log log n. Therefore , 

( 
log log n) 

Pr [e(wl, W2);?t]:( exp -cst log n . 

If 'e set t 310g2 n / (c81og log n ) Cg log2 n / log log n , we obtain that 
Pr [() (Wl ,'W2) ~ c9log2 n/ log logn] :( 1/n3 and, by the union bound over WI w2 , the probability 
that e(Wl ,'W2):( cg log2 n / loglog n for all WI, W2 is larger than 1- O(l/n). 0 

Lemma 4 .4. If)( is a Poisson random variable with mean p., then Pr [X ;? t] :( e-t1og(t//-i)+t-/-i. 

Proof. We have E [ ex] = ef./(e
8

-
1

) and by .i\1arkov's inequality Pr [X ;? t] :( exp(p.(ee - 1) - gt ), setting 
() = log(p,ft) concludes t he proof. 0 

Therefore, we get that for any two nodes VI and 7)2 in the largest component of G' such that d ('U l ' V2) ;? 

(3/ c7 ) log3 n , T(Vl, 12 ) = O(dC{ Vl ,V2 )) = O(d(Vll v2)/r) with probability 1 - O(l/n ). We now need to 

I 
'how that after all the largest component f 0 ' is informed, the nodes that belong to the largest component 

of G are informed after a small amount of rounds . 

5 Conclusion 

We analyzed ran om broadcast in random geom tric graphs. We prov d tha the algorithm completes in 
O( yin' / r) steps, where r can be an arbitrary value above the cri tical value for the emergence f the giant 
component. In p rticular, we also showed that the diameter f the larg st component is O( m ir). 

All open problem is to extend our results to higher diInensions, which seems to be challenging, as 
certain ide3..') from percolation theory we use aJ:e restricted to two dimensions. A second possibility would 
be to t ry to apply our techniques to the analysis of the cover t ime of the giant component of RGGs. This 

j

WOUld nicely omplement recent results by Co per and Ftieze [2, 3] for t he giant component of Erdos­
Rellyi-Random-Graphs and for COllne ted RGGs. 
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A Oluitted Proofs 

Lemma 2.1 (from page 3). Let A be any even t that holds 'With probability at least 1 - a in the 9 (Pn; r) 
m odel. Then) A also holds in the Q(Xn; r) with probability at least 1 - 0 (711/2 a). 

Proof. In tIllS proof, we shall use subscripts to indicate the space over which the probabilitcs are t aken. 
Let vol(Gn •r ) denote the number of vertices in a realization of 9 (Pn;r). Then it follows that by Stirling's 
formula that 

7171 71n ( 1 ) 
Prg (X n;r) [voI( Gn,r) = 71] = e- n . --I' = e-n . ~ = 8 &:' . 

71 . e ( ( ~ ) n. 2r.n ) v 71 

~ ote however , that conditioned on vol(Gn,r) = 71 for a relization in 9(Pn ;r ), G n,T is also a realization of 
9 ( ,..t'n; r ). Therefore 

P r g(Xn;r) [, A] = Prg (P
11

;1' ) [,A I vol(Gn,r) = 71] 

< Prg (Pn;r) [---, A] 
" Prg(p" ;r) [vol ( Gn •r ) = 71] 

= (') (711/20:) . o 

B Chernoff Bounds 

Lemma B.1 (Chernoff Bound for Sums of Binary Variables). Let Xl , X 2 , . .. , X n be indepe ndent b'inary 
random variables. Let X = 2:7=1 X 'i and p, := E [X ]. Then it holds or all 0 > 0 that 

M oreo'un' it holds f or all 0 < 5 < 1 that 

Pr [X ~ (1 - o) p,] ~ exp (- 0/-,, / 2) . 
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