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OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO 
SAMPLING: THEORY 

Joshua D. Coe ', Thomas D. Sewell2
, M. Sam Shaw ' 

iTheorelical Division, Los A lamas National Laboratory, Los Alamos, NM 87545 
2 Department aJ Chern istry, University aJ Missouri-Columbia, MO 65211-7600 

Abstract. Metropolis Monte C arlo samp ling of a reference potential is used to build a Markov chain in 
the isothermal-isobaric ensemble. At the endpoints of the chain , the energy is reevalu ated at a di ffe rent 
level of approximation (the "full" energy) and a composite move encompassing all o f the inte rvt:n ing 
steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermody nam ic 
variables charac terizing the reference system we maximize the average acceptance probabi lity o f 
composite moves, lengthening significantly the random walk made between consecut ive evaluations of 
the fu ll energy at a fixed acceptance probability. This provides maximally decorrela ted samp les of the 
full poten tial, thereby lowering the total number required to build ensemb le averages of a g iven 
variance. The effici ncy of the method is illustrated using model pote ntials appropriate to molec ular 
flu ids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are 
d is ussed. 
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INTRODUCTION 

In traditional Monte Carlo (MC) simulation, 
configuration space is sampled via a sequence of 
elementary steps (single-particle displacements and 
sam ple-w ide changes such as volume adjustments) 
punctuated by acceptance tests requiring evaluation 
o f the full system potential energy. The cost of 
th se calculations can be reduced from O(N2) to 
O(N) in N-partic lc systems adequately modeled 
with pair potentials, but no comparable reduction is 
possible when accuracy constraints mandate 
energies calculated self-consistently using density 
functional theory (DFT) or ab initio wavefunction 
techniques . I f analytic gradients are available at the 
electronic ~;tructure level of choice, molecular 
dynamics (MO) simulation possesses a 
considerable advantage over MC due to the 
collective nature of MD steps. Here we outline a 

thermodyn amical!y optimized variant [1,2 ] of the 
Nested Markov Chain Monte Car lo (N( MC)2) 
method [3,4] that enables use of many-particle 
composite MC steps while retaining practical 
acceptance probabilities fo r trial moves. The 
method is iIlustrated for model tlu ids at high 
temperature and pressure, and its application to 
sampling with a DFT potential is given in a 
companion proceedings article [5]. 

NESTED M ARKOV CHA IN MONTE CARLO 
SAMPLING 

The N( MC )2 method u es elementary steps 
taken with an approximate reference po tential to 
build composite steps tak en wi th the potential of 
interest (the "full" potential), thereby fac ilitating 
collection of partially decorrelated sa mples of the 



latter. In the event that the full potential is of higher 
cost and quali ty, th is procedure offers significant 
reduction in computational expense. If elementary 
steps taken on the reference potential are accepted 
according to the standard Metropolis criterion, 

a l 11 = mm Ie ' , , . ( 11" ·' -11 '·' ) 
II ' , 

(I) 

where a l OI represents the acceptance probability of 
" 

a tria l step from state i to state j and W repr sents 
the thermodynam ic weight appropri ate to the 
isothermal-isobaric (NPT) ensemble 

WI O) = -/3(U IO ) + PV .) 
J J I ' 

(2) 

then the acceptance probability of composite steps 
taken on the full potential is 

. ( ~W -iilr) ay = mm I,e ' , , 0) 

We have di stinguished reference system quantities 
from those of the full system by a superscripted 
zero, and defined the difference in reference and 

full sy tem weights as oW = W - WIO ). If the 
I I .1 

differences in oW at distinct configurations are 

denoted L'!.W == oW - oW , (3) can be reexpressed , ' 

as 

f ell, L'!.W< O 
a -"-11 ,L'!.W~O . 

(4) 

The mean acceptance probability a of composite 
steps can be expressed analytically [I] in the I im it 
of their being built from sequences of 0 

lementary steps steps long enough to decorrelate 
consecutive evaluations of the full potential. If Ocon­

is the correlation length of the potentials (assumed 
to be rough ly the same for both reference and fu II), 

(( 

811' )) 
_ ae ' 

lima ==A= ~ 
0 ---4-0....,. e ' 

o 

(5) 

where nested brackets imply double averaging over 
initial and final states i and) and the subscripted 
' 0' indicates that configurations used to build the 
averages are sampled from the re ference 
distribution. Because no acceptance test is applied 
in its construction, A is an a priori sti mate of 
mean acceptance probab ili ty for steps taken in an 
actual N(MC)" simulation. 

The mean accep tance probability in (5) is a 
function of reference and full system temperature 
and pr ssure thro ugh the thermodynamic weights 

given in (2) and (3), i.e. A==A( PIO l,TI 01 , P,T). 

