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OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO
SAMPLING: THEORY

Joshua D. Coe', Thomas D. Sewell’, M. Sam Shaw'

!Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
‘Department of Chemistry, University of Missouri-Columbia, MO 65211-7600

Abstract. Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in
the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different
level of approximation (the “full” energy) and a composite move encompassing all of the intervening
steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic
variables characterizing the reference system we maximize the average acceptance probability of
composite moves, lengthening significantly the random walk made between consecutive evaluations of
the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the
full potential, thereby lowering the total number required to build ensemble averages of a given
variance. The efficiency of the method i1s illustrated using model potentials appropriate to molecular
fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are

discussed.
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INTRODUCTION

In traditional Monte Carlo (MC) simulation,
configuration space is sampled via a sequence of
elementary steps (single-particle displacements and
sample-wide changes such as volume adjustments)
punctuated by acceptance tests requiring evaluation
of the full system potential energy. The cost of
these calculations can be reduced from O(A°) to
O(N) in N-particle systems adequately modeled
with pair potentials, but no comparable reduction is
possible when accuracy constraints mandate
energies calculated self-consistently using density
functional theory (DFT) or ab initio wavefunction
techniques. If analytic gradients are available at the
electronic structure level of choice, molecular
dynamics  (MD)  simulation  possesses a
considerable advantage over MC due to the
collective nature of MD steps. Here we outline a

thermodynamically optimized variant |1,2] of the
Nested Markov Chain Monte Carlo (N(MC)Z)
method [3,4] that enables use of many-particle
composite MC steps while retaining practical
acceptance probabilities for trial moves, The
method is illustrated for model fluids at high
temperature and pressure, and its application to
sampling with a DFT potential is given in a
companion proceedings article [5].

NESTED MARKOV CHAIN MONTE CARLO
SAMPLING

The N(MC)® method uses clementary steps
taken with an approximate reference potential to
build composite steps taken with the potential of
interest (the “full” potential), thereby facilitating
collection of partially decorrelated samples of the



latter. In the event that the full potential is of higher
cost and quality, this procedure offers significant
reduction in computational expense. If” elementary
steps laken on the reference potential are accepted
according to the standard Metropolis criterion,

a:l'” = min(l,ew“'”’” ) , (N

where ¢'” represents the acceptance probability of

a trial step from state / to state j and W represents
the thermodynamic weight appropriate to the
isothermal-isobaric (VPT) ensemble

W =-BU\" +PV), )

then the acceptance probability of composite steps
taken on the full potential is

a, = min[:,e‘s”‘/“’“?), ()

We have distinguished reference system quantities
from those of the full system by a superscripted
zero, and defined the difference in reference and

full system weights as 8W =W — W™ . If the

differences in oW at distinct configurations are
denoted AW E5W} —6W,, (3) can be reexpressed

as
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The mean acceptance probability & of composite
steps can be expressed analytically [1] in the limit
of their being built from sequences of O
elementary steps steps long enough to decorrelate
consecutive evaluations of the full potential. If Oo
is the correlation length of the potentials (assumed
to be roughly the same for both reference and full),

S
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where nested brackets imply double averaging over
initial and final states i and j and the subscripted
‘0’ indicates that configurations used to build the
averages are sampled from the reference
distribution. Because no acceptance test is applied
in its construction, 4 is an a priori e¢stimate of
mean acceptance probability for steps taken in an
actual N(MC)* simulation.

The mean acceptance probability in (5) is a
function of reference and full system temperature
and pressure through the thermodynamic weights

given in (2) and (3), ie. A= APV, T, P,T).
The full system conditions are those matched to
experiment, meaning that (P,7") can be varied to
maximize A4 . Because A is built from sampling
the distribution of reference states, however,
varying (P, 7?) directly is practically infeasible;
instead we vary (P,7T) to yield f—tm at optimal
values (PupiTop), then return the full system
variables to their original valu=: (P',7') and apply

the same transformation to the reference variables
(whose original values are £ "and 7' as well):

PO =P (P'-P )

apt opt
TO=T+(T'-T ) i
opt - opt

POTENTIAL ENERGY FUNCTIONS

For purposes of illustration, the optimized
N(MC)® method is implemented here using
diatomic model fluids in which the full interaction
between a pair of molecules / and j is a sum over
sites a and b of exponential-6 site-site interactions,