The full system conditions are those matched to 
e periment, meaning that (pO),r0 ) can be varied to 

maximize A. Because A is buill from sampling 
the distribution of reference states, however, 
varying (pO),r0) directly is practica lly infeasible; 

instead we vary (P,T) to yield A""" at optimal 

values (P"p,,Topl), then return the full system 
variables to their original valu';'; ( P I,T ') and apply 

the same transformation to the reference variabl s 
(whose original values are P , and T' as well ): 

p IO) = P'+ (P'- P ) 
Opl QPI 

TIO )=T'+(T'-T) 
opt orl 

(6) 

PO ENTIAL ENERGY FUNCTIONS 

For purposes of ill~stration, the optimized 
N(MCt method IS Implemented here usmg 
diatomic model fluids in which the full interaction 
between a pair of molecules i and j is a sum over 
sites a and b ofexponential-6 site-s ite interactions, 

rp(r ) = _E_ [6eall-I r""I r,, 1i - . a 1 (7) 
"h a - 6 (r / r )6 

(lh 0 

1 2 

rp" = LLrp(rah ) . (8) 
a=:<1 ""' 1 

The three parameters appearing in (7) were 
obtained by fitting pair energi s calculated using 
the Perdew-Burke-Erzenhof (PBE) exchange and 
correlation function als [6] paired with a 6-3 1 G* [7] 



basi s sct at three fid ucial configurations and over a 
range of center-of- mass distances. Potential 
parameters obtained in this fashion were the 
following: 

E = 34.156 K 

ro =4.037 Angstrom. 

a=I2.29 

(9) 

The mo lecular bond length I was reduced from its 
value of 1. 10 A in the full potential to generate a 
set of reference potentials at 1= 1.05-0.90 A. The 
anisotropic character of these potentials is 
ill ustrated in Fig. I, along with the behavior of a 
purely spherical potential and three of the four 
configuration types used to parame terize (7). 
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figure). Il lustration of the potential defined by (7)-(9) 
fo r the three fiducial pair configurations illustrated on the 
right. Curves are drawn for a purely spherical potential 
1=0), the full potential (/= 1.1 0 A) and one of the 
reference potentials (1= 1.00 A). 

RESULTS AND DlSCUSSION 

Table I provides a summary of results at each 

point in the procedure. A was built from (5) by 
sampli ng the reference distribution at 

(P(OI =p" T (OI =T ') , then optimized as a function of 

(P,T) to yie ld Ii ( P', T ', P ,T ). These a priori 
rna.., upt " pI 

estimates are to be compared with acceptance 
probabilities computed a posteriori from actual 
N(M ,)2 simulations carried out at the 

TABLE 1. Summary of parameters nnu resul t fo r each 
stage of the procedure described in the text. Un certain­
ties in the last digit are recofded in pa ren thesis. 

IIA 
T' IK 

P'iGPa 

Top, IK 

POpl IK 

rOlop.tK 

pOlop/GPa 

A( P',T',P',T') 

A
MC

( P', T', P',T') 

A""" (P', T', F;.p, , Tep,) 

1.05 

728 

4.84 

756 

1.00 

728 

4.84 

796 

0.90 

728 

4.84 

867 

5.08 5.35 6.08 

700 660 589 

4.60 4.33 3.60 

0.367(5) 0.069(3) 0.00 I (0) 

0.355(6) 0.0 84 (3) 0.006( I) 

0.512(5) 0.1 95(5) 0.024(2) 

A (P' T' P T ) 
.\Ie ' 'op,' or' 0.553(7) 0.2 79(9) 0.030(5) 

Ii (P.OI T(O' P' T') 
Me "P" o~" 0.548(6) 0.251(7) 0.021(5) 

thermodynamic conditions indicated III the 

functional dependence of A,'le' Note that Me 
simulations performed using (PQP,,Tvp') or 

(p(OI ,T(UI) have significantly higher acceptance 
opt opt 

probabilities than those performed at the original 

conditions (p=pOI =P', T=T (0
) =T '). Diserepan cies 

between a priori and a posteriori estimates most 
likely reflect use of incompletely decorrelated 
samples in estimati ng the former. 

It is important to note that estimates shown in 
Table I are for composite steps in the limit of O<or" 
and that smaller 0 will yield potenti ally much 
higher acceptance probabilities. Figure 2 provides a 

direct comparison of A~K for N(MC)' simulations 

using optimized (black) and unoptim ized (gray , red 
online) conditions as a function of 0, the number 
of reference system steps used to bu ild a single 
composite step made in the full system; 

iiij increases (often substantially) at all values Df 0 

for every potential. 
From Eqn. (4) it is clear that a Dirac 8(0) 

distribution of ~W would yield unit acceptance 
probability of composite tr ial teps; therefore, the 
principal aim of optimization is to sh ift the mean of 
the actual ~W distribution as close to zero as 
possible and minimize its width. Figure 3 confirms 
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Figure 2. Acceptance probability of composite steps 
prior to (gray , red online) and following (black) 
thermodynami c optim ization, as a function of composite 
step si ze O . Statis tical uncertainties are smaller than the 
symbol s ize. 

that th is is precisely what has been achieved by the 
themodynamic optimization procedure described 
above for the reference potential /= 1.00 A and 
0 = 1000. The mean value of t.W moves from -4.97 
to -1.69 upon optimization, and the width of this 
distribution drops from 0=6 ,21 to 0=3.94. 

For contexts in which the accuracy of a OFT or 
ab inilio potential would be useful, the optimized 
N(MC)~ method provides efficient sampling with-
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Figure 3. W for 1=1.00 A and 0=1000. Upon 
optimization of (p(O),rO»), the t,W appearing in 14) 

narrows and shifts closer to zero, raising the mean 

acceptance probability ii . 

out having to sacrifice accuracy or effic iency. 
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