/
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a=1 b=

The three parameters appearing in (7) were
obtained by fitting pair energies calculated using
the Perdew-Burke-Erzenhof (PBE) exchange and
correlation functionals [6] paired with a 6-31G* [7]



basis sct at three riducial configurations and over a
range of center-of-mass distances. Potential
parameters obtained in this fashion were the
following:

e=34.156 K
ks =4.037 Angstrom . (9
=12.29

The molecular bond length [ was reduced from its
value of 1.10 A in the full potential to generate a
set of reference potentials at /=1.05-0.90 A. The
anisotropic  character of these potentials s
illustrated in Fig. 1, along with the behavior of a
purely spherical potential and three of the four
configuration types used to parameterize (7).

10

Figure 1. lllustration of the potential defined by (7)-(9)
for the three fiducial pair configurations illustrated on the
right. Curves are drawn for a purely spherical potential
I=0), the full potential (/=1.10 A) and one of the
reference potentials (/=1.00 A).

RESULTS AND DISCUSSION

Table | provides a summary of results at each
point in the procedure. 4 was built from (5) by
sampling  the  reference  distribution  at
(PO=p' T9=7"), then optimized as a function of

(P,1) to yield 4_(P\T",P T..). These a priori

opt? o,
estimates are to be compared with acceptance
probabilities computed a posreriori from actual
2 . " v
N(MC)"  simulations carried out at the

TABLE 1. Summary of parameters and resulls {or each
stage of the procedure described in the text. Uncertain-
ties in the last digit are recorded in parenthesis.

1/A 1.05 1.00 0.90
T K 728 728 728
P /GPa 4.8 4.84 4.84
Top /K 756 796 867
Pop /K 5.08 5.35 6.08
T K 700 660 589
PO, IGPa 4,60 33 3.60
AT, PLTY 0.367(5) 0.069(3) 0.00i(0)
[Auc(PLTLPLTY L g355(6)  0.08403)  0.006(1)
[ (BT B0 Ta) | 05125)  0.195(5) 0.024(2) |
AP TR T) 1 0.553(7) 02799)  0.030(5)

A, P‘q‘:’ ; To‘s’ ; PRI

)_|0.S48(§) 0.251(7) _0.021(5)

thermodynamic conditions indicated in the
functional dependence of Ew. Note that MC

simulations  performed using (Pop,Top) O

(Pi‘g‘,T[;))() have significantly higher acceptance

probabilities than those performed at the original
conditions (P=P"=pP', T=T""=T"). Discrepancies
between a priori and a posteriori estimates most
likely reflect use of incompletely decorrelated
samples in estimating the former.

[t is important to note that estimates shown in
Table | are for composite steps in the limit of O,
and that smaller O will yield potentially much
higher acceptance probabilities. Figure 2 provides a
direct comparison of /_IMC for N(MC)" simulations
using optimized (black) and unoptimized (gray, red
online) conditions as a function of O, the number
of reference system steps used to build a single
composite step made in the full system;
o, increases (often substantially) at all values of O

for every potential.
From Eqn. (4) it is clear that a Dirac &(0)

distribution of AW would vield unit acceptance
probability of composite trial steps; therefore, the
principal aim of optimization is to shift the mean of
the actual AW distribution as close to zero as
possible and minimize its width. Figure 3 confirms
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Figure 2. Acceptance probability of composite steps
prior to (gray, red online) and following (black)
thermodynamic optimization, as a function of composite
step size O. Statistical uncertainties are smaller than the
symbol size.

that this is precisely what has been achieved by the
themodynamic optimization procedure described
above for the reference potential /(=1.00 A and
0=1000. The mean value of A#¥ moves from -4.97
to -1.69 upon optimization, and the width of this
distribution drops from ¢=6.21 to 0=3.94.

For contexts in which the accuracy of a DFT or
ab initio potential would be useful, the optimized
N(MC)* method provides efficient sampling with-
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Figure 3. AW for /=1.00 A and 0=1000. Upon
optimization of (P, 7'%), the AW appearing in (4)
narrows and shifts closer to zero, raising the mean
acceptance probability @ .
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out having to sacrifice accuracy or efficiency.
